Aroma Investigation of New and Standard Apple Varieties Grown at Two Altitudes Using Gas Chromatography-Mass Spectrometry Combined with Sensory Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Volatile Organic Compound Identification in Samples
2.2. Can the Altitude Influence the VOC Profile?
2.3. Can the Altitude Influence Sensory Attributes and What are the Relationship between These Attributes and VOCs?
3. Materials and Methods
3.1. Apple Samples
3.2. Volatile Organic Compound Analysis
3.3. Sensory Analysis
3.4. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lechner, O.; Moroder, B. Economic Portrait of South Tyrol; Chamber of Commerce, Industry, Crafts and Agriculture of Bolzano: Bolzano, Italy, 2012. [Google Scholar]
- Durán, L.; Costell, E. Revision: Percepción del gusto. Aspectos fisicoquímicos y psicofísicos/Review: Perception of taste. Physiochemical and psychophysical aspects. Food Sci. Technol. Int. 1999, 5, 299–309. [Google Scholar] [CrossRef]
- Echeverria, G.; Fuentes, M.; Graell, J.; López, M.; López, L. Relationships between volatile production, fruit quality and sensory evaluation of Fuji apples stored in different atmospheres by means of multivariate analysis. J. Sci. Food Agric. 2003, 84, 5–20. [Google Scholar] [CrossRef]
- Echeverría, G.; Fuentes, T.; Graell, J.; Lara, I.; López, L. Aroma volatile compounds of ‘Fuji’ apples in relation to harvest date and cold storage technology. Postharvest Boil. Technol. 2004, 32, 29–44. [Google Scholar] [CrossRef]
- Echeverria, G.; Graell, J.; Lara, I.; López, M.; Puy, J.; López, L. Panel consonance in the sensory evaluation of apple attributes: Influence of mealiness on sweetness perception. J. Sens. Stud. 2008, 23, 656–670. [Google Scholar] [CrossRef]
- Murray, J.; Delahunty, C.; Baxter, I. Descriptive sensory analysis: Past, present and future. Food Res. Int. 2001, 34, 461–471. [Google Scholar] [CrossRef]
- Espino-Díaz, M.; Sepúlveda, D.R.; González-Aguilar, G.; Orozco, G.I.O. Biochemistry of Apple Aroma: A Review. Food Technol. Biotechnol. 2016, 54, 375–397. [Google Scholar] [CrossRef] [PubMed]
- El Hadi, M.A.M.; Zhang, F.-J.; Wu, F.-F.; Zhou, C.-H.; Tao, J. Advances in Fruit Aroma Volatile Research. Molecules 2013, 18, 8200–8229. [Google Scholar] [CrossRef]
- Buttery, R.G. Quantitative and sensory aspects of flavor of tomato and other vegetable and fruits. Flavor Science: Sensible Principles and Techniques. Amer. Chem. Soc. 1993, 259–286. [Google Scholar]
- Fellman, J.K.; Miller, T.; Mattinson, D.; Mattheis, J. Factors That Influence Biosynthesis of Volatile Flavor Compounds in Apple Fruits. HortScience 2000, 35, 1026–1033. [Google Scholar] [CrossRef]
- Dixon, J.; Hewett, E.W. Factors affecting apple aroma/flavor volatile concentration: A Review. New Zealand J. Crop. Hortic. Sci. 2000, 28, 155–173. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Jia, H.; Wu, R.; Teng, Y. Changes in volatile organic compound composition during the ripening of ‘Nanguoli’ pears (Pyrus ussuriensis Maxim) harvested at different growing locations. J. Hortic. Sci. Biotechnol. 2013, 88, 563–570. [Google Scholar] [CrossRef]
