Vine-Canes as a Source of Value-Added Compounds for Cosmetic Formulations
Abstract
:1. Introduction
2. Results and Discussion
2.1. Phytochemical and Antioxidant Activity Characterization
2.1.1. Total Phenolic and Flavonoid Content
2.1.2. Identification and Quantification of Individual Phenolic Compounds by HPLC-DAD
2.1.3. Antioxidant Activity Characterization
2.1.4. FRAP and DPPH Assays
2.1.5. Reactive Oxygen Species Scavenging Assays
2.2. Cell Viability Assay
2.3. Gel Formulation Stability Evaluation
2.3.1. Color
2.3.2. pH
2.3.3. Texture
2.3.4. Rheological Behavior
2.3.5. Microbiological Properties
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Vine-Cane Samples
3.3. Subcritical-Water Extraction
3.4. Phytochemical Characterization
3.4.1. Total Phenolic and Flavonoid Content
3.4.2. HPLC-DAD Analysis of Individual Phenolic Compounds
3.5. Assessment of the Antioxidant Activity
3.5.1. FRAP and DPPH Assays
3.5.2. Reactive Oxygen Species Scavenging Assays
3.5.3. Superoxide Radical Scavenging Assay
3.5.4. Peroxyl Radical Scavenging Assay
3.6. Cell Viability Assay
3.6.1. Cell Lines, Primary Cell Isolation and Culture Conditions
3.6.2. MTT Assay
3.7. Cosmetic Formulation
3.8. Formulation Stability Evaluation
3.8.1. Color
3.8.2. pH
3.8.3. Texture Analysis
3.8.4. Rheological Measurements
3.8.5. Microbiological Analysis
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jesus, M.S.; Romaní, A.; Genisheva, Z.; Teixeira, J.A.; Domingues, L. Integral valorization of vine pruning residue by sequential autohydrolysis stages. J. Cleaner Prod. 2017, 168, 74–86. [Google Scholar] [CrossRef] [Green Version]
- Dorosh, O.; Moreira, M.M.; Rodrigues, F.; Peixoto, A.F.; Freire, C.; Morais, S.; Delerue-Matos, C. Vine-Canes Valorisation: Ultrasound-Assisted Extraction from Lab to Pilot Scale. Molecules 2020, 25, 1739. [Google Scholar] [CrossRef] [PubMed]
- Moreira, M.M.; Barroso, M.F.; Porto, J.V.; Ramalhosa, M.J.; Švarc-Gajić, J.; Estevinho, L.; Morais, S.; Delerue-Matos, C. Potential of Portuguese vine shoot wastes as natural resources of bioactive compounds. Sci. Total Environ. 2018, 634, 831–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jesus, M.S.; Genisheva, Z.; Romaní, A.; Pereira, R.N.; Teixeira, J.A.; Domingues, L. Bioactive compounds recovery optimization from vine pruning residues using conventional heating and microwave-assisted extraction methods. Ind. Crops Prod. 2019, 132, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Gómez, R.; Sánchez-Vioque, R.; Santana-Méridas, O.; Martín-Bejerano, M.; Alonso, G.L.; Salinas, M.R.; Zalacain, A. A potential use of vine-shoot wastes: The antioxidant, antifeedant and phytotoxic activities of their aqueous extracts. Ind. Crops Prod. 2017, 97, 120–127. [Google Scholar] [CrossRef]
- Rodrigues, F.; Palmeira-de-Oliveira, A.; das Neves, J.; Sarmento, B.; Amaral, M.H.; Oliveira, M.B. Medicago spp. extracts as promising ingredients for skin care products. Ind. Crops Prod. 2013, 49, 634–644. [Google Scholar]
