Enthalpies of Combustion and Formation of Severely Crowded Methyl-Substituted 1,3-dioxanes. The Magnitudes of 2,4- and 4,6-diaxial Me,Me-Interactions and the Chair–2,5-twist Energy Difference
Abstract
:1. Introduction
2. Results
2.1. Preparation of the Studied Compounds
2.1.1. Starting Materials
- 2-Methyl-2,4-pentanediol was a commercial product from Fluka AG (Buchs, Switzerland).
- 2,4-Dimethyl-2,4-pentanediol was prepared with Grignard reaction from ethyl β-methyl,β- hydroxybutyrate and methyliodide [6]. Its boiling point was 363–365 K at 1.7 kPa.
2.1.2. 1,3-Dioxanes
- 4,4,6,6-tetramethyl-1,3-dioxane (2) was prepared with the method developed by Rondestvedt [7] from 2,4-dimethyl-2,4-pentanediol and paraformaldehyde (formaldehyde polymer) in dichloromethane using p-toluenesulfonic acid as catalyst. After the distillation, the product was allowed to stand on saturated sodium bisulfite solution until all unreacted aldehyde was removed. Final purification was carried out on a Perkin Elmer F 21 preparative gas chromatograph using a 4.5 m steel column including 20% Carbowax 20M as the liquid phase and Chromosorb G (60/80 mesh) as the solid phase. The boiling point was 349 K at 6.9 kPa and 427.6 K at normal pressure. Water content was 0.05 ± 0.005% (Scheme 1).
- 2,4,4,6,6-pentamethyl-1,3-dioxane (3) was prepared by boiling equimolar amounts of paraldehyde (acetaldehyde polymer) and 2,4-dimethyl-2,4-pentanediol in hexane with p-toluenesulfonic acid as catalyst in a water entrainment unit [7]. The raw product was purified as above. The boiling point was 353 K at 8.6 kPa and 423.7 K at normal pressure. Water content was 0.06 ± 0.005%.
- 2,2,4,4,6-pentamethyl-1,3-dioxane (4) was prepared by boiling equimolar amounts of acetone and 2-methyl-2,4-pentanediol in hexane with p-toluenesulfonic acid as catalyst in a water entrainment unit [7]. The raw product was purified as above. The boiling point was 420.1 K at normal pressure. No water was found. For NMR characterization of 1–4, see Refs. [5,8,9,10,11].
2.2. Combustion Experiments
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Conflicts of Interest
References
- Pihlaja, K.; Kleinpeter, E. Carbon-13 NMR Chemical Shifts in Structural and Stereochemical Analysis; Wiley-VCH: New York, NY, USA, 1994. [Google Scholar]
- Pihlaja, K.; Rossi, K.; Vainiotalo, P. Bond-bond interactions in alkanes and their hetero analogs. Allen-type group increments for estimating enthalpies of formation of alkanes and their oxygen, sulfur, and nitrogen analogs and aliphatic ketones. J. Chem. Eng. Data 1985, 30, 387–394. [Google Scholar] [CrossRef]
- Pihlaja, K.; Heikkilä, J. Heats of Combustion of 1,3-Dioxane and Its Methyl Derivatives. Acta Chem. Scand. 1967, 21, 2390–2398. [Google Scholar] [CrossRef]
- Pihlaja, K.; Luoma, S. Heats of Formation and Conformational Energies of 1,3-Dioxane and Its Methyl Homologues. Acta Chem. Scand. 1968, 22, 2401–2414. [Google Scholar] [CrossRef] [Green Version]
- Pihlaja, K.; Kivimäki, M.; Myllyniemi, A.M.; Nurmi, T. Carbon-13 chemical shifts: Sensitive detectors in structure determination. Part 2. Carbon-13 nuclear magnetic resonance chemical shifts and the twist conformations of 1,3-dioxanes. Geminal substitution at the 4-position: A guaranty for the chair form? J. Org. Chem. 1982, 47, 4688–4692. [Google Scholar] [CrossRef]
- Pihlaja, K.; Ketola, M. Preparation of 1,3-Propanediol and Its Methyl Derivatives by Grignard Reactions or by LiAlH4 Reduction. Acta Chem. Scand. 1969, 23, 715–726. [Google Scholar] [CrossRef]