- Mphahlele, R.; Caleb, O.J.; Fawole, O.A.; Opara, U.L. Effects of different maturity stages and growing locations on changes in chemical, biochemical and aroma volatile composition of ‘Wonderful’ pomegranate juice. J. Sci. Food Agric. 2015, 96, 1002–1009. [Google Scholar] [CrossRef] [PubMed]
- Naryal, A.; Dolkar, D.; Bhardwaj, A.K.; Kant, A.; Chaurasia, O.P.; Stobdan, T. Effect of Altitude on the Phenology and Fruit Quality Attributes of Apricot (Prunus armeniaca L.) Fruits. Def. Life Sci. J. 2020, 5, 18–24. [Google Scholar] [CrossRef]
- Brat, P.; Yahia, A.; Chillet, M.; Bugaud, C.; Bakry, F.; Reynes, M.; Brillouet, J.-M. Influence of cultivar, growth altitude and maturity stage on banana volatile compound composition. Fruits 2004, 59, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Tomasi, D.; Calo, A.; Costacurta, A.; Aldighieri, R.; Pigella, E.; Di Stefano, R. Effects of the microclimate on vegetative and aromatic response of the vine variety Sauvignon blanc, clone R3. RiV. Vitic. Enol. 2000, 53, 27–44. [Google Scholar]
- Falcão, L.D.; De Revel, G.; Perello, M.C.; Moutsiou, A.; Zanus, M.C.; Bordignon-Luiz, M. A Survey of Seasonal Temperatures and Vineyard Altitude Influences on 2-Methoxy-3-isobutylpyrazine, C13-Norisoprenoids, and the Sensory Profile of Brazilian Cabernet Sauvignon Wines. J. Agric. Food Chem. 2007, 55, 3605–3612. [Google Scholar] [CrossRef] [Green Version]
- Yue, T.-X.; Chi, M.; Song, C.-Z.; Liu, M.-Y.; Meng, J.-F.; Zhang, Z.-W.; Li, M.-H. Aroma Characterization of Cabernet Sauvignon Wine from the Plateau of Yunnan (China) with Different Altitudes Using SPME-GC/MS. Int. J. Food Prop. 2014, 18, 1584–1596. [Google Scholar] [CrossRef]
- Jing, C.; Feng, D.; Zhao, Z.; Wu, X.; Chen, X. Effect of environmental factors on skin pigmentation and taste in three apple cultivars. Acta Physiol. Plant. 2020, 42, 1–12. [Google Scholar] [CrossRef]
- Singh, S.R.; Sharma, A.K.; Sharma, M.K. Effect of different NPK combinations on fruit yield, quality and leaf nutrient composition of apple (Malus domestica Borkh) cv. Red Delicious at different altitudes. Environ. Ecol. 2006, 24, 71–75. [Google Scholar]
- Comai, M.; Dorigoni, A.; Fadanelli, L.; Piffer, I.; Micheli, F.; Dallabetta, N. Influenza della carica e dei siti di produzione sulle caratteristiche fisico-chimiche di Golden Delicious in Val di Non. Riv. Fruttic. Ortofloric. 2005, 67, 52–57. (In Italian) [Google Scholar]