- Matos, M.S.; Romero-Díez, R.; Álvarez, A.; Bronze, M.R.; Rodríguez-Rojo, S.; Mato, R.B.; Cocero, M.J.; Matias, A.A. Polyphenol-Rich Extracts Obtained from Winemaking Waste Streams as Natural Ingredients with Cosmeceutical Potential. Antioxidants 2019, 8, 355. [Google Scholar] [CrossRef] [Green Version]
- Moreira, M.M.; Morais, S.; Delerue-Matos, C. Chapter 2—Environment-Friendly Techniques for Extraction of Bioactive Compounds from Fruits A2 - Grumezescu, Alexandru Mihai. In Soft Chemistry and Food Fermentation; Holban, A.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 21–47. [Google Scholar]
- Gullón, B.; Eibes, G.; Moreira, M.T.; Dávila, I.; Labidi, J.; Gullón, P. Antioxidant and antimicrobial activities of extracts obtained from the refining of autohydrolysis liquors of vine shoots. Ind. Crops Prod. 2017, 107, 105–113. [Google Scholar] [CrossRef]
- Max, B.; Salgado, J.M.; Cortés, S.; Domínguez, J.M. Extraction of Phenolic Acids by Alkaline Hydrolysis from the Solid Residue Obtained after Prehydrolysis of Trimming Vine Shoots. J. Agric. Food Chem. 2010, 58, 1909–1917. [Google Scholar] [CrossRef]
- Gabaston, J.; Leborgne, C.; Valls, J.; Renouf, E.; Richard, T.; Waffo-Teguo, P.; Mérillon, J.-M. Subcritical water extraction of stilbenes from grapevine by-products: A new green chemistry approach. Ind. Crops Prod. 2018, 126, 272–279. [Google Scholar] [CrossRef]
- Nastić, N.; Švarc-Gajić, J.; Delerue-Matos, C.; Barroso, M.F.; Soares, C.; Moreira, M.M.; Morais, S.; Mašković, P.; Gaurina Srček, V.; Slivac, I.; et al. Subcritical water extraction as an environmentally-friendly technique to recover bioactive compounds from traditional Serbian medicinal plants. Ind. Crops Prod. 2018, 111, 579–589. [Google Scholar] [CrossRef] [Green Version]
- Cvetanović, A.; Zeković, Z.; Švarc-Gajić, J.; Razić, S.; Damjanović, A.; Zengin, G.; Delerue-Matos, C.; Moreira, M. A new source for developing multi-functional products: Biological and chemical perspectives on subcritical water extracts of Sambucus ebulus L. J. Chem. Technol. Biotechnol. 2018, 93, 1097–1104. [Google Scholar] [CrossRef] [Green Version]
- Nastić, N.; Švarc-Gajić, J.; Delerue-Matos, C.; Morais, S.; Barroso, M.F.; Moreira, M.M. Subcritical water extraction of antioxidants from mountain germander (Teucrium montanum L.). J. Supercrit. Fluids 2018, 138, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Wen, C.; Zhang, H.; Duan, Y.; Ma, H. Recent advances in the extraction of bioactive compounds with subcritical water: A review. Trends Food Sci. Technol. 2020, 95, 183–195. [Google Scholar] [CrossRef]
- Teixeira, N.; Mateus, N.; de Freitas, V.; Oliveira, J. Wine industry by-product: Full polyphenolic characterization of grape stalks. Food Chem. 2018, 268, 110–117. [Google Scholar] [CrossRef]
- Pedras, B.; Salema-Oom, M.; Sá-Nogueira, I.; Simões, P.; Paiva, A.; Barreiros, S. Valorization of white wine grape pomace through application of subcritical water: Analysis of extraction, hydrolysis, and biological activity of the extracts obtained. J. Supercrit. Fluids 2017, 128, 138–144. [Google Scholar] [CrossRef]
