Removal of Phosphorus from Wastewater by Different Morphological Alumina
Abstract
:1. Introduction
2. Results and Discussion
2.1. Material Characterization
2.1.1. X-ray Diffraction (XRD)
2.1.2. High Resolution Transmission Electron Microscope (HRTEM)
2.1.3. N2 Adsorption/Desorption-Analysis
2.1.4. Fourier Transform Infrared (FT-IR)
2.1.5. Point of Zero Charge
2.2. Adsorption Behavior
2.2.1. Effect of Adsorbent Dosage
2.2.2. Adsorption Kinetics
2.2.3. Adsorption Isotherm
2.2.4. Effect of Initial pH and Competitive Ions
2.2.5. Adsorption Mechanism
Al-OH2+(S) + HaPO4a−3 = Al-HPO4(S) + a H2O(l) + (a−1) OH−(aq) (Complex adsorption)
AlOH2+(S) + H2PO4−(aq) = AlOH2+−H2PO4−(S) (Electrostatic adsorption)
3. Materials and Methods
3.1. Synthesis of Adsorbents
3.2. Material Characterization
3.3. Batch Adsorption Experiments
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Conley, D.J.; Paerl, H.W.; Howarth, R.W.; Boesch, D.F.; Seitzinger, S.P.; Havens, K.E.; Lancelot, C.; Likens, G.E. Controlling Eutrophication: Nitrogen and Phosphorus. Science 2009, 323, 1014–1015. [Google Scholar] [CrossRef]
- Smith, V.H.; Schindler, D.W. Eutrophication science: Where do we go from here? Trends Ecol. Evol. 2009, 24, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Bozorgpour, F.; Ramandi, H.F.; Jafari, P.; Samadi, S.; Yazd, S.S.; Aliabadi, M. Removal of nitrate and phosphate using chitosan/Al2O3/Fe3O4 composite nanofibrous adsorbent: Comparison with chitosan/Al2O3/Fe3O4 beads. Int. J. Biol. Macromol. 2016, 93, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Morse, G.; Brett, S.w.; Guy, J.A.; Lester, J.N. Review: Phosphorus removal and recovery technologies. Sci. Total Environ. 1998, 212, 69–81. [Google Scholar] [CrossRef]
- Zou, H.; Wang, Y. Phosphorus removal and recovery from domestic wastewater in a novel process of enhanced biological phosphorus removal coupled with crystallization. Bioresour. Technol. 2016, 211, 87–92. [Google Scholar] [CrossRef]
- Lin, J.W.; He, S.Q.; Wang, X.X.; Zhang, H.H.; Zhan, Y.H. Removal of phosphate from aqueous solution by a novel Mg(OH)2/ZrO2 composite: Adsorption behavior and mechanism. Colloids Surf. A Physicochem. Eng. Asp. 2018, 561, 301–314. [Google Scholar] [CrossRef]
- Xie, J.; Lin, Y.; Li, C.J.; Wu, D.Y.; Kong, H.N. Removal and recovery of phosphate from water by activated aluminum oxide and lanthanum oxide. Powder Technol. 2015, 269, 351–357. [Google Scholar] [CrossRef]
- Ding, C.S.; Zou, Y.L.; Ni, F.M.; Zhu, Q.F. Behavior of Phosphorus Adsorption from Aqueous Solutions on Modified Activated Alumina. Adv. Mater. Res. 2010, 152–153, 945–949. [Google Scholar] [CrossRef]
- Kawasaki, N.; Ogata, F.; Tominaga, H. Selective adsorption behavior of phosphate onto aluminum hydroxide gel. J. Hazard. Mater. 2010, 181, 574–579. [Google Scholar] [CrossRef]