- Charles, M.; Corollaro, M.L.; Manfrini, L.; Endrizzi, I.; Aprea, E.; Zanella, A.; Grappadelli, L.C.; Gasperi, F. Application of a sensory-instrumental tool to study apple texture characteristics shaped by altitude and time of harvest. J. Sci. Food Agric. 2017, 98, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- Kritioti, A.; Paikousis, L.; Drouza, C. Characterization of the volatile profile of virgin olive oils of Koroneiki and Cypriot cultivars, and classification according to the variety, geographical region and altitude. LWT 2020, 129, 109543. [Google Scholar] [CrossRef]
- Belton, P.S.; Colquhoun, I.J.; Kemsley, E.K.; Delgadillo, I.; Roma, P.; Dennis, M.; Sharman, M.; Holmes, E.; Nicholson, J.K.; Spraul, M. Application of chemometrics to the 1H NMR spectra of apple juices: Discrimination between apple varieties. Food Chem. 1998, 61, 207–213. [Google Scholar] [CrossRef]
- Young, H.; Gilbert, J.M.; Murray, S.H.; Ball, R. Causal Effects of Aroma Compounds on Royal Gala Apple Flavours. J. Sci. Food Agric. 1996, 71, 329–336. [Google Scholar] [CrossRef]
- Zhu, D.; Ren, X.; Wei, L.; Cao, X.; Ge, Y.; Liu, H.; Li, J. Collaborative analysis on difference of apple fruits flavor using electronic nose and electronic tongue. Sci. Hortic. 2020, 260, 108879. [Google Scholar] [CrossRef]
- Nicolini, G.; Roman, T.; Carlin, S.; Malacarne, M.; Nardin, T.; Bertoldi, D.; Larcher, R. Characterisation of single-variety still ciders produced with dessert apples in the Italian Alps. J. Inst. Brew. 2018, 124, 457–466. [Google Scholar] [CrossRef] [Green Version]
- Rosend, J.; Kuldjärv, R.; Rosenvald, S.; Paalme, T. The effects of apple variety, ripening stage, and yeast strain on the volatile composition of apple cider. Heliyon 2019, 5, e01953. [Google Scholar] [CrossRef] [Green Version]
- Maragò, E.; Michelozzi, M.; Calamai, L.; Camangi, F.; Sebastiani, L. Antioxidant properties, sensory characteristics and volatile compounds profile of apple juices from ancient Tuscany (Italy) apple varieties. Eur. J. Hortic. Sci. 2016, 81, 255–263. [Google Scholar] [CrossRef]
- Merkle, S.; Kleeberg, K.K.; Fritsche, J. Recent Developments and Applications of Solid Phase Microextraction (SPME) in Food and Environmental Analysis—A Review. Chromatograph 2015, 2, 293–381. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Chen, H.; Wang, W.; Jiao, W.; Chen, W.; Zhong, Q.; Yun, Y.-H.; Chen, W. Characterization of Volatile Profiles and Marker Substances by HS-SPME/GC-MS during the Concentration of Coconut Jam. Foods 2020, 9, 347. [Google Scholar] [CrossRef] [Green Version]
- Kebede, B.; Ting, V.; Eyres, G.; Oey, I. Volatile Changes during Storage of Shelf Stable Apple Juice: Integrating GC-MS Fingerprinting and Chemometrics. Foods 2020, 9, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.; Yue, T.; Yuan, Y.; Sun, N.; Liu, P. Characterization of volatile and sensory profiles of apple juices to trace fruit origins and investigation of the relationship between the aroma properties and volatile constituents. LWT 2020, 124, 109203. [Google Scholar] [CrossRef]
- The Good Scent Company. The Good Scent Company. Available online: http://thegoodscentscompany.com (accessed on 29 May 2020).
