Pleurotus sajor-caju-Mediated Synthesis of Silver and Gold Nanoparticles Active against Colon Cancer Cell Lines: A New Era of Herbonanoceutics
Abstract
:1. Introduction
2. Results
2.1. Characterization of Ag NPs and Au NPs
2.1.1. UV-Visible Spectroscopy
2.1.2. X-ray Diffraction (XRD) Analysis
2.1.3. Dynamic Light Scattering (DLS)
2.1.4. Fourier Transforms Infrared Spectroscopy (FTIR)
2.1.5. Scanning Electron Microscopy (SEM) and Transmission Electron microscopy (TEM) Analysis
2.1.6. EDS Analysis
2.2. Cytotoxicity Assessment of PS Extract, Ag NPs, and Au NPs against HCT-116 Cell Line
2.3. Assessment of ROS
2.4. DNA Fragmentation Assay
3. Discussion
4. Materials and Methods
4.1. Preparation of Spawn and Cultivation of the Mushroom, Pleurotus sajor-caju
4.2. Preparation of Aqueous Extract of Pleurotus sajor-caju
4.3. Extraction of Water-Soluble Substances from P. sajor-caju for Cytotoxic Study
4.4. Biosynthesis of Ag NPs and Au NPs
4.5. Characterization of Ag NPs and Au NPs
4.6. Evaluation of Cytotoxicity of a ME (PS extract), Biosynthesized Au NPs and Ag NPs on HCT-116 Cell Line
4.6.1. Cell Culture
4.6.2. Cell Viability Assay
4.6.3. Measurement of ROS Production
4.6.4. DNA Fragmentation Assay
4.6.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chaturvedi, V.K.; Singh, A.; Singh, V.K.; Singh, M.P. Cancer nanotechnology: A new revolution for cancer diagnosis and therapy. Curr. Drug. Metab. 2019, 20, 416–429. [Google Scholar] [CrossRef] [PubMed]
- Elemike, E.E.; Onwudiwe, D.C.; Nundkumar, N.; Singh, M.; Iyekowa, O. Green synthesis of Ag, Au and Ag-Au bimetallic nanoparticles using Stigmaphyllon ovatum leaf extract and their in vitro anticancer potential. Mater. Lett. 2019, 243, 148–152. [Google Scholar] [CrossRef]
- Hetta, H.F.; Elkady, A.; Yahia, R.; Meshall, A.K.; Saad, M.M.; Mekky, M.A.; Al-Kadmy, I.M.S. T follicular helper and T follicular regulatory cells in colorectal cancer: A complex interplay. J. Immunol. Methods 2020, 112753. [Google Scholar] [CrossRef] [PubMed]
- Vetchinkina, E.; Loshchinina, E.; Kupryashina, M.; Burov, A.; Pylaev, T.; Nikitina, V. Green synthesis of nanoparticles with extracellular and intracellular extracts of basidiomycetes. Peer J. 2018, 20, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Maurya, S.; Bhardwaj, A.K.; Gupta, K.K.; Agarwal, S.; Kushwaha, A.; Chaturvedi, V.K.; Pathak, R.K.; Gopal, R.; Uttam, K.N.; Singh, A.K.; et al. Green synthesis of silver nanoparticles using Pleurotus and its bactericidal activity. Cell. Mol. Biol. 2016, 62, 1–3. [Google Scholar] [CrossRef]
- Vigneshwaran, N.; Kathe, A.A.; Varadarajan, P.V.; Nachane, R.P.; Balasubramanya, R.H. Silver− protein (core− shell) nanoparticle production using spent mushroom substrate. Langmuir 2007, 23, 7113–7117. [Google Scholar] [CrossRef]
- Gade, A.; Rai, M.; Karwa, A.; Bonde, P.; Ingle, A. Extracellular biosynthesis of silver nanoparticles by Pleurotus species. Int. J. Med. Mushrooms 2007, 9, 298–299. [Google Scholar] [CrossRef] [Green Version]
- Nithya, R.; Ragunathan, R. Synthesis of silver nanoparticles using Pleurotus sajor caju and its antimicrobial study. Dig. J. Nanomater. Biostruct. 2009, 4, 623–629. [Google Scholar]