- Koh, K.Y.; Zhang, S.; Chen, J.P. Hydrothermally synthesized lanthanum carbonate nanorod for adsorption of phosphorus: Material synthesis and optimization, and demonstration of excellent performance. Chem. Eng. J. 2020, 380, 122153. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Li, A.Y.; Deng, H.; Ye, C.H.; Wu, Y.Q.; Linmu, Y.D.; Hang, H.L. Characteristics of nitrogen and phosphorus adsorption by Mg-loaded biochar from different feedstocks. Bioresour. Technol. 2019, 276, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Zhang, M.; Mortimer, R.J.G.; Pan, G. Enhanced phosphorus locking by novel lanthanum/aluminum–hydroxide composite: Implications for eutrophication control. Environ. Sci. Technol. 2017, 51, 3418–3425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, X.L.; Farran, A.; Guaya, D.; Valderrama, C.; Soldatov, V.; Cortina, J.L. Phosphate removal from aqueous solutions using a hybrid fibrous exchanger containing hydrated ferric oxide nanoparticles. J. Environ. Chem. Eng. 2016, 4, 388–397. [Google Scholar] [CrossRef]
- Rashid, M.; Price, N.T.; Pinilla, M.Á.G.; O’Shea, K.E. Effective removal of phosphate from aqueous solution using humic acid coated magnetite nanoparticles. Water Res. 2017, 123, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Pan, B.C.; Han, F.C.; Nie, G.Z.; Wu, B.; He, K.; Lu, L. New strategy to enhance phosphate removal from water by hydrous manganese oxide. Environ. Sci. Technol. 2014, 48, 5101–5107. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Lin, X.M.; Xie, J.J.; Huang, X.M. Kinetic, equilibrium and thermodynamic studies for phosphate adsorption on aluminum hydroxide modified palygorskite nano–composites. RSC Adv. 2017, 7, 4492–4500. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.H.; Shen, D.K.; Shen, F.; Li, T.Y. Phosphate adsorption on lanthanum loaded biochar. Chemosphere 2016, 150, 1–7. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, C.; Hou, J.; Wang, P.F.; You, G.X.; Miao, L.Z.; Lv, B.W.; Yang, Y.Y. Effects of cerium oxide nanoparticles on the species and distribution of phosphorus in enhanced phosphorus removal sequencing batch biofilm reactor. Bioresour. Technol. 2017, 227, 393–397. [Google Scholar] [CrossRef]
- Kang, A.S.; Li, W.; Lee, H.E.; Phillips, B.L.; Lee, Y.J. Phosphate uptake by TiO2: Batch studies and NMR spectroscopic evidence for multisite adsorption. J. Colloid Interface Sci. 2011, 364, 455–461. [Google Scholar] [CrossRef]
- Rodrigues, L.A.; Silva, M.L.C.P. Thermodynamic and kinetic investigations of phosphate adsorption onto hydrous niobium oxide prepared by homogeneous solution method. Desalination 2010, 263, 29–35. [Google Scholar] [CrossRef]
- Xie, Q.; Lin, Y.; Wu, D.Y.; Kong, H.N. Performance of surfactant modified zeolite/hydrous zirconium oxide as a multi–functional adsorbent. Fuel 2017, 203, 411–418. [Google Scholar] [CrossRef]
- Qin, K.; Li, F.; Xu, S.; Wang, T.H.; Liu, C.H. Sequential removal of phosphate and cesium by using zirconium oxide: A demonstration of designing sustainable adsorbents for green water treatment. Chem. Eng. J. 2017, 322, 275–280. [Google Scholar] [CrossRef]
- Hano, T.; Takanashi, H.; Hirata, M.; Urano, K.; Eto, S. Removal of phosphorus from wastewater by activated alumina adsorbent. Water Sci. Technol. 1997, 35, 39–46. [Google Scholar] [CrossRef]
- Bratteb, H.; Degaard, H. Phosphorus removal by granular activated alumina. Water Res. 1986, 20, 977–986. [Google Scholar] [CrossRef]
- Chen, Y.G.; Su, Y.L.; Zheng, X.; Chen, H.; Yang, H. Alumina nanoparticles–induced effects on wastewater nitrogen and phosphorus removal after short-term and long-term exposure. Water Res. 2012, 46, 4379–4386. [Google Scholar] [CrossRef] [PubMed]