- Mehinagic, E.; Royer, G.; Symoneaux, R.; Jourjon, F.; Prost, C. Characterization of Odor-Active Volatiles in Apples: Influence of Cultivars and Maturity Stage. J. Agric. Food Chem. 2006, 54, 2678–2687. [Google Scholar] [CrossRef] [PubMed]
- Holland, D.; Larkov, O.; Bar-Ya’Akov, I.; Bar, E.; Zax, A.; Brandeis, E.; Ravid, U.; Lewinsohn, E. Developmental and Varietal Differences in Volatile Ester Formation and Acetyl-CoA: Alcohol Acetyl Transferase Activities in Apple (Malus domestica Borkh.) Fruit. J. Agric. Food Chem. 2005, 53, 7198–7203. [Google Scholar] [CrossRef]
- Xiao, Z.; Wang, R.; Xiao, Z.; Zhu, J.; Sun, X.; Wang, P. Characterization of ester odorants of apple juice by gas chromatography-olfactometry, quantitative measurements, odor threshold, aroma intensity and electronic nose. Food Res. Int. 2019, 120, 92–101. [Google Scholar] [CrossRef]
- Echeverria, G.; Correa, E.-C.; Altisent, M.R.; Graell, J.; Puy, J.; López, L. Characterization of Fuji Apples from Different Harvest Dates and Storage Conditions from Measurements of Volatiles by Gas Chromatography and Electronic Nose. J. Agric. Food Chem. 2004, 52, 3069–3076. [Google Scholar] [CrossRef]
- Souleyre, E.; Bowen, J.K.; Matich, A.J.; Tomes, S.; Chen, X.; Hunt, M.B.; Wang, M.Y.; Ileperuma, N.R.; Richards, K.; Rowan, D.D.; et al. Genetic control of α-farnesene production in apple fruit and its role in fungal pathogenesis. Plant. J. 2019, 100, 1148–1162. [Google Scholar] [CrossRef]
- Plotto, A.; McDaniel, M.R. Tools of sensory analysis applied to apples. In Proceedings of the Washington Tree Fruit Postharvest Conference 2001, Wenatchee, WA, USA, 13–14 March 2001. [Google Scholar]
- Thalheimer, M.; Paoli, N. Die Witterung im Jahr 2014. Obstbau Weinbau 2015, 52, 19–24. [Google Scholar]
- Guerra, W. Apfelsorten mit Resistenzeigenschaften-Derzeitiger Anbau und Perspektiven in der Züchtung. Obstbau Weinbau 2015, 52, 153–156. [Google Scholar]
- Corollaro, M.L.; Endrizzi, I.; Bertolini, A.; Aprea, E.; Demattè, M.L.; Costa, F.; Biasioli, F.; Gasperi, F. Sensory profiling of apple: Methodological aspects, cultivar characterization and postharvest changes. Postharvest Boil. Technol. 2013, 77, 111–120. [Google Scholar] [CrossRef]
- Aprea, E.; Gika, H.; Carlin, S.; Theodoridis, G.; Vrhovsek, U.; Mattivi, F. Metabolite profiling on apple volatile content based on solid phase microextraction and gas-chromatography time of flight mass spectrometry. J. Chromatogr. A 2011, 1218, 4517–4524. [Google Scholar] [CrossRef] [PubMed]
- Stone, H.; Sidel, J.L. Sensory evaluation practices; Academic Press: London, UK, 2006. [Google Scholar]
- Richards, L.E.; Jolliffe, I.T. Principal Component Analysis. J. Mark. Res. 1988, 25, 410. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. Foundation for Statistical Computing. 2019. Available online: https://www.r-project.org/index.html (accessed on 29 May 2020).
- Deepayan, S. Lattice: Multivariate Data Visualization with R; Springer: New York, NY, USA, 2008. [Google Scholar]
- Gómez-Rubio, V. ggplot2-Elegant Graphics for Data Analysis (2nd Edition). J. Stat. Softw. 2017, 77. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds are not available from the authors. |
Variety | Altitude | Variety * Altitude | ||||
---|---|---|---|---|---|---|
Attribute | F Value | p Value | F Value | p Value | F Value | p Value |