- Nithya, R. A Novel Biological Approach for the Synthesis of Silver Nanoparticles Using Brevibacterium linens, Pleurotus Sajor Caju and Aspergillus niger- A Comparative Study and Their Applications. Master’s Thesis, Bharathiar University, Tamilnadu, India, 2012. [Google Scholar]
- Musa, S.F.; Yeat, S.; Mohd, Z.; Tabana, Y.M.; Ahmed, A.; Ouweini, E.; Lim, V.; Keong, C.; Sandai, D. Pleurotus Sajor-caju Can Be Used to Synthesize Silver Nanoparticles with Antifungal Activity against Candida albicans. J. Sci. Food Agric. 2018, 98, 1197–1207. [Google Scholar] [CrossRef]
- Mallikarjuna, S.E.; Ranjini, A.; Haware, D.J.; Vijayalakshmi, M.R.; Shashirekha, M.N.; Rajarathnam, S. Mineral composition of four edible mushrooms. J. Chem. 2013, 2013, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Latha, C.; Raghasudha, M.; Aparna, Y.; Ravinder, D.; Veerasomaiah, P.; Shridhar, D. Effect of capping agent on the morphology, size and optical properties of In2O3 nanoparticles. Mater. Res. 2017, 20, 256–263. [Google Scholar] [CrossRef] [Green Version]
- Shinde, V.V.; Jadhav, P.R.; Kim, J.H.; Patil, P.S. One-step synthesis and characterization of anisotropic silver nanoparticles: Application for enhanced antibacterial activity of natural fabric. J. Mater. Sci. 2013, 24, 8393–8401. [Google Scholar] [CrossRef]
- Rahman, M.F.; Wang, J.; Patterson, T.A.; Saini, U.T.; Robinson, B.L.; Newport, G.D.; Murdock, R.C.; Schlager, J.J.; Hussain, S.M.; Ali, S.F. Expression of genes related to oxidative stress in the mouse brain after exposure to silver-25 nanoparticles. Toxicol. Lett. 2009, 187, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Liou, G.Y.; Storz, P. Reactive oxygen species in cancer. Free Radic Res. 2010, 44, 479–496. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.A.; Tania, M. Nutritional and medicinal importance of Pleurotus mushrooms: An overview. Food Rev. Internat. 2012, 28, 313–329. [Google Scholar] [CrossRef]
- Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S.R.; Khan, M.I.; Ramani, R.; Renu, P.; Ajayakumar, P.V.; Mansoor, A.; et al. Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew. Chem. Int. Ed. Engl. 2001, 40, 3585–3588. [Google Scholar] [CrossRef]
- Wang, C.; Mathiyalagan, R.; Kim, Y.J.; Castro-Aceituno, V.; Singh, P.; Ahn, S.; Wang, D.; Yang, D.C. Rapid green synthesis of silver and gold nanoparticles using Dendropanax morbifera leaf extract and their anticancer activities. Int. J. Nanomed. 2016, 11, 3691–3701. [Google Scholar] [CrossRef] [Green Version]
- Mourato, A.; Gadanho, M.; Lino, A.R.; Tenreiro, R. Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg. Chem. Appl. 2011, 2011, 1–8. [Google Scholar] [CrossRef]
- Philip, D. Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2009, 73, 374–381. [Google Scholar] [CrossRef]
- Das, S.K.; Das, A.R.; Guha, A.K. Gold nanoparticles: Microbial synthesis and application in water hygiene management. Langmuir 2009, 25, 8192–8199. [Google Scholar] [CrossRef]
- Chaturvedi, V.K.; Agarwal, S.; Gupta, K.K.; Ramteke, P.W.; Singh, M.P. Medicinal mushroom: Boon for therapeutic applications. 3 Biotech 2018, 8, 1–20. [Google Scholar] [CrossRef] [PubMed]
