Antioxidant Activity of Selected Phenolic Acids–Ferric Reducing Antioxidant Power Assay and QSAR Analysis of the Structural Features
Abstract
:1. Introduction
2. Results and Discussion
2.1. Experimental Results
2.2. SAR Investigation
2.3. Mutual Positions of Hydroxyl Groups and Resonance Stabilization
2.4. The Influence of Methylation
2.5. Carboxylic Group Influence and H-Bonding
2.6. QSAR Model
3. Materials and Methods
3.1. Apparatus
3.2. Reagents
3.2.1. Phenolic Acids
3.2.2. Other Reagents
3.3. Methods
3.3.1. Measurement of Reducing Activity of Phenolic Acids with FRAP Method
3.3.2. DFT Calculations
3.3.3. Topological Descriptors
3.3.4. QSAR Model Development and Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Anderson, J.W.; Baird, P.; Davis, R.H.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef] [PubMed]
- Lunn, J.; Theobald, H.E. The health effects of dietary unsaturated fatty acids. Nutr. Bull. 2006, 31, 178–224. [Google Scholar] [CrossRef]
- Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, N.; Afaq, F.; Mukhtar, H. Cancer chemoprevention through dietary antioxidants: Progress and promise. Antioxid. Redox Signal. 2008, 10, 475–510. [Google Scholar] [CrossRef]
- Kaliora, A.C.; Dedoussis, G.V.Z.; Schmidt, H. Dietary antioxidants in preventing atherogenesis. Atherosclerosis 2006, 187, 1–17. [Google Scholar] [CrossRef]
- Riechmann, J.L. Transcriptional Regulation: A Genomic Overview. Arab. B. 2002, 1, e0085. [Google Scholar] [CrossRef] [Green Version]
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative Stress. Annu. Rev. Biochem. 2017, 86, 715–748. [Google Scholar] [CrossRef]
- Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Wang, W.; Li, L.; Perry, G.; Lee, H.; Zhu, X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim. Biophys. Acta (BBA)-Molecular Basis Dis. 2014, 1842, 1240–1247. [Google Scholar] [CrossRef] [Green Version]
- Dias, V.; Junn, E.; Mouradian, M.M. The role of oxidative stress in parkinson’s disease. J. Parkinsons. Dis. 2013, 3, 461–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [Green Version]
- Tirzitis, G.; Bartosz, G. Determination of antiradical and antioxidant activity: Basic principles and new insights. Acta Biochim. Pol. 2010, 57, 139–142. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- López-Alarcón, C.; Denicola, A. Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Anal. Chim. Acta 2013, 763, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Çelik, S.E.; Özyürek, M.; Güçlü, K.; Apak, R. Solvent effects on the antioxidant capacity of lipophilic and hydrophilic antioxidants measured by CUPRAC, ABTS/persulphate and FRAP methods. Talanta 2010, 81, 1300–1309. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J. Antioxidant activities of flavonoids as bioactive components of food. Biochem. Soc. Trans. 1996, 24, 790–795. [Google Scholar] [CrossRef]
- Yeh, C.T.; Yen, G.C. Effects of phenolic acids on human phenolsulfotransferases in relation to their antioxidant activity. J. Agric. Food Chem. 2003, 51, 1474–1479. [Google Scholar] [CrossRef]
- Chen, Y.; Xiao, H.; Zheng, J.; Liang, G. Structure-thermodynamics-antioxidant activity relationships of selected natural phenolic acids and derivatives: An experimental and theoretical evaluation. PLoS ONE 2015, 10, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Lucarini, M.; Pedrielli, P.; Pedulli, G.F.; Cabiddu, S.; Fattuoni, C. Bond dissociation energies of O-H bonds in substituted phenols from equilibration studies. J. Org. Chem. 1996, 61, 9259–9263. [Google Scholar] [CrossRef]
- Amorati, R.; Valgimigli, L. Modulation of the antioxidant activity of phenols by non-covalent interactions. Org. Biomol. Chem. 2012, 10, 4147–4158. [Google Scholar] [CrossRef] [PubMed]
- Galano, A.; Raúl Alvarez-Idaboy, J. Computational strategies for predicting free radical scavengers’ protection against oxidative stress: Where are we and what might follow? Int. J. Quantum Chem. 2019, 119, e25665. [Google Scholar] [CrossRef] [Green Version]