Overall Odor | 8.1408 | 1.65 × 10−9 | 0.0019 | 0.9657 | 1.5815 | 0.1214 |
Odor-Apple | 1.1746 | 0.3169 | 0.0007 | 0.98 | 0.9453 | 0.3169 |
Odor-Banana | 1.9456 | 0.0475 | 0.0142 | 0.9074 | 2.9763 | 0.0025 |
Odor-Green grass | 2.3315 | 0.0163 | 4.2561 | 0.066 | 1.2612 | 0.2627 |
Odor-Honey | 2.1175 | 0.0297 | 0.3214 | 0.5833 | 1.1793 | 0.3137 |
Odor-Kiwi | 1.8719 | 0.0579 | 0.5908 | 0.4599 | 1.9911 | 0.042 |
Odor-Lemon | 1.0516 | 0.4068 | 0.3059 | 0.5813 | 1.1356 | 0.3427 |
Odor-Pear | 1.5726 | 0.1257 | 0.3695 | 0.5568 | 2.4756 | 0.0108 |
Odor-Pineapple | 1.6284 | 0.1093 | 0.4685 | 0.5092 | 1.0795 | 0.3851 |
Odor-Vanilla | 1.1786 | 0.3142 | 2.2739 | 0.1625 | 3.2509 | 0.0011 |
Flavor-Apple | 0.4536 | 0.9156 | 0.0665 | 0.8018 | 1.388 | 0.1967 |
Flavor-Banana | 3.2078 | 0.0013 | 1.4151 | 0.2617 | 1.3436 | 0.2181 |
Flavor-Green grass | 3.7531 | 0.0003 | 0.1727 | 0.6865 | 3.1478 | 0.0015 |
Flavor-Honey | 3.7253 | 0.0003 | 0.6803 | 0.4287 | 0.6625 | 0.7564 |
Flavor-Kiwi | 1.5298 | 0.1398 | 0.702 | 0.4217 | 2.5304 | 0.0093 |
Flavor-Lemon | 11.259 | 1.12 × 10−12 | 0.3541 | 5.65 × 10−1 | 4.9818 | 7.584 × 10−6 |
Flavor-Pear | 2.1496 | 0.0271 | 0.0523 | 0.8237 | 1.9076 | 0.0526 |
Flavor-Pineapple | 1.4049 | 0.189 | 0.0818 | 0.7807 | 0.0818 | 0.1755 |
Flavor-Vanilla | 2.4997 | 0.0101 | 1.4139 | 0.2619 | 0.5751 | 0.8308 |
Attributes | Definition |
---|---|
Overall odor | Overall odor sensation perceived via the orthonasal route |
Apple | Specific odor (O) or retronasal flavor (F) apple sensation 1 |
Banana | Specific odor (O) or retronasal flavor (F) banana sensation |
Green grass | Specific odor (O) or retronasal flavor (F) green grass sensation |
Honey | Specific odor (O) or retronasal flavor (F) honey sensation |
Kiwi | Specific odor (O) or retronasal flavor (F) kiwi sensation |
Lemon | Specific odor (O) or retronasal flavor (F) lemon sensation |
Pear | Specific odor (O) or retronasal flavor (F) pear sensation |
Pineapple | Specific odor (O) or retronasal flavor (F) pineapple sensation |
Vanilla | Specific odor (O) or retronasal flavor (F) vanilla sensation |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chitarrini, G.; Dordevic, N.; Guerra, W.; Robatscher, P.; Lozano, L. Aroma Investigation of New and Standard Apple Varieties Grown at Two Altitudes Using Gas Chromatography-Mass Spectrometry Combined with Sensory Analysis. Molecules 2020, 25, 3007. https://doi.org/10.3390/molecules25133007
Chitarrini G, Dordevic N, Guerra W, Robatscher P, Lozano L. Aroma Investigation of New and Standard Apple Varieties Grown at Two Altitudes Using Gas Chromatography-Mass Spectrometry Combined with Sensory Analysis. Molecules. 2020; 25(13):3007. https://doi.org/10.3390/molecules25133007
Chicago/Turabian StyleChitarrini, Giulia, Nikola Dordevic, Walter Guerra, Peter Robatscher, and Lidia Lozano. 2020. "Aroma Investigation of New and Standard Apple Varieties Grown at Two Altitudes Using Gas Chromatography-Mass Spectrometry Combined with Sensory Analysis" Molecules 25, no. 13: 3007. https://doi.org/10.3390/molecules25133007
APA StyleChitarrini, G., Dordevic, N., Guerra, W., Robatscher, P., & Lozano, L. (2020). Aroma Investigation of New and Standard Apple Varieties Grown at Two Altitudes Using Gas Chromatography-Mass Spectrometry Combined with Sensory Analysis. Molecules, 25(13), 3007. https://doi.org/10.3390/molecules25133007