- Gharwalova, L.; Hutar, D.; Masak, J.; Kolouchová, I. Antioxidant activity and phenolic content of organic and conventional vine cane extracts. Czech. J. Food Sci. 2018, 36, 289–295. [Google Scholar]
- Apak, R.; Gorinstein, S.; Böhm, V.; Schaich, K.; Özyürek, M.; Güçlü, K. Methods of measurement and evaluation of natural antioxidant capacity/activity (IUPAC Technical Report). Pure Appl. Chem. 2013, 85. [Google Scholar] [CrossRef] [Green Version]
- Almeida, D.; Pinto, D.; Santos, J.; Vinha, A.F.; Palmeira, J.; Ferreira, H.N.; Rodrigues, F.; Oliveira, M.B.P.P. Hardy kiwifruit leaves (Actinidia arguta): An extraordinary source of value-added compounds for food industry. Food Chem. 2018, 259, 113–121. [Google Scholar] [CrossRef]
- Pinto, D.; Braga, N.; Rodrigues, F.; Oliveira, M.B.P.P. Castanea sativa Bur: An Undervalued By-Product but a Promising Cosmetic Ingredient. Cosmetics 2017, 4, 50. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, F.; Sarmento, B.; Amaral, M.H.; Oliveira, M.B.P.P. Exploring the antioxidant potentiality of two food by-products into a topical cream: Stability, in vitro and in vivo evaluation. Drug Dev. Ind. Pharm. 2015, 42, 880–889. [Google Scholar] [CrossRef] [PubMed]
- Farhadi, K.; Esmaeilzadeh, F.; Hatami, M.; Forough, M.; Molaie, R. Determination of phenolic compounds content and antioxidant activity in skin, pulp, seed, cane and leaf of five native grape cultivars in West Azerbaijan province, Iran. Food Chem. 2016, 199, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Barros, A.; Gironés-Vilaplana, A.; Teixeira, A.; Collado-González, J.; Moreno, D.A.; Gil-Izquierdo, A.; Rosa, E.; Domínguez-Perles, R. Evaluation of grape (Vitis vinifera L.) stems from Portuguese varieties as a resource of (poly)phenolic compounds: A comparative study. Food Res. Int. 2014, 65, 375–384. [Google Scholar]
- Sáez, V.; Pastene, E.; Vergara, C.; Mardones, C.; Hermosín-Gutiérrez, I.; Gómez-Alonso, S.; Gómez, M.V.; Theoduloz, C.; Riquelme, S.; von Baer, D. Oligostilbenoids in Vitis vinifera L. Pinot Noir grape cane extract: Isolation, characterization, in vitro antioxidant capacity and anti-proliferative effect on cancer cells. Food Chem. 2018, 265, 101–110. [Google Scholar] [PubMed]
- Jesus, M.S.; Ballesteros, L.F.; Pereira, R.N.; Genisheva, Z.; Carvalho, A.C.; Pereira-Wilson, C.; Teixeira, J.A.; Domingues, L. Ohmic heating polyphenolic extracts from vine pruning residue with enhanced biological activity. Food Chem. 2020, 316, 126298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, F.; Gaspar, C.; Palmeira-de-Oliveira, A.; Sarmento, B.; Helena Amaral, M.; Oliveira, M.B.P.P. Application of Coffee Silverskin in cosmetic formulations: Physical/antioxidant stability studies and cytotoxicity effects. Drug Dev. Ind. Pharm. 2015, 42, 99–106. [Google Scholar]
- Moreira, M.M.; Barroso, M.F.; Boeykens, A.; Withouck, H.; Morais, S.; Delerue-Matos, C. Valorization of apple tree wood residues by polyphenols extraction: Comparison between conventional and microwave-assisted extraction. Ind. Crops Prod. 2017, 104, 210–220. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Not available. |
