Towards Higher Oil Yield and Quality of Essential Oil Extracted from Aquilaria malaccensis Wood via the Subcritical Technique
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Sample Preparation
2.2. Extraction of Essential Oil
2.2.1. Hydrodistillation
2.2.2. Subcritical Water Extraction
2.3. Essential Oil Recovery and Yield Calculation
2.4. Subcritical Water Extraction Design of Experiments and Statistical Analysis
2.5. Qualitative Assessment of Bio-Products (Essential Oil and Wood Sample)
2.5.1. Gas Chromatography Mass Spectroscopy (GC/MS) of Essential Oil
2.5.2. Scanning Electron Microscopy Analysis
2.5.3. Fourier Transform-Infrared (FT-IR) Analysis
2.5.4. Brunauer-Emmett-Teller (BET) Surface Area Analysis, and Barrett-Joyner-Halenda (BJH) Pore Size and Volume Analysis
3. Results and Discussion
3.1. RSM Design and Model Fitting for Optimization
3.2. Qualitative Assessment of Essential Oil and Wood Sample
3.2.1. Gas Chromatography/Mass Spectroscopy of Essential Oil
3.2.2. Scanning Electron Microscope (SEM) Analysis of Wood Sample
3.2.3. Fourier Transform Infrared Spectroscopy Analysis of Wood Sample
3.2.4. Brunauer-Emmett-Teller (BET) Surface Area Analysis and Barrett-Joyner-Halenda (BJH) Pore Size and Volume Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baser, K.H.; Buchbauer, G. Handbook of Essential Oils: Science, Technology, and Applications; CRC Press: New York, NY, USA, 2009. [Google Scholar]
- Miguel, M.G. Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules 2010, 15, 9252–9287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turek, C.; Stintzing, F.C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Zuzarte, M.; Salgueiro, L. Essential Oils Chemistry. In Bioactive Essential Oils and Cancer; Springer International Publishing: Cham, Switzerland, 2015; pp. 19–28. [Google Scholar]
- Gunasekera, S.P.; Kinghorn, A.D.; Cordell, G.A.; Farnsworth, N.R. Plant Anticancer Agents. XIX. Constituents of Aquilaria malaccensis. J. Nat. Prod. 1981, 44, 569–572. [Google Scholar] [CrossRef] [PubMed]
- Barden, A.; Anak, N.A.; Mulliken, T.; Song, M. Heart of the Matter: Agarwood Use and Trade and CITES Implementation for Aquilaria Malaccensis; Traffic International: Cambridge, UK, 2000. [Google Scholar]
- Nor Azah, M.; Ismail, N.; Mailina, J.; Taib, M.; Rahiman, M.; Hafizi, Z.M. Chemometric study of selected agarwood oils by gas chromatography–mass spectrometry. J. Tropic. For. Sci. 2014, 26, 382–388. [Google Scholar]
- Hidayat, W.; Shakaff, A.Y.; Ahmad, M.N.; Adom, A.H. Classification of Agarwood Oil Using an Electronic Nose. Sensors 2010, 10, 4675–4685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desai, M.A.; Parikh, J.; De, A.K. Modelling and optimization studies on extraction of lemongrass oil from Cymbopogon flexuosus (Steud.) Wats. Chem. Eng. Res. Des. 2014, 92, 793–803. [Google Scholar] [CrossRef]
- Sulaiman, N.; Idayu, M.I.; Ramlan, A.Z.; Fashya, M.N.; Farahiyah, A.N.N.; Mailina, J. Effects of extraction methods on yield and chemical compounds of gaharu (Aquilaria malaccensis). J. Trop. For. Sci. 2015, 27, 413–419. [Google Scholar]