- James, A.E.; Driskell, J.D. Monitoring gold nanoparticle conjugation and analysis of biomolecular binding with nanoparticle tracking analysis (NTA) and DLS. Analyst 2013, 138, 1212–1218. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Bott, S.; Huo, Q. Techniques for accurate sizing of gold nanoparticles using dynamic light scattering with particular application to chemical and biological sensing based on aggregate formation. ACS Appl. Mater. Interfaces 2016, 8, 21585–21594. [Google Scholar] [CrossRef]
- Tseng, C.W.; Chang, H.Y.; Chang, J.Y.; Huang, C.C. Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles. Nanoscale 2012, 4, 6823–6830. [Google Scholar] [CrossRef]
- Jain, S.; Mehata, M.S. Medicinal Plant Leaf Extract and Pure Flavonoid Mediated Green Synthesis of Silver Nanoparticles and their Enhanced Antibacterial Property. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Farah, M.A.; Ali, M.A.; Chen, S.M.; Li, Y.; Al-Hemaid, F.M.; Abou-Tarboush, F.M.; Al-Anazi, K.M.; Lee, J. Silver nanoparticles synthesized from Adenium obesum leaf extract induced DNA damage, apoptosis and autophagy via generation of ROS. Colloids Surf. B. 2016, 141, 158–169. [Google Scholar] [CrossRef]
- Parashar, U.K.; Kumar, V.; Bera, T.; Saxena, P.S.; Nath, G.; Srivastava, S.K.; Giri, R.; Srivastava, A. Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles. Nanotechnology 2011, 22, 415104. [Google Scholar] [CrossRef]
- Prathna, T.C.; Mathew, L.; Chandrasekaran, N.; Raichur, A.M.; Mukherjee, A. Biomimetic synthesis of nanoparticles: Science, technology & applicability. In Biomimetics Learning from Nature; Intechopen: London, UK, 2010. [Google Scholar] [CrossRef] [Green Version]
- Von White, G.; Kerscher, P.; Brown, R.M.; Morella, J.D.; McAllister, W.; Dean, D.; Kitchens, C.L. Green synthesis of robust, biocompatible silver nanoparticles using garlic extract. J. Nanomater. 2012, 730746, 1–21. [Google Scholar] [CrossRef]
- Devi, L.S.; Joshi, S.R. Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi. J. Microsc. Ultrastruct. 2015, 3, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Dimitrijević, R.; Cvetković, O.; Miodragović, Z.; Simić, M.; Manojlović, D.; Jović, V. SEM/EDX and XRD characterization of silver nanocrystalline thin film prepared from organometallic solution precursor. J. Min. Metall. Sect. B Metall. 2013, 49, 91–95. [Google Scholar] [CrossRef]
- Vivek, R.; Thangam, R.; Muthuchelian, K.; Gunasekaran, P.; Kaveri, K.; Kannan, S. Green biosynthesis of silver nanoparticles from Annona squamosa leaf extract and it’s in vitro cytotoxic effect on MCF-7 cells. Process Biochem. 2012, 47, 2405–2410. [Google Scholar] [CrossRef]
- Telles, C.B.S.; Sabry, D.A.; Lima, J.A.; Costa, M.S.S.P.; Silveira, R.F.M.; Trindade, E.S.; Sassakic, G.L.; Wisbeckd, E.; Furland, S.A.; Leitea, E.L.; et al. Sulfation of the extracellular polysaccharide produced by the edible mushroom Pleurotus sajor-caju alters its antioxidant, anticoagulant and antiproliferative properties in-vitro. Carbohydr. Polym. 2011, 85, 514–521. [Google Scholar] [CrossRef] [Green Version]