Phytochemical Composition | Antioxidant Activity | ||||
---|---|---|---|---|---|
TPC (mg GAE/g dw) | TFC (mg EE/g dw) | FRAP (mg AAE/g dw) | DPPH (mg TE/g dw) | O2∙− IC50 (µg/mL) | |
Vine-cane variety | |||||
TN Dão | 30.82 ± 3.04 a, b | 8.25 ± 0.65 b | 29.99 ± 1.83c | 5.95 ± 0.44 c | 84.78 ± 4.48 c |
TR Dão | 31.33 ± 2.11 a, b | 8.07 ± 0.79 b | 38.33 ± 2.0 a, b | 6.40 ± 0.53 c | 59.96 ± 2.79 a, b |
TN Douro | 32.49 ± 2.70 a | 9.77 ± 0.67 b, c | 35.72 ± 2.10b | 10.23 ± 0.70 b | 75.38 ± 9.09 a, b, c |
TR Douro | 32.42 ± 1.87 a | 10.07 ± 0.94 a | 40.65 ± 2.18 a | 10.99 ± 0.51 b | 79.99 ± 4.94 b, c |
Alvarinho | 27.38 ± 1.40 c | 6.03 ± 0.34 d | 35.83 ± 1.90 b | 17.21 ± 0.65 a | 61.52 ± 5.64 a, b |
Loureiro | 29.26 ± 1.47 b, c | 7.00 ± 0.67 c, d | 36.81 ± 1.65 b | 17.89 ± 093 a | 56.67 ± 2.59 a |
Positive controls | |||||
Gallic acid | 8.70 ± 0.70 e | ||||
Catechin | 23.98 ± 1.39 d |
Vine-Cane Variety | TN Dão | TR Dão | TN Douro | TR Douro | Alvarinho | Loureiro |
---|---|---|---|---|---|---|
Gallic acid | 527 ± 26 | 895 ± 45 | 546 ± 27 | 1014 ± 51 | 568 ± 28 | 802 ± 40 |
Protocatechuic acid | 41.7 ± 2.1 | 24.9 ± 1.2 | 28.0 ± 1.4 | 33.0 ± 1.6 | 23.8 ± 1.2 | 18.5 ± 0.9 |
(+)-Catechin | 225 ± 11 | 132 ± 7 | 156 ± 8 | 144 ± 7 | 115 ± 6 | 289 ± 14 |
4-hydroxyphenilacetic acid | 19.9 ± 1.0 | 7.63 ± 0.38 | 22.1 ± 1.1 | 7.85 ± 0.39 | 19.2 ± 1.0 | 6.76 ± 0.34 |
4-hydroxybenzoic acid | 3.70 ± 0.18 | 1.78 ± 0.09 | 4.58 ± 0.23 | 2.15 ± 0.11 | 4.28 ± 0.21 | 1.71 ± 0.09 |
4-hydroxybenzaldehyde | 16.3 ± 0.8 | 10.4 ± 0.5 | 16.7 ± 0.8 | 10.3 ± 0.5 | 17.2 ± 0.9 | 9.42 ± 0.54 |
Chlorogenic acid | 23.8 ± 1.2 | 14.5 ± 0.7 | 25.6 ± 1.3 | 25.0 ± 1.2 | 25.1 ± 1.3 | 24.7 ± 1.2 |
Vanillic acid | 30.6 ± 1.5 | 1.64 ± 0.08 | 30.1 ± 1.5 | 14.5 ± 0.7 | 29.1 ± 1.5 | 1.68 ± 0.08 |
Caffeic acid | 11.1 ± 0.6 | 7.33 ± 0.37 | 13.1 ± 0.7 | 13.1 ± 0.7 | 14.2 ± 0.7 | 13.9 ± 0.7 |
Syringic acid | 42.9 ± 2.1 | 38.6 ± 1.9 | 39.0 ± 1.9 | 36.6 ± 1.8 | 38.9 ± 1.9 | 31.0 ± 1.6 |
(−)-Epicatechin | 31.5 ± 1.6 | 20.4 ± 1.0 | 30.1 ± 1.5 | 21.6 ± 1.1 | 32.6 ± 1.6 | 21.2 ± 1.1 |
p-Coumaric acid | 3.77 ± 0.19 | 3.87 ± 0.19 | 3.72 ± 0.19 | 3.71 ± 0.19 | 3.66 ± 0.18 | 3.89 ± 0.19 |
Ferulic acid | 17.0 ± 0.8 | 10.4 ± 0.5 | 17.7 ± 0.9 | 12.7 ± 0.6 | 15.3 ± 0.8 | 10.6 ± 0.5 |
Sinapic acid | 10.2 ± 0.5 | 36.2 ± 1.8 | 13.9 ± 0.7 | 11.5 ± 0.6 | 10.2 ± 0.5 | 19.4 ± 1.0 |
Naringin | 19.1 ± 1.0 | 35.1 ± 1.8 | 30.0 ± 1.5 | 26.9 ± 1.3 | 31.6 ± 1.6 | 27.8 ± 1.4 |
Ellagic acid | 11.4 ± 0.6 | 25.1 ± 1.3 | 33.5 ± 1.7 | 31.0 ± 1.6 | 24.8 ± 1.2 | 32.4 ± 1.6 |
Rutin | 9.45 ± 0.47 | 7.59 ± 0.38 | 19.6 ± 0.9 | 26.6 ± 1.3 | 11.5 ± 0.6 | 27.2 ± 1.4 |
Resveratrol | 8.92 ± 0.45 | 11.7 ± 0.6 | 18.6 ± 0.9 | 19.5 ± 0.9 | 16.6 ± 0.8 | 17.3 ± 0.9 |
Quercetin-3-O-glucopyranoside | 11.7 ± 0.6 | 28.3 ± 1.4 | 8.58 ± 0.43 | 14.4 ± 0.7 | 11.9 ± 0.6 | 12.8 ± 0.6 |
Phloridzin | 2.67 ± 0.13 | 9.10±0.46 | 2.75 ± 0.14 | 3.44 ± 0.17 | 2.53 ± 0.13 | 2.92 ± 0.15 |
Cinnamic acid | 4.75 ± 0.24 | 6.41 ± 0.32 | 4.75 ± 0.24 | 4.84 ± 0.24 | 4.68 ± 0.23 | 4.78 ± 0.24 |
Myricetin | 59.4 ± 3.0 | 61.0 ± 3.1 | 58.3 ± 2.9 | 59.2 ± 3.0 | 56.2 ± 2.8 | 60.0 ± 3.0 |