- Tam, C.U.; Yang, F.Q.; Zhang, Q.W.; Guan, J.; Li, S.P. Optimization and comparison of three methods for extraction of volatile compounds from Cyperus rotundus evaluated by gas chromatography-mass spectrometry. J. Pharm. Biomed. Anal. 2007, 44, 444–449. [Google Scholar] [CrossRef]
- Ibrahim, A.H.; Al-Rawi, S.S.; Abdul Majid, A.M.; Rahman, N.N.; Abo- Salah, K.M.; Ab Kadir, M.O. Separation and fractionation of Aquilaria Malaccensis oil using supercritical fluid extraction and the cytotoxic properties of the extracted oil. Procedia Food Sci. 2011, 1, 1953–1959. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Carmona, M.M.; de Castro, M.D. Isolation of eucalyptus essential oil for GC-MS analysis by extraction with subcritical water. Chromatographia 1999, 50, 578–582. [Google Scholar] [CrossRef]
- Gavahian, M.; Farahnaky, A.; Farhoosh, R.; Javidnia, K.; Shahidi, F. Extraction of essential oils from Mentha piperita using advanced techniques: Microwave versus ohmic assisted hydrodistillation. Food Bioprod. Process. 2015, 94, 50–58. [Google Scholar] [CrossRef]
- Soto Ayala, R.; de Castro, M.D. Continuous subcritical water extraction as a useful tool for isolation of edible essential oils. Food Chem. 2001, 75, 109–113. [Google Scholar] [CrossRef]
- Yoswathana, N.; Eshiaghi, M.N.; Jaturapornpanich, K. Enhancement of Essential Oil from Agarwood by Subcritical Water Extraction and Pre-treatments on Hydrodistillation. World Acad. Sci. Eng. Technol. 2012, 65, 832–838. [Google Scholar]
- Thakur, A.T.; Panesar, P.S.; Saini, M.S. Response Surface Modelling of Lactic Acid Extraction by Emulsion Liquid Membrane: Box-Behnken Experimental Design. Int. J. Biol. Biomol. Agric. Food Biotechnol. Eng. 2014, 8, 881–889. [Google Scholar]
- Carmody, O.; Frost, R.; Xi, Y.; Kokot, S. Surface characterisation of selected sorbent materials for common hydrocarbon fuels. Surf. Sci. 2007, 601, 2066–2076. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Yang, H.; Yu, L.; Chen, Y.; Li, Y. Preparation, surface and pore structure of high surface area activated carbon fibres from bamboo by steam activation. Materials 2014, 7, 4431–4441. [Google Scholar] [CrossRef]
- Lowell, S.; Shields, J.; Thomas, M.; Thommes, M. Micropore Analysis. Charact. Porous Solids Powders Surf. Area, Pore Size Density; Springer: Dordrecht, The Netherlands, 2004; Volume 16, pp. 129–156. [Google Scholar]
- Ho, C.H.L.; Cacace, J.E.; Mazza, G. Mass transfer during pressurized low polarity water extraction of lignans from flaxseed meal. J. Food Eng. 2008, 89, 64–71. [Google Scholar] [CrossRef]
- Kronholm, J.; Hartonen, K.; Riekkola, M.L. Analytical extractions with water at elevated temperatures and pressures. TrAC Trends Anal. Chem. 2007, 26, 396–412. [Google Scholar] [CrossRef]
- Teo, C.C.; Tan, S.N.; Yong, J.W.H.; Hew, C.S.; Ong, E.S. Pressurized hot water extraction (PHWE). J. Chromatogr. A 2010, 1217, 2484–2494. [Google Scholar] [CrossRef]
- Gogus, F.; Ozel, M.Z.; Lewis, A.C. Superheated water extraction of essential oils of Origanum micranthum. J. Chromatogr. Sci. 2015, 43, 87–91. [Google Scholar] [CrossRef]
- Eikani, M.H.; Golmohammad, F.; Rowshanzamir, S. Subcritical water extraction of essential oils from coriander seeds (Coriandrum sativum L.). J. Food Eng. 2007, 80, 735–740. [Google Scholar] [CrossRef]
