Comparison of Chemotherapeutic Activities of Rhodamine-Based GUMBOS and NanoGUMBOS
Abstract
:1. Introduction
2. Results
2.1. Synthesis and Characterization
2.2. Spectroscopic Properties
2.3. In Vitro Chemotherapeutic Efficacy
3. Materials and Methods
3.1. Materials
3.2. Synthesis of GUMBOS
3.3. Synthesis of NanoGUMBOS
3.4. Octanol Buffer Partition Coefficients
3.5. Solubility Studies
3.6. Spectroscopic Studies
3.7. Cell Culture
3.8. Cell Viability Studies
3.9. Cellular Uptake
3.10. Microscopy
3.11. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- He, H.; Li, D.-W.; Yang, L.-Y.; Fu, L.; Zhu, X.-J.; Wong, W.-K.; Jiang, F.-L.; Liu, Y. A novel bifunctional mitochondria-targeted anticancer agent with high selectivity for cancer cells. Sci. Rep. 2015, 5, 13543. [Google Scholar] [CrossRef] [Green Version]
- Modica-Napolitano, J.S.; Aprille, J.R. Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Adv. Drug Deliv. Rev. 2001, 49, 63–70. [Google Scholar] [CrossRef]
- Ross, M.F.; Kelso, G.; Blaikie, F.H.; James, A.M.; Cocheme, H.M.; Filipovska, A.; Da Ros, T.; Hurd, T.; Smith, R.A.; Murphy, M.P. Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology. Biochemistry (Moscow) 2005, 70, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, S.; Archer, S.L.; Allalunis-Turner, J.; Haromy, A.; Beaulieu, C.; Thompson, R.; Lee, C.T.; Lopaschuk, G.D.; Puttagunta, L.; Bonnet, S. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 2007, 11, 37–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trapp, S.; Horobin, R.W. A predictive model for the selective accumulation of chemicals in tumor cells. Eur. Biophys. J. 2005, 34, 959–966. [Google Scholar] [CrossRef] [PubMed]
- McKeage, M.J.; Berners-Price, S.J.; Galettis, P.; Bowen, R.J.; Brouwer, W.; Ding, L.; Zhuang, L.; Baguley, B.C. Role of lipophilicity in determining cellular uptake and antitumor activity of gold phosphine complexes. Cancer Chemother. Pharmacol. 2000, 46, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Belostotsky, I.; Da Silva, S.; Paez, M.; Indig, G. Mitochondrial targeting for photochemotherapy. Can selective tumor cell killing be predicted based on n-octanol/water distribution coefficients? Biotech. Histochem. 2011, 86, 302–314. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.P. Selective targeting of bioactive compounds to mitochondria. Trends Biotechnol. 1997, 15, 326–330. [Google Scholar] [CrossRef]
- Modica-Napolitano, J.S.; Aprille, J.R. Basis for the selective cytotoxicity of rhodamine 123. Cancer Res. 1987, 47, 4361–4365. [Google Scholar]
- Summerhayes, I.C.; Lampidis, T.J.; Bernal, S.D.; Nadakavukaren, J.J.; Nadakavukaren, K.K.; Shepherd, E.L.; Chen, L.B. Unusual retention of rhodamine 123 by mitochondria in muscle and carcinoma cells. Proc. Natl. Acad. Sci. USA 1982, 79, 5292–5296. [Google Scholar] [CrossRef] [Green Version]
- Lampidis, T.J.; Castello, C.; Del Giglio, A.; Pressman, B.C.; Viallet, P.; Trevorrow, K.W.; Valet, G.K.; Tapiero, H.; Savaraj, N. Relevance of the chemical charge of rhodamine dyes to multiple drug resistance. Biochem. Pharmacol. 1989, 38, 4267–4271. [Google Scholar] [CrossRef]
- Bernal, S.D.; Lampidis, T.J.; Summerhayes, I.A.; Chen, L.B. Rhodamine-123 selectively reduces clonal growth of carcinoma cells in vitro. Science 1982, 218, 1117–1119. [Google Scholar] [CrossRef]
- Lampidis, T.J.; Bernal, S.D.; Summerhayes, I.C.; Chen, L.B. Selective toxicity of rhodamine 123 in carcinoma cells in vitro. Cancer Res. 1983, 43, 716–720. [Google Scholar] [PubMed]
- Nadakavukaren, K.K.; Nadakavukaren, J.J.; Chen, L.B. Increased rhodamine 123