- Narkis, N.; Meiri, M. Phosphorus removal by activated alumina. Environ. Pollut. Ser. B Chem. Phys. 1981, 2, 327–343. [Google Scholar] [CrossRef]
- Ding, C.S.; Zou, Y.L.; Zhang, Y.Q.; Ni, F.M.; Zhu, Q.F. Experimental Study on Phosphorus Removal by Modified Activated Alumina. Urban Environ. Urban Ecol. 2011, 24, 31–34. [Google Scholar]
- Moharami, S.; Jalali, M. Effect of TiO2, Al2O3, and Fe3O4 nanoparticles on phosphorus removal from aqueous solution. Environ. Prog. Sustain. Energy 2014, 33, 1209–1219. [Google Scholar]
- Zou, S.M.; Yang, Q.H.; Zeng, S.Q.; Nie, H. The Form of Sulfate in Pseudo-Boehmite and Its Effect on Properties of Pseudo-Boehmite. China Pet. Process. Petrochem. Technol. 2014, 16, 1–6. [Google Scholar]
- Yang, Y.; Xu, Y.Y.; Han, B.Z.; Xu, B.J.; Liu, X.M.; Yan, Z.F. Effects of synthetic conditions on the textural structure of pseudo-boehmite. J. Colloid Interface Sci. 2016, 469, 1–7. [Google Scholar] [CrossRef]
- Sun, J.C.; Wang, X.H.; Chen, S.Q.; Liao, Y.Q.; Gao, A.W.; Hu, Y.H.; Yang, T.; Xu, X.Y.; Wang, Y.X.; Song, J.Q. Defluoridation of Water Using Active Alumina Derived from Single–Layer Boehmite. Acta Phys. Chim. Sin. 2020, 36, 1911009. [Google Scholar]
- Li, Z.T.; Liu, D.M.; Cai, Y.D.; Wang, Y.P.; Teng, J. Adsorption pore structure and its fractal characteristics of coals by N2 adsorption/desorption and FESEM image analyses. Fuel 2019, 257, 116031. [Google Scholar] [CrossRef]
- Liu, X.; Truitt, R.E. DRFT–IR Studies of the Surface of γ–Alumina. J. Am. Chem. Soc. 1997, 119, 9856–9860. [Google Scholar] [CrossRef]
- Oliveira, M.; Machado, A.V.; Nogueira, R. Phosphorus Removal from Eutrophic Waters with an Aluminum Hybrid Nanocomposite. Water Air and Soil Pollut. 2012, 223, 4831–4840. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.L.; Yang, J.H.; Zuo, J.N.; Ma, D.; Gan, L.L.; Xie, B.M. Graphene–supported nanoscale zero–valent iron: Removal of phosphorus from aqueous solution and mechanistic study. J. Environ. Sci. 2014, 26, 1751–1762. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Wu, R.; Chen, Y. Effects of ZnO Nanoparticles on Wastewater Biological Nitrogen and Phosphorus Removal. Environ. Sci. Technol. 2011, 45, 2826–2832. [Google Scholar] [CrossRef] [PubMed]
- Rotole, J.A.; Sherwood, P.M.A. Gamma-alumina (γ-Al2O3) by XPS. Surf. Sci. Spectra 1998, 5, 18–24. [Google Scholar] [CrossRef]
- Ealet, B.; Gillet, E. Palladium alumina interface: Influence of the oxide stoichiometry studied by EELS and XPS. Surf. Sci. 1993, 281, 91–101. [Google Scholar] [CrossRef]
- Tougaard, S.; Jansson, C. Comparison of validity and consistency of methods for quantitative XPS peak analysis. Surf. Interface Anal. 1993, 20, 1013–1046. [Google Scholar] [CrossRef]
- Armstrong, R.A.; Egelhoff, W.F., Jr. An analysis of angular dependent XPS peak intensities. Surf. Sci. Lett. 1985, 154, L225–L232. [Google Scholar]
- Omran, M.; Fabritius, T.; Elmahdy, A.M.; Abdel-Khalek, N.A.; El-Aref, M.; Elmanawi, A.E. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore. Appl. Surf. Sci. 2015, 345, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Song, J.Q.; Li, Z.H.; Xu, X.Y.; He, M.Y.; Li, Z.F.; Wang, Q.; Yan, L.J. Organic–free Synthesis of Boehmite Nanofibers by Al2(SO4)3·18H2O with High Pore Volume. Ind. Eng. Chem. Res. 2013, 52, 7752–7757. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo–second order model for sorption processes. Process. Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Tan, K.L.; Hameed, B.H. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J. Taiwan Inst. Chem. E. 2017, 74, 25–48. [Google Scholar] [CrossRef]