- Islam, M.N.; Jo, Y.-T.; Jung, S.-K.; Park, J.-H. Thermodynamic and kinetic study for subcritical water extraction of PAHs. J. Ind. Eng. Chem. 2013, 19, 129–136. [Google Scholar] [CrossRef]
- Khajenoori, M.; Haghighi Asl, A.; Hormozi, F. Proposed Models for Subcritical Water Extraction of Essential Oils. Chin. J. Chem. Eng. 2009, 17, 359–365. [Google Scholar] [CrossRef]
- Fernández-González, V.; Concha-Graña, E.; Muniategui-Lorenzo, S.; López-Mahía, P.; Prada-Rodríguez, D. Pressurized hot water extraction coupled to solid-phase microextraction-gas chromatography-mass spectrometry for the analysis of polycyclic aromatic hydrocarbons in sediments. J. Chromatogr. A 2008, 1196, 65–72. [Google Scholar] [CrossRef]
- Moreno, E.; Reza, J.; Trejo, A. Extraction of polycyclic aromatic hydrocarbons from soil using water under subcritical conditions. Polycycl. Aromat. Compd. 2007, 27, 239–260. [Google Scholar] [CrossRef]
- Salt, D.W.; Ajmani, S.; Crichton, R.; Livingstone, D.J. An improved approximation to the estimation of the critical F values in best subset regression. J. Chem. Inf. Model. 2007, 47, 143–149. [Google Scholar] [CrossRef]
- Anekpankul, T.; Goto, M.; Sasaki, M.; Pavasant, P.; Shotipruk, A. Extraction of anti-cancer damnacanthal from roots of Morinda citrifolia by subcritical water. Sep. Purif. Technol. 2007, 55, 343–349. [Google Scholar] [CrossRef]
- Ishihara, M.; Tsuneya, T.; Uneyama, K. Components of the Volatile Concentrate of Agarwood. J. Essent. Oil Res. 1993, 5, 283–289. [Google Scholar] [CrossRef]
- Hashim, Y.Z.-Y.; Ismail, N.I.; Abbas, P. Analysis of chemical compounds of agarwood oil from different species by gas chromatography mass spectrometry (GC-MS). IIUM Eng. J. 2014, 15, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Giray, E.S.; Kirici, S.; Kaya, D.A.; Türk, M.; Sönmez, Ö.; Inan, M. Comparing the effect of sub-critical water extraction with conventional extraction methods on the chemical composition of Lavadula stoechas. Talanta 2008, 74, 930–935. [Google Scholar] [CrossRef]
- Fazila, K.N.; Halim, K.K. Effects of soaking on Yield and Quality of Agarwood Oil. J. Trop. For. Sci. 2012, 24, 557–564. [Google Scholar]
- Tajuddin, S.N.; Muhamad, N.S.; Yarmo, M.A.; Yusoff, M.M. Characterization of the chemical constituents of agarwood oils from Malaysia by comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. Mendeleev Commun. 2013, 23, 51–52. [Google Scholar] [CrossRef]
- Zeitsch, K. The Chemistry and Technology of Furfural and Its Many By-Products; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Boye, J.I.; Arcand, Y. Green Technologies in Food Production and Processing; Springer: New York, NY, USA, 2011. [Google Scholar]
- Sarip, M.S.; Morad, N.A.; Yamashita, Y.; Tsuji, T.; Yunus, M.A.C.; Aziz, M.K.A. Crude palm oil (CPO) extraction using hot compressed water (HCW). Sep. Purif. Technol. 2016, 169, 103–112. [Google Scholar] [CrossRef]
- Brebu, M.; Vasile, C. Thermal degradation of lignin—A review. Cell. Chem. Technol. 2010, 44, 353–363. [Google Scholar]
- Mayr, G.; Zeppetzaue, F.; Zweckmair, T.; Bauer, D.; Hilad, S.; Potthast, A.; Rosenau, T.; Roder, T. The Reactions of Cellulose and Hemicellulose Degradation Products in the Viscose Fibre Spin Bath. Lenzing. Ber. 2015, 92, 53–58. [Google Scholar]