- Rondestvedt, C.S. m-Dioxanes and Other Cyclic Acetals. J. Org. Chem. 1961, 26, 2247–2253. [Google Scholar] [CrossRef]
- Pihlaja, K.; Nurmi, T. 13C Chemical Shifts – Sensitive Detectors in Structure Determination. 13C NMR Studies of Saturated Heterocycles. Methyl-Substituted 1,3-Dioxanes. Israel J. Chem. 1980, 20, 160–167. [Google Scholar] [CrossRef]
- Kellie, G.M.; Riddell, F.G. The Carbon-13 Nuclear Magnetic Resonance Spectra of Some 1,3-Dioxans. Part II. A Demonstration of Non-chair Conformations. J. Chem. Soc. B 1971, 1030–1034. [Google Scholar] [CrossRef]
- Pihlaja, K.; Äyräs, P. Conformational Analysis. NMR Spectra of Six-Membered Cyclic Acetals. Acta Chem. Scand. 1970, 24, 531–549. [Google Scholar] [CrossRef]
- Samitov, Y.Y.; Yuldasheva, L.K.; Anonimova, I.V. Proton and carbon-13 NMR spectra, dipole moments, and conformations of six-member 4,4,6,6-tetramethyl-1,3-dioxa-2-hetero(sulfur, selenium, arsenic) cycles. Zh. Org. Khim. 1982, 18, 406–415. [Google Scholar]
- Wadsö, I. Heats of Vaporization for a Number of Organic Compounds at 25 degrees C. Acta Chem. Scand. 1966, 20, 544–552. [Google Scholar] [CrossRef]
- Vainiotalo, P. Measurements and Calculations Concerning Energetic Factors Present in Alkanes and Their Heteroanalogues Utilizing Bond-Bond Intereraction Schemes. Bachelor Thesis, University of Turku, Turku, Finland, 1980. (In Finnish). [Google Scholar]
- Parker, W.; Steele, W.; Stirling, W.; Watt, I. A high-precision aneroid static-bomb combustion calorimeter for samples of about 20 mg. The standard enthalpy of formation of bicyclo[3.3.3]undecane. J. Chem. Thermodyn. 1975, 7, 795–802. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Experiments 1 | ||||||||
---|---|---|---|---|---|---|---|---|
1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | |
m(2)/g | 0.51757 | 0.49777 | 0.47285 | 0.53899 | 0.47061 | 0.54141 | 0.55610 | 0.53846 |
m(gel.)/g | 0.12393 | 0.12088 | 0.12393 | 0.12193 | 0.12535 | 0.12237 | 0.12395 | 0.12592 |
ef(cont.)/ JK−1 | 17.77 | 17.62 | 17.55 | 17.85 | 17.55 | 17.85 | 17.92 | 17.85 |
ΔT/K | 1.95944 | 1.88722 | 1.81222 | 2.02888 | 1.80666 | 2.03722 | 2.09000 | 2.03444 |
q(ign)/J | 67.78 | 37.32 | 67.36 | 68.53 | 65.14 | 82.26 | 71.80 | 83.81 |
q(HNO3)/J | 32.30 | 40.58 | 40.00 | 43.30 | 38.83 | 44.22 | 44.94 | 43.47 |
q(H2SO4)/J | 4.06 | 3.97 | 4.06 | 4.02 | 4.14 | 4.02 | 4.06 | 4.14 |
q(gel.)/J | 2332.04 | 2274.63 | 2332.04 | 2294.38 | 2358.73 | 2302.66 | 2332.41 | 2369.48 |
q∑/J | 7.49 | 7.20 | 6.86 | 7.78 | 6.82 | 7.82 | 8.03 | 7.78 |
−Δuc°/ kJg−1 | 34.0366 | 34.0652 | 34.0532 | 34.0508 | 34.0448 | 34.0138 | 34.0509 | 34.0216 |
−ΔUc°/ kJmol−1 | 4908.5 | 4912.6 | 4910.9 | 4910.6 | 4909.7 | 4905.2 | 4910.6 | 4906.4 |
Results (kJ mol−1)2 | ||||||||
ΔUc°(l) | −4909.3 ± 2.4 | ΔHvap | 47.4 ± 2 | |||||
ΔHc°(l) | −4916.7 ± 2.4 | ΔHf°(g) | −470.6 ± 4.1 | |||||
ΔHf°(l) | −518.0 ± 3.2 |
Experiments 1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1. | 2. | 3. | 4. | 5. | 6. | 7. | 8. | 9. | 10. | 11. | |
m(3)/mg | 459.317 | 454.329 | 429.039 | 471.094 | 510.543 | 514.600 | 468.487 | 461.188 | 454.690 | 434.877 | 488.729 |
m(gel)/mg | 126.090 | 133.500 | 122.400 | 123.635 | 121.10 | 123.330 | 115.245 | 126.145 | 128.000 | 130.035 | 128.375 |
ef(cont.)/JK−1 | 17.55 | 17.55 | 17.40 | 17.62 | 17.77 | 17.77 | 17.55 | 17.55 | 17.55 | 17.47 | 17.70 |