- Viglašová, E.; Galamboš, M.; Danková, Z.; Krivosudský, L.; Lengauer, C.L.; Hood-Nowotny, R.; Soja, J.; Rompel, A.; Matík, M.; Briančin, J. Production, characterization and adsorption studies of bamboo—based biochar/montmorillonite composite for nitrate removal. Waste Manag. 2018, 79, 385–394. [Google Scholar] [CrossRef]
- Krajňák, A.; Viglašová, E.; Galamboš, M.; Krivosudský, L. Application of HDTMA–intercalated bentonites in water waste treatment for U (VI) removal. J. Radioanal. Nucl. Chem. 2017, 314, 2489–2499. [Google Scholar]
Sample Availability: Samples of the compounds GA-1-500 and GA-2-500 are available from the authors. |
Parameter | SB-500 | GA-1-500 | GA-2-500 | |
---|---|---|---|---|
Pseudo-first-order | qe,exp (mg·g−1) | 48.9 | 99.6 | 82.3 |
qe,cal (mg·g−1) | 14.6 | 2.6 | 11.3 | |
k1 (10−2·min−1) | 1.13 | 3.04 | 3.998 | |
R2 | 0.660 | 0.588 | 0.852 | |
Pseudo-second-order | qe,cal (mg·g−1) | 49.0 | 99.7 | 82.6 |
k2 (10−2·g·mg−1·min−1) | 0.34 | 7.03 | 1.47 | |
R2 | 0.998 | 0.999 | 0.999 |
Kinetic Model | Parameter | SB-500 | GA-1-500 | GA-2-500 |
---|---|---|---|---|
Langmuir isotherm model | qm,cal (mg·g−1) | 276.5 | 588.2 | 360.1 |
KL (L·mg−1) | 0.0021 | 0.0468 | 0.0112 | |
R2 | 0.998 | 0.969 | 0.990 | |
Freundlich isotherm model | 1/n | 0.75 | 0.27 | 0.45 |
KF ((mg·g−1)(L·mg−1)1/n) | 2.71 | 124.88 | 23.51 | |
R2 | 0.992 | 0.981 | 0.980 |
Adsorbent | Initial Concentration (mg·L−1) | Surface Area (m2∙g−1) | Experimental Condition | qm (mg·g−1) | Reference |
---|---|---|---|---|---|
Alumina | 5–200 | –– | pH < 5.0, 25 °C | 20.88 | [7] |
Ca-Alumina | 5–50 | 348.8 | pH = 6.0, 25 °C | 8.74 | [8] |
Aluminum hydroxide gel | 41–368 | 107.2 | pH = 3.0–9.0, 25 °C | 11.5 | [9] |
Lanthanum Carbonate | 10–200 | 19.7 | pH = 5.0, room temperature | 312.5 | [10] |
Mg-loaded Biochar | 20–350 | 100.0 | pH = 8.9, 25 °C | 31.2 | [11] |
Lanthanum/Aluminum Hydroxide Composite | 80 | 99.3 | pH = 4.0, 25 °C | 76.3 | [12] |
Alumina GA-1-500 | 100–800 | 665.0 | pH = 5.0, 25 °C | 588.2 | This study |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, J.; Gao, A.; Wang, X.; Xu, X.; Song, J. Removal of Phosphorus from Wastewater by Different Morphological Alumina. Molecules 2020, 25, 3092. https://doi.org/10.3390/molecules25133092
Sun J, Gao A, Wang X, Xu X, Song J. Removal of Phosphorus from Wastewater by Different Morphological Alumina. Molecules. 2020; 25(13):3092. https://doi.org/10.3390/molecules25133092
Chicago/Turabian StyleSun, Jianchuan, Awang Gao, Xuhui Wang, Xiangyu Xu, and Jiaqing Song. 2020. "Removal of Phosphorus from Wastewater by Different Morphological Alumina" Molecules 25, no. 13: 3092. https://doi.org/10.3390/molecules25133092
APA StyleSun, J., Gao, A., Wang, X., Xu, X., & Song, J. (2020). Removal of Phosphorus from Wastewater by Different Morphological Alumina. Molecules, 25(13), 3092. https://doi.org/10.3390/molecules25133092