- Ismail, N.; Ali, N.A.; Jamil, M.; Rahiman, M.H.; Tajuddin, S.N.; Taib, M.N. A Review Study of Agarwood Oil and Its Quality Analysis. J. Teknol. 2014, 68, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Jiao, J.; Gai, Q.-Y.; Fu, Y.-J.; Zu, Y.-G.; Luo, M.; Zhao, C.-J.; Li, C.-Y. Microwave-assisted ionic liquids treatment followed by hydro-distillation for the efficient isolation of essential oil from Fructus forsythiae seed. Sep. Purif. Technol. 2013, 107, 228–237. [Google Scholar] [CrossRef]
- Lee, S.; Monnappa, A.K.; Mitchell, R.J. Biological activities of lignin hydrolysate-related compounds. BMB Rep. 2012, 45, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Kamiyama, M.; Shibamoto, T.; Horiuchi, M.; Umano, K.; Kondo, K.; Otsuka, Y. Antioxidant/Anti-Inflammatory Activities and Chemical Composition of Extracts from the Mushroom Trametes Versicolor. Int. J. Nutr. Food Sci. 2013, 2, 85–91. [Google Scholar] [CrossRef]
- Masoumi, H.R.F.; Kassim, A.; Basri, M.; Abdullah, D.K. Determining optimum conditions for lipase-catalysed synthesis of triethanolamine (TEA)-based esterquat cationic surfactant by a Taguchi robust design method. Molecules 2011, 16, 4672–4680. [Google Scholar] [CrossRef] [Green Version]
- Widiyarti, G.; Abbas, J.; Anita, Y. Biotransformation and cytotoxic activity of guaiacol dimer. Indones. J. Chem. 2014, 14, 179–184. [Google Scholar] [CrossRef]
- Azadfar, M.; Gao, A.H.; Chen, S. Structural characterization of lignin: A potential source of antioxidants guaiacol and 4-vinylguaiacol. Int. J. Biol. Macromol. 2015, 75, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Jia, Y.; Chen, J.; Liang, G.; Guo, H.; Hu, Y.; Shi, Y.; Zhou, H.; Chen, Q. Inhibition effects of benzylideneacetone, benzylacetone, and 4-phenyl-2-butanol on the activity of mushroom tyrosinase. J. Biosci. Bioeng. 2015, 119, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Huaiqiong, C.; Yang, Y.; Zhang, Z.; Wei, J.; Meng, H.; Chen, W.; Feng, J.; Gan, B.; Chen, X.; et al. Whole-tree Agarwood-Inducing Technique: An Efficient Novel Technique for Producing High-Quality Agarwood in Cultivated Aquilaria sinensis Trees. Molecules 2013, 18, 3086–3106. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Sui, X.; Zhang, R.; Yang, L.; Zu, Y.; Zhang, L. Application of ionic liquids-based microwave-assisted simultaneous extraction of carnosic acid, rosmarinic acid and essential oil from Rosmarinus officinalis. J. Chromatogr. A 2011, 1218, 8480–8489. [Google Scholar] [CrossRef]
- Yang, L.; Qu, H.; Mao, G.; Zhao, T.; Li, F.; Zhu, B. Optimization of subcritical water extraction of polysaccharides from Grifola frondosa using response surface methodology. Pharmacogn. Mag. 2013, 9, 120–129. [Google Scholar]
- Mohan, M.; Timung, R.; Deshavath, N.N.; Banerjee, T.; Goud, V.V.; Dasu, V.V. Optimization and hydrolysis of cellulose under subcritical water treatement for the production of total reducing sugars. RSC Adv. 2015, 5, 103265–103275. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Run | X1 (°C) | X2 (gr/mL) | X3 (min) |
---|---|---|---|
1 | 115 | 0.1 | 5 |
2 | 115 | 0.1 | 5 |
3 | 250 | 0.1 | 5 |
4 | 250 | 0.1 | 5 |