- Milenković, D.; Đorović, J.; Jeremić, S.; Dimitrić Marković, J.M.; Avdović, E.H.; Marković, Z. Free radical scavenging potency of dihydroxybenzoic acids. J. Chem. 2017, 2017, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Markovic, Z.; DJOROVIC, J.; MARKOVIC, J.M.D.; Biocanin, R.; Amic, D. Comparative density functional study of antioxidative activity of the hydroxybenzoic acids and their anions. Turkish J. Chem. 2016, 40, 499–509. [Google Scholar] [CrossRef]
- Kubinyi, H. QSAR and 3D QSAR in drug design. Part 1: Methodology. Drug Discov. Today 1997, 2, 457–467. [Google Scholar] [CrossRef]
- Puzyn, T.; Rasulev, B.; Gajewicz, A.; Hu, X.; Dasari, T.P.; Michalkova, A.; Hwang, H.-M.; Toropov, A.; Leszczynska, D.; Leszczynski, J. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat. Nanotechnol. 2011, 6, 175. [Google Scholar] [CrossRef]
- Hansch, C.; Hoekman, D.; Leo, A.; Zhang, L.; Li, P. The expanding role of quantitative structure-activity relationships (QSAR) in toxicology. Toxicol. Lett. 1995, 79, 45–53. [Google Scholar] [CrossRef]
- Rastija, V.; Medić-Šarić, M. QSAR study of antioxidant activity of wine polyphenols. Eur. J. Med. Chem. 2009, 44, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Matthew, S.; Abreu, P.M.; Aires-De-Sousa, J. QSAR analysis of phenolic antioxidants using MOLMAP descriptors of local properties. Bioorganic Med. Chem. 2006, 14, 1199–1206. [Google Scholar] [CrossRef]
- Filipović, M.; Marković, Z.; Đorović, J.; Marković, J.D.; Lučić, B.; Amić, D. QSAR of the free radical scavenging potency of selected hydroxybenzoic acids and simple phenolics. Comptes Rendus Chim. 2015, 18, 492–498. [Google Scholar] [CrossRef]
- Cai, Y.Z.; Sun, M.; Xing, J.; Luo, Q.; Corke, H. Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 2006, 78, 2872–2888. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D. Methods for determination of antioxidant capacity: A review. Int. J. Pharm. Sci. Res. 2015, 6, 546. [Google Scholar]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Rasulev, B.F.; Abdullaev, N.D.; Syrov, V.N.; Leszczynski, J. A Quantitative Structure-Activity Relationship (QSAR) Study of the Antioxidant Activity of Flavonoids. QSAR Comb. Sci. 2005, 24, 1056–1065. [Google Scholar] [CrossRef]
- Gramatica, P.; Sangion, A. A historical excursus on the statistical validation parameters for QSAR models: A clarification concerning metrics and terminology. J. Chem. Inf. Model. 2016, 56, 1127–1131. [Google Scholar] [CrossRef]
- Siquet, C.; Paiva-Martins, F.; Lima, J.L.F.C.; Reis, S.; Borges, F. Antioxidant profile of dihydroxy- and trihydroxyphenolic acids—A structure-activity relationship study. Free Radic. Res. 2006, 40, 433–442. [Google Scholar] [CrossRef]
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView 2016; Semichem Inc.: Shawnee Mission, KS, USA, 2016. [Google Scholar]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 2016. Available online: https://gaussian.com/gaussian16/ (accessed on 14 October 2019).
- Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 1998, 285, 170–173. [Google Scholar] [CrossRef]
- Korth, H.-G.; de Heer, M.I.; Mulder, P. A DFT study on intramolecular hydrogen bonding in 2-substituted phenols: Conformations, enthalpies, and correlation with solute parameters. J. Phys. Chem. A 2002, 106, 8779–8789. [Google Scholar] [CrossRef]
- Yap, C.W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J Comput. Chem. 2011, 32, 1466–1474. [Google Scholar] [CrossRef]
- Hall, L.H.; Kier, L.B. Electrotopological state indices for atom types: A novel combination of electronic, topological, and valence state information. J. Chem. Inf. Comput. Sci. 1995, 35, 1039–1045. [Google Scholar] [CrossRef]
- Laggner, C. SMARTS Patterns for Functional Group Classification. 2009. Available online: http://code.google.com/p/semanticchemistry/source/browse/wiki/InteLigand.wiki?spec=svn41&r=41 (accessed on 15 May 2010).