- Finimundy, T.C.; Gambato, G.; Fontana, R.; Camassola, M.; Salvador, M.; Moura, S.; Hess, J.; Henriques, J.A.P.; Dillon, A.J.P.; Roesch-Ely, M. Aqueous extracts of Lentinula edodes and Pleurotus sajor-caju exhibit high antioxidant capability and promising in vitro antitumor activity. Nutr. Res. 2013, 33, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, C.; Mizuno, T.; Shimada, A.; Ito, H.; Suzuki, C.; Mayuzumi, Y.; Okamoto, H.; Ma, Y.; Li, J. Antitumor Protein-containing Polysaccharides from a Chinese Mushroom Fengweigu or Houbitake, Pleurotus sajor-caju (Fr.) Sings. Biosci. Biotechnol. Biochem. 1993, 57, 901–906. [Google Scholar] [CrossRef] [Green Version]
- Assis, I.S.; Chaves, M.B.; Silveira, M.L.L.; Gern, R.M.M.; Wisbeck, E.; Junior, A.F.; Furlan, S.A. Production of Bioactive Compounds with Antitumor Activity against Sarcoma 180 by Pleurotus sajor-caju. J. Med. Food. 2013, 16, 1004–1012. [Google Scholar] [CrossRef]
- Sonker, A.S.; Pathak, J.; Kannaujiya, V.K.; Sinha, R.P. Characterization and in vitro antitumor, antibacterial and antifungal activities of green synthesized silver nanoparticles using cell extract of Nostoc sp. strain HKAR-2. Can. J. Biotech. 2017, 1, 26–37. [Google Scholar] [CrossRef]
- Ott, M.; Gogvadze, V.; Orrenius, S.; Zhivotovsky, B. Mitochondria, oxidative stress and cell death. Apoptosis 2007, 12, 913–922. [Google Scholar] [CrossRef]
- Abdal Dayem, A.; Hossain, M.K.; Lee, S.B.; Kim, K.; Saha, S.K.; Yang, G.M.; Choi, H.Y.; Cho, S.G. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci. 2017, 18, 120. [Google Scholar] [CrossRef] [Green Version]
- Fu, P.P.; Xia, Q.; Hwang, H.M.; Ray, P.C.; Yu, H. Mechanisms of nanotoxicity: Generation of reactive oxygen species. J. Food Drug Anal. 2014, 22, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Fard, J.K.; Jafari, S.; Eghbal, M.A. A review of molecular mechanisms involved in toxicity of nanoparticles. Adv. Pharm. Bull. 2015, 5, 447–454. [Google Scholar] [CrossRef]
- Khanna, P.; Ong, C.; Bay, B.H.; Baeg, G.H. Nanotoxicity: An interplay of oxidative stress, inflammation and cell death. Nanomaterials 2015, 5, 1163–1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miethling-Graff, R.; Rumpker, R.; Richter, M.; Verano-Braga, T.; Kjeldsen, F.; Brewer, J.; Hoyland, J.; Rubahn, H.G.; Erdmann, H. Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol. In Vitro 2014, 28, 1280–1289. [Google Scholar] [CrossRef]
- Jha, A.K.; Prasad, K.; Kumar, V.; Prasad, K. Biosynthesis of silver nanoparticles using Eclipta leaf. Biotechnol. Progr. 2009, 25, 1476–1479. [Google Scholar] [CrossRef]
- Durai, P.; Chinnasamy, A.; Gajendran, B.; Ramar, M.; Pappu, S.; Kasivelu, G.; Thirunavukkarasu, A. Synthesis and characterization of silver nanoparticles using crystal compound of sodium para-hydroxybenzoate tetrahydrate isolated from Vitex negundo L. leaves and its apoptotic effect on human colon cancer cell lines. Eur. J. Med. Chem. 2014, 84, 90–99. [Google Scholar] [CrossRef] [PubMed]
- Satapathy, S.R.; Mohapatra, P.; Preet, R.; Das, D.; Sarkar, B.; Choudhuri, T.; Wyatt, M.D.; Kundu, C.N. Silver-based nanoparticles induce apoptosis in human colon cancer cells mediated through p53. Nanomedicine 2013, 8, 1307–1322. [Google Scholar] [CrossRef]