5 | 115 | 0.2 | 5 |
6 | 115 | 0.2 | 5 |
7 | 250 | 0.2 | 5 |
8 | 250 | 0.2 | 5 |
9 | 115 | 0.1 | 30 |
10 | 115 | 0.1 | 30 |
11 | 250 | 0.1 | 30 |
12 | 250 | 0.1 | 30 |
13 | 115 | 0.2 | 30 |
14 | 115 | 0.2 | 30 |
15 | 250 | 0.2 | 30 |
16 | 250 | 0.2 | 30 |
17 | 93.67 | 0.15 | 17.5 |
18 | 271.33 | 0.15 | 17.5 |
19 | 182.5 | 0.08 | 17.5 |
20 | 182.5 | 0.22 | 17.5 |
21 | 182.5 | 0.15 | 1.05 |
22 | 182.5 | 0.15 | 33.95 |
23 | 182.5 | 0.15 | 17.5 |
24 | 182.5 | 0.15 | 17.5 |
25 | 182.5 | 0.15 | 17.5 |
26 | 182.5 | 0.15 | 17.5 |
27 | 182.5 | 0.15 | 17.5 |
28 | 182.5 | 0.15 | 17.5 |
Model | F-Value | p-Value |
---|---|---|
Linear | 18.198 | <0.0001 |
2-Factor interaction | 2.876 | 0.0604 |
Quadratic | 87.562 | <0.0001 |
Cubic | 0.407 | 0.8004 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F Value | p-Value |
---|---|---|---|---|---|
Model | 809.679 | 9 | 89.964 | 142.108 | <0.0001 a |
A—Temperature; B—Solid to Solvent Ratio; C—Time | |||||
A a | 518.955 | 1 | 518.955 | 819.746 | <0.0001 |
B b | 15.256 | 1 | 15.256 | 24.098 | 0.0001 |
C c | 36.140 | 1 | 36.140 | 57.087 | <0.0001 |
AB | 0.302 | 1 | 0.302 | 0.477 | 0.4982 |
AC | 71.402 | 1 | 71.402 | 112.787 | <0.0001 |
BC | 1.322 | 1 | 1.322 | 2.089 | 0.1655 |
A2 | 97.454 | 1 | 97.454 | 153.93 | <0.0001 |
B2 | 14.775 | 1 | 14.775 | 23.338 | 0.0001 |
C2 | 1.218 | 1 | 1.218 | 1.924 | 0.1823 |
Residual | 11.395 | 18 | 0.633 | ||
Lack of fit | 5.681 | 5 | 1.136 | 2.585 | 0.0778 b |
Pure error | 5.713 | 13 | 0.439 | ||
Corrected total | 821.074 | 27 | |||
R2 | 0.986 | Standard Deviation | 0.795 | ||
Adjusted R2 | 0.979 | Mean | 11.414 | ||
Predicted R2 | 0.963 | Coefficient of variation % | 6.970 | ||
Adequate Precision | 33.118 | PRESS c | 30.185 |
Component Name | %Presence | R.t (min) | RI | |
---|---|---|---|---|
HD | SCWE | |||
Butanal, 2-methyl- | 2.531 | 643 | ||
2-Pentanone | 2.733 | 666 | ||
2,3-Pentanedione/(Acetylpropionyl) | 0.64 | 2.781 | 676 | |
Oxiran, tetramethyl- | 3.980 | 686 | ||
Acetylbutyryl | 0.49 | 4.228 | 755 | |
Cyclopentanone | 0.402 | 4.330 | 780 | |
Furfural | 14.36 | 5.153 | 830 | |
Acetoxyacetone | 0.391 | 5.985 | 840 | |
2-Methyl-2-cyclopentenone | 0.32 | 7.224 | 880 | |
Valerolactone<gamma-> | 2.041 | 7.333 | 886 | |
2-Acetylfuran | 1.516 | 7.499 | 890 | |
2,4-Pentanedione, 3-methyl- | 0.706 | 7.971 | 897 | |
2-furylacetone | 1.066 | 8.830 | 919 | |
Furfural <5methyl-> | 4.011 | 9.312 | 960 | |
Benzaldehyde | 0.923 | 2.019 | 9.531 | 995 |
2-Cyclopenten-1-one, 2,3-dimethyl- | 0.527 | 10.630 | 1001 | |
Cyclotene | 1.423 | 11.850 | 1006 | |
2-Acetyl-5-methylfuran | 0.569 | 12.244 | 1010 | |
Pyrazole-4-carboxaldehyde, 1,5-dimethyl- | 0.618 | 12.690 | 1047 | |
Phenylacetaldehyde | 0.552 | 12.926 | 1049 | |
1-(5-Methyl-2-furyl)-2-propanone | 0.336 | 13.805 | 1056 | |
Acetophenone | 0.852 | 13.976 | 1029 | |
Guaiacol | 13.504 | 14.722 | 1063 | |
Benzaldehyde dimethyl acetal | 0.748 | 15.670 | 1080 | |
Mequinol | 0.64 | 16.047 | 1180 | |
Creosol | 0.709 | 19.573 | 1181 | |
Verbenone, (L) | 0.4 | 20.586 | 1199 | |
2-Butanone, 4-phenyl- | 10.732 | 12.042 | 22.563 | 1228 |
4-phenyl-2-butanol | 0.871 | 23.148 | 1254 | |
Guaiacol <4-ethyl-> | 0.881 | 23.556 | 1245 | |
Benzene, 1-chloro-2-dimethoxymethyl- | 0.784 | 24.649 | 1260 | |