- Klekota, J.; Roth, F.P. Chemical substructures that enrich for biological activity. Bioinformatics 2008, 24, 2518–2525. [Google Scholar] [CrossRef] [PubMed]
- Gramatica, P.; Chirico, N.; Papa, E.; Cassani, S.; Kovarich, S. QSARINS: A new software for the development, analysis, and validation of QSAR MLR models. J. Comput. Chem. 2013, 34, 2121–2132. [Google Scholar] [CrossRef]
- Gramatica, P.; Cassani, S.; Chirico, N. QSARINS-chem: Insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS. J. Comput. Chem. 2014, 35, 1036–1044. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available. |
Compound ID: | IUPAC Name | C1 | C2 | C3 | C4 | C5 | C6 | TAUFe/μmol * |
1 | 2,3-dihydroxybenzoic | COOH | OH | OH | H | H | H | 202 ± 10.6 |
2 | 3,4-dihydroxyphenylacetic | CH2COOH | H | OH | OH | H | H | 149 ± 10.0 |
3 | 2,5-dihydroxybenzoic | COOH | OH | H | H | OH | H | 128 ± 6.3 |
4 | 3,4,5-trihydroxybenzoic | COOH | H | OH | OH | OH | H | 119 ± 6.4 |
5 | 4-hydroxy-3,5-dimethoxybenzoic | COOH | H | OCH3 | OH | OCH3 | H | 84.6 ± 3.7 |
6 | 4-hydroxy-3,5-dimethoxycinnamic | CH=CHCOOH | H | OCH3 | OH | OCH3 | H | 79.2 ± 4.9 |
7 | 2,5-dihydroxyphenylacetic | CH2COOH | OH | H | H | OH | H | 72.1 ± 3.3 |
8 | 4-hydroxy-3-methoxyphenylacetic | CH2COOH | H | OCH3 | OH | H | H | 63.9 ± 4.2 |
9 | 3,4-dihydroxycinnamic | CH=CHCOOH | H | OH | OH | H | H | 60.9 ± 2.8 |
10 | 3,4-dihydroxybenzoic | COOH | H | OH | OH | H | H | 52.0 ± 3.2 |
11 | 4-hydroxy-3-methoxycinnamic | CH=CHCOOH | H | OCH3 | OH | H | H | 49.1 ± 3.1 |
12 | 4-hydroxy-3-methoxybenzoic | COOH | H | OCH3 | OH | H | H | 2.29 ± 0.07 |
13 | 2-hydroxybenzoic | COOH | OH | H | H | H | H | 2.01 ± 0.12 |
14 | 2,4-dihydroxybenzoic | COOH | OH | H | OH | H | H | 1.30 ± 0.08 |
15 | 4-hydroxycinnamic | CH=CHCOOH | H | H | OH | H | H | 0.777 ± 0.124 |
16 | 2-hydroxycinnamic | CH=CHCOOH | OH | H | H | H | H | 0.556 ± 0.058 |
17 | 4-hydroxyphenylacetic | CH2COOH | H | H | OH | H | H | 0.325 ± 0.081 |
18 | 3-hydroxycinnamic | CH=CHCOOH | H | OH | H | H | H | 0.141 ± 0.044 |
19 | 3,5-dihydroxybenzoic | COOH | H | OH | H | OH | H | 0.127 ± 0.044 |
20 | 4-hydroxybenzoic | COOH | H | H | OH | H | H | 0.126 ± 0.030 |
21 | 3,4-dimethoxybenzoic | COOH | H | OCH3 | OCH3 | H | H | 0.087 ± 0.049 |
22 | 3-hydroxybenzoic | COOH | H | OH | H | H | H | 0.028 ± 0.032 |
Compound ID: | IUPAC Name | EHB, (kcal/mol) | CP- HHB Distance, (Å) | Oac - HHB Distance, (Å) | ∠Oac-CP-HHB Angle, (°) |
---|---|---|---|---|---|
1 | 2,3-dihydroxybenzoic | −12.91/−5.56 | 0.572/0.90 | 1.69/2.13 | 172.84/160.38 |