- Selvi, B.C.G.; Madhavan, J.; Santhanam, A. Cytotoxic effect of silver nanoparticles synthesized from Padina tetrastromatica on breast cancer cell line. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 035015. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Bohara, R.A.; Thorat, N.D.; Chaurasia, A.K.; Pawar, S.H. Cancer cell extinction through a magnetic fluid hyperthermia treatment produced by superparamagnetic Co–Zn ferrite nanoparticles. RSC Adv. 2015, 5, 47225–47234. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
S. No. | 2θ | FWHM | Miller Indices | Crystallite Sizes | 2θ | FWHM | Miller Indices | Crystallite Sizes |
---|---|---|---|---|---|---|---|---|
1 | 37.32 | 0.71757 | 111 | 12.20 | 37.56 | 0.71757 | 111 | 12.22 |
2 | 43.31 | 0.3519 | 200 | 25.38 | 44.59° | 0.3519 | 200 | 25.49 |
3 | 63.73 | 0.6950 | 220 | 14.05 | 64.05° | 0.6950 | 220 | 14.08 |
4 | 76.86 | 0.6764 | 311 | 15.66 | 76.78° | 0.6687 | 311 | 15.84 |
S.N. | Wavenumber Range (cm−1) | Wavenumber (cm−1) P. sajor-caju | Wavenumber (cm−1) Biosynthesized PS-Ag NPs | Wavenumber (cm−1) Biosynthesized PS-Au NPs | Band Assignment and Functional Groups |
---|---|---|---|---|---|
1. | 3029–3639 | 3379.3 | 3421.5 | 3418.3 | O-H stretching i.e., alcohol, phenolic compounds and groups N-H stretching (asymmetric) of Amide-A |
2. | 1583–1709 | 1650.2 | 1645.5 | 1674 | (C=C stretch) and stretch of amides C=O stretching of ester group |
3. | 1400–1000 | 1406.0 | 1420.1 | 1422.1 | A combination of hindered rotation and O-H bending |
4. | 1400–1000 | 1042.7 | 1021.7 | 1024.2 | C-N stretching |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaturvedi, V.K.; Yadav, N.; Rai, N.K.; Ellah, N.H.A.; Bohara, R.A.; Rehan, I.F.; Marraiki, N.; Batiha, G.E.-S.; Hetta, H.F.; Singh, M.P. Pleurotus sajor-caju-Mediated Synthesis of Silver and Gold Nanoparticles Active against Colon Cancer Cell Lines: A New Era of Herbonanoceutics. Molecules 2020, 25, 3091. https://doi.org/10.3390/molecules25133091
Chaturvedi VK, Yadav N, Rai NK, Ellah NHA, Bohara RA, Rehan IF, Marraiki N, Batiha GE-S, Hetta HF, Singh MP. Pleurotus sajor-caju-Mediated Synthesis of Silver and Gold Nanoparticles Active against Colon Cancer Cell Lines: A New Era of Herbonanoceutics. Molecules. 2020; 25(13):3091. https://doi.org/10.3390/molecules25133091
Chicago/Turabian StyleChaturvedi, Vivek K., Navneet Yadav, Neeraj K. Rai, Noura H. Abd Ellah, Raghvendra A. Bohara, Ibrahim F. Rehan, Najat Marraiki, Gaber El-Saber Batiha, Helal F. Hetta, and M. P. Singh. 2020. "Pleurotus sajor-caju-Mediated Synthesis of Silver and Gold Nanoparticles Active against Colon Cancer Cell Lines: A New Era of Herbonanoceutics" Molecules 25, no. 13: 3091. https://doi.org/10.3390/molecules25133091
APA StyleChaturvedi, V. K., Yadav, N., Rai, N. K., Ellah, N. H. A., Bohara, R. A., Rehan, I. F., Marraiki, N., Batiha, G. E. -S., Hetta, H. F., & Singh, M. P. (2020). Pleurotus sajor-caju-Mediated Synthesis of Silver and Gold Nanoparticles Active against Colon Cancer Cell Lines: A New Era of Herbonanoceutics. Molecules, 25(13), 3091. https://doi.org/10.3390/molecules25133091