Guaiacol <4-vinyl-> | 0.922 | 25.493 | 1277 | |
Syringol | 4.02 | 27.215 | 1309 | |
4-Ethylphenyl acetate | 4.713 | 1.11 | 29.361 | 1273 |
Lactic acid, 3-phenyl-, methyl ester | 1.281 | 29.558 | 1421 | |
Vanillin | 1.386 | 29.681 | 1357 | |
Guaiene Alpha | 0.925 | 1.248 | 30.686 | 1426 |
gamma Elemene | 0.844 | 31.054 | 1430 | |
beta-Selinene | 1.053 | 0.308 | 31.375 | 1454 |
Isoeugenol | 0.204 | 1.158 | 31.694 | 1439 |
Humulene alpha | 0.198 | 0.12 | 31.721 | 1470 |
5-Hydroxy-5-isopropenyl-2-methylcyclohexyl acetate | 0.536 | 32.155 | 1474 | |
beta agarofuran | 2.845 | 32.384 | 1474 | |
Anisylacetone | 0.138 | 0.716 | 32.410 | 1462 |
Guaiene delta | 3.355 | 1.427 | 33.689 | 1490 |
Bicyclogermacrene | 0.531 | 33.910 | 1494 | |
gamma.-Himachalene | 0.288 | 0.122 | 34.966 | 1499 |
4a-Methyldecahydro-1-naphthalenyl acetate | 0.612 | 35.297 | 1503 | |
Caryophyllene oxide | 0.523 | 0.34 | 36.770 | 1507 |
Spathulenol | 0.844 | 0.72 | 37.328 | 1536 |
Eugenol <methoxy-> | 0.121 | 0.381 | 37.880 | 1600 |
Rosifoliol | 2.287 | 38.320 | 1595 | |
10-epi-gama-eudesmol | 3.298 | 2.312 | 38.556 | 1599 |
gamma.-Eudesmol | 1.974 | 0 | 38.743 | 1626 |
Valerianol | 0.979 | 0.29 | 38.941 | 1633 |
viridiflorol | 1.015 | 0.61 | 39.099 | 1636 |
beta-Eudesmol | 1.594 | 0.421 | 39.486 | 1637 |
Agarospirol | 7.618 | 3.52 | 40.184 | 1639 |
Postogol | 1.405 | 40.454 | 1651 | |
α-Eudesmol | 1.887 | 0 | 40.723 | 1652 |
Eudesmol<dihydro-> | 3.067 | 0 | 41.051 | 1661 |
Bulnesol | 4.882 | 2.103 | 41.410 | 1666 |
2,2,7,7-Tetramethyltricyclo [6.2.1.0(1,6)]undec-4-en-3-one | 0.995 | 42.170 | 1730 | |
Glaucyl alcohol | 0.836 | 42.336 | 1732 | |
Aristolone | 0.775 | 42.602 | 1746 | |
γ-costol | 2.635 | 1.104 | 42.862 | 1752 |
Oxo-agarospirol | 1.542 | 0.491 | 44.680 | 1822 |
valerenic acid | 1.606 | 0.522 | 49.278 | 1843 |
Hexadecanoic acid | 17.238 | 10.104 | 51.752 | 1935 |
9-Octadecenal, (Z)- | 1.356 | 0.56 | 52.415 | 1977 |
Octadecanal | 1.249 | 0.44 | 57.269 | 2000 |
Unidentified | 7.841 | 3.382 | ||
Total | 92.159 | 96.618 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samadi, M.; Zainal Abidin, Z.; Yoshida, H.; Yunus, R.; Awang Biak, D.R. Towards Higher Oil Yield and Quality of Essential Oil Extracted from Aquilaria malaccensis Wood via the Subcritical Technique. Molecules 2020, 25, 3872. https://doi.org/10.3390/molecules25173872
Samadi M, Zainal Abidin Z, Yoshida H, Yunus R, Awang Biak DR. Towards Higher Oil Yield and Quality of Essential Oil Extracted from Aquilaria malaccensis Wood via the Subcritical Technique. Molecules. 2020; 25(17):3872. https://doi.org/10.3390/molecules25173872
Chicago/Turabian StyleSamadi, M., Z. Zainal Abidin, H. Yoshida, R. Yunus, and D. R. Awang Biak. 2020. "Towards Higher Oil Yield and Quality of Essential Oil Extracted from Aquilaria malaccensis Wood via the Subcritical Technique" Molecules 25, no. 17: 3872. https://doi.org/10.3390/molecules25173872
APA StyleSamadi, M., Zainal Abidin, Z., Yoshida, H., Yunus, R., & Awang Biak, D. R. (2020). Towards Higher Oil Yield and Quality of Essential Oil Extracted from Aquilaria malaccensis Wood via the Subcritical Technique. Molecules, 25(17), 3872. https://doi.org/10.3390/molecules25173872