Kaempferol-3-O-glucoside | 8.60 ± 0.43 | 12.4 ± 0.6 | 8.15 ± 0.41 | 8.73 ± 0.44 | 7.95 ± 0.40 | 8.53 ± 0.43 |
Kaempferol-3-O-rutinoside | 10.1 ± 0.5 | 14.0 ± 0.7 | 8.78 ± 0.44 | 8.51 ± 0.43 | 8.48 ± 0.42 | 8.64 ± 0.43 |
Naringenin | 2.17 ± 0.11 | 2.53 ± 0.13 | 1.93 ± 0.10 | 2.37 ± 0.12 | 2.00 ± 0.10 | 2.35 ± 0.12 |
Quercetin | 16.1 ± 0.8 | 16.0 ± 0.8 | 16.2 ± 0.8 | 16.1 ± 0.8 | 15.7 ± 0.8 | 21.0 ± 1.1 |
Phloretin | 2.04 ± 0.10 | 2.22 ± 0.11 | 2.01 ± 0.10 | 2.14 ± 0.11 | ND | 2.02 ± 0.10 |
Tiliroside | 7.79 ± 0.39 | 7.88 ± 0.39 | 7.46 ± 0.37 | 6.93 ± 0.35 | 7.34 ± 0.37 | 7.18 ± 0.36 |
Kaempferol | 22.9 ± 1.1 | 19.4 ± 0.9 | 19.5 ± 0.9 | 21.4 ± 1.1 | 18.1 ± 0.9 | 22.7 ± 1.1 |
Pinocembrin | 8.50 ± 0.43 | 8.23 ± 0.41 | 8.23 ± 0.41 | 8.29 ± 0.41 | ND | 8.24 ± 0.41 |
Σ Phenolic acids | 764 ± 38 | 1084 ± 54 | 799 ± 40 | 1220 ± 61 | 798 ± 40 | 981 ± 49 |
Σ Flavonoids | 432 ± 22 | 365 ± 18 | 373 ± 19 | 365 ± 18 | 318 ± 16 | 516 ± 26 |
Σ Stilbenes | 8.92 ± 0.45 | 11.7 ± 0.6 | 18.6 ± 0.9 | 19.5 ± 1.0 | 16.6 ± 0.8 | 17.3 ± 0.9 |
Σ Others | 4.71 ± 0.24 | 11.3 ± 0.6 | 4.76 ± 0.24 | 5.59 ± 0.28 | 2.53 ± 0.13 | 4.94 ± 0.25 |
Σ All phenolic compounds | 1210 | 1472 | 1195 | 1610 | 1135 | 1520 |
Color | L* | 25.38 ± 1.19 |
A* | 6.53 ± 0.30 | |
B* | 16.55 ± 0.97 | |
pH | 4.79 ± 0.01 | |
Texture | Firmness (N) | 0.060 ± 0.001 |
Adhesiveness (N·mm) | −0.102 ± 0.007 | |
Microbiological properties | Aerobic Bacteria Count (CFU/g gel) | <1.0 × 101 |
Total Yeast Count (CFU/g gel) | <1.0 × 101 | |
Total Mould Count (CFU/g gel) | <1.0 × 101 |
Sample Code | Vine-Cane Variety | Origin | Moisture Content (%) |
---|---|---|---|
TN Dão | Touriga Nacional | Dão region | 14.0 ± 0.5 |
TR Dão | Tinta Roriz | Dão region | 11.6 ± 0.1 |
TN Douro | Touriga Nacional | Douro region | 10.7 ± 0.6 |
TR Douro | Tinta Roriz | Douro region | 7.3 ± 0.6 |
Alvarinho | Alvarinho | Minho region | 11.0 ± 0.6 |
Loureiro | Loureiro | Minho region | 9.5 ± 0.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreira, M.M.; Rodrigues, F.; Dorosh, O.; Pinto, D.; Costa, P.C.; Švarc-Gajić, J.; Delerue-Matos, C. Vine-Canes as a Source of Value-Added Compounds for Cosmetic Formulations. Molecules 2020, 25, 2969. https://doi.org/10.3390/molecules25132969
Moreira MM, Rodrigues F, Dorosh O, Pinto D, Costa PC, Švarc-Gajić J, Delerue-Matos C. Vine-Canes as a Source of Value-Added Compounds for Cosmetic Formulations. Molecules. 2020; 25(13):2969. https://doi.org/10.3390/molecules25132969
Chicago/Turabian StyleMoreira, Manuela M., Francisca Rodrigues, Olena Dorosh, Diana Pinto, Paulo C. Costa, Jaroslava Švarc-Gajić, and Cristina Delerue-Matos. 2020. "Vine-Canes as a Source of Value-Added Compounds for Cosmetic Formulations" Molecules 25, no. 13: 2969. https://doi.org/10.3390/molecules25132969
APA StyleMoreira, M. M., Rodrigues, F., Dorosh, O., Pinto, D., Costa, P. C., Švarc-Gajić, J., & Delerue-Matos, C. (2020). Vine-Canes as a Source of Value-Added Compounds for Cosmetic Formulations. Molecules, 25(13), 2969. https://doi.org/10.3390/molecules25132969