ΔT/K | 1.82555 | 1.82000 | 1.71166 | 1.85944 | 1.98722 | 2.00944 | 1.83444 | 1.82888 | 1.81166 | 1.74777 | 1.92611 |
q(ign)/J | 63.86 | 61.50 | 66.19 | 73.81 | 40.42 | 62.68 | 56.82 | 59.75 | 61.50 | 65.02 | 41.00 |
q(HNO3)/J | 39.37 | 36.69 | 35.56 | 39.83 | 41.55 | 41.97 | 38.66 | 39.37 | 38.07 | 40.17 | 41.21 |
q(gel.)/J | 2451.24 | 2595.29 | 2379.48 | 2403.50 | 2354.42 | 2397.56 | 2240.41 | 2452.28 | 2488.35 | 2451.24 | 2595.29 |
q∑/J | 6.69 | 6.61 | 6.23 | 6.86 | 7.45 | 7.49 | 6.82 | 6.69 | 6.61 | 6.32 | 7.11 |
−Δuc°/ kJg−1 | 35.0883 | 35.0407 | 35.0182 | 35.0253 | 35.0755 | 35.0379 | 35.0614 | 35.0253 | 35.0574 | 35.0481 | 35.0347 |
−ΔUc°/kJmol−1 | 5552.4 | 5544.8 | 5541.3 | 5542.4 | 5544.4 | 5550.3 | 5548.1 | 5542.4 | 5547.5 | 5546.0 | 5543.9 |
Results (kJ mol−1)2 | |||||||||||
ΔUc°(l) | −5545.8 ± 2.8 | ΔHvap | 46.8 ± 2 | ||||||||
ΔHc°(l) | −5554.5 ± 2.8 | ΔHf°(g) | −512.8 ± 5.8 | ||||||||
ΔHf°(l) | −559.6 ± 3.8 |
Experiments 1 | |||||
---|---|---|---|---|---|
1. | 2. | 3. | 4. | 5. | |
m(4)/g | 0.025647 | 0.027543 | 0.035429 | 0.027748 | 0.025409 |
m(polythene)/g | 0.020400 | 0.020750 | 0.021006 | 0.020076 | 0.021756 |
Δm(cotton)/g | 0.001375 | 0.001198 | 0.001354 | 0.001452 | 0.001259 |
nl(H2O)/mol | 0.05551 | 0.05551 | 0.05551 | 0.05551 | 0.05551 |
ΔR/Ω | 0.821414 | 0.857100 | 0.984095 | 0.847644 | 0.844729 |
−ΔRε(calor.)/kJ | 1.85771 | 1.93842 | 2.22563 | 1.91658 | 1.91044 |
−ΔTε(cont.)/kJ | 0.01257 | 0.01312 | 0.01506 | 0.01296 | 0.01293 |
ΔE(Wash.)/kJ | 0.00350 | 0.00370 | 0.00484 | 0.00378 | 0.00348 |
ΔE(ign)/kJ | 0.00178 | 0.00125 | 0.00118 | 0.00100 | 0.00145 |
−Δuc°/kJg−1 | 34.9811 | 34.9886 | 34.9530 | 34.9813 | 35.0112 |
Results (kJ mol−1)2 | |||||
Δuc°(l) | (−34.9830 ± 0.018) kJ g−1 | ΔHf°(l) | −567.1 | ||
ΔUc°(l) | −5535.85 ± 2.94 | ΔHvap | 46.2 | ||
ΔHc°(l) | −5547.00 ± 2.94 | ΔHf°(g) | −520.9 |
ΔHf°/kJ mol−1 | Eb/kJ mol−1 | Bond–Bond Interactions/kJ mol−1 | |||
---|---|---|---|---|---|
C(g) | 716.7 | C–C | 330.1 | ΓCCC | 11.71 |
H(g) | 218.0 | C–H | 415.85 | ΓCCO | 24.01 |
O(g) | 249.2 | C–O | 327.95 | ΓCOC | 23.72 |
ΓOCO | 54.75 | ||||
ΔCCC | −3.27 | ||||
ΔCCO | −6.52 | ||||
ΔOCO | −14.30 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pihlaja, K.; Kivelä, H.; Vainiotalo, P.; Steele, W.V. Enthalpies of Combustion and Formation of Severely Crowded Methyl-Substituted 1,3-dioxanes. The Magnitudes of 2,4- and 4,6-diaxial Me,Me-Interactions and the Chair–2,5-twist Energy Difference. Molecules 2020, 25, 2762. https://doi.org/10.3390/molecules25122762
Pihlaja K, Kivelä H, Vainiotalo P, Steele WV. Enthalpies of Combustion and Formation of Severely Crowded Methyl-Substituted 1,3-dioxanes. The Magnitudes of 2,4- and 4,6-diaxial Me,Me-Interactions and the Chair–2,5-twist Energy Difference. Molecules. 2020; 25(12):2762. https://doi.org/10.3390/molecules25122762
Chicago/Turabian StylePihlaja, Kalevi, Henri Kivelä, Pirjo Vainiotalo, and William V. Steele. 2020. "Enthalpies of Combustion and Formation of Severely Crowded Methyl-Substituted 1,3-dioxanes. The Magnitudes of 2,4- and 4,6-diaxial Me,Me-Interactions and the Chair–2,5-twist Energy Difference" Molecules 25, no. 12: 2762. https://doi.org/10.3390/molecules25122762
APA StylePihlaja, K., Kivelä, H., Vainiotalo, P., & Steele, W. V. (2020). Enthalpies of Combustion and Formation of Severely Crowded Methyl-Substituted 1,3-dioxanes. The Magnitudes of 2,4- and 4,6-diaxial Me,Me-Interactions and the Chair–2,5-twist Energy Difference. Molecules, 25(12), 2762. https://doi.org/10.3390/molecules25122762