2 | 3,4-dihydroxyphenylacetic | −5.47 | 0.890 | 2.12 | 163.15 |
3 | 2,5-dihydroxybenzoic | −12.45 | 0.580 | 1.71 | 173.16 |
4 | 3,4,5-trihydroxybenzoic | −3.61/−3.69 | 0.882/0.880 | 2.18/2.18 | 161.43/162.80 |
5 | 4-hydroxy-3,5-dimethoxybenzoic | −6.32 | 0.836 | 2.06 | 167.15 |
6 | 4-hydroxy-3,5-dimethoxycinnamic | −6.37 | 0.833 | 2.06 | 167.30 |
7 | 2,5-dihydroxyphenylacetic | −11.41 | 0.601 | 1.78 | 176.03 |
8 | 4-hydroxy-3-methoxyphenylacetic | −6.16 | 0.842 | 2.07 | 167.46 |
9 | 3,4-dihydroxycinnamic | −5.42 | 0.902 | 2.13 | 161.51 |
10 | 3,4-dihydroxybenzoic | −5.58 | 0.882 | 2.11 | 163.67 |
11 | 4-hydroxy-3-methoxycinnamic | −6.30 | 0.835 | 2.06 | 167.47 |
12 | 4-hydroxy-3-methoxybenzoic | −6.26 | 0.838 | 2.06 | 167.31 |
13 | 2-hydroxybenzoic | −12.98 | 0.572 | 1.69 | 173.31 |
14 | 2,4-dihydroxybenzoic | −15.77 | 0.542 | 1.64 | 173.62 |
R | R2 | R2adj | RMSE | MAE | Q2loo | Q2lmo | |
---|---|---|---|---|---|---|---|
training set | 0.9959 | 0.9918 | 0.9893 | 5.5211 | 4.0678 | ||
cross-validation | 10.3056 | 7.4203 | 0.9716 | 0.9592 | |||
external validation | 0.9996 | 0.9993 | 0.9973 | 1.5429 | 1.2627 |
2D Structure of Tested Compounds | TAUFe/μmol Predicted by MLR QSAR Model |
---|---|
198.38 | |
258.05 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spiegel, M.; Kapusta, K.; Kołodziejczyk, W.; Saloni, J.; Żbikowska, B.; Hill, G.A.; Sroka, Z. Antioxidant Activity of Selected Phenolic Acids–Ferric Reducing Antioxidant Power Assay and QSAR Analysis of the Structural Features. Molecules 2020, 25, 3088. https://doi.org/10.3390/molecules25133088
Spiegel M, Kapusta K, Kołodziejczyk W, Saloni J, Żbikowska B, Hill GA, Sroka Z. Antioxidant Activity of Selected Phenolic Acids–Ferric Reducing Antioxidant Power Assay and QSAR Analysis of the Structural Features. Molecules. 2020; 25(13):3088. https://doi.org/10.3390/molecules25133088
Chicago/Turabian StyleSpiegel, Maciej, Karina Kapusta, Wojciech Kołodziejczyk, Julia Saloni, Beata Żbikowska, Glake A. Hill, and Zbigniew Sroka. 2020. "Antioxidant Activity of Selected Phenolic Acids–Ferric Reducing Antioxidant Power Assay and QSAR Analysis of the Structural Features" Molecules 25, no. 13: 3088. https://doi.org/10.3390/molecules25133088
APA StyleSpiegel, M., Kapusta, K., Kołodziejczyk, W., Saloni, J., Żbikowska, B., Hill, G. A., & Sroka, Z. (2020). Antioxidant Activity of Selected Phenolic Acids–Ferric Reducing Antioxidant Power Assay and QSAR Analysis of the Structural Features. Molecules, 25(13), 3088. https://doi.org/10.3390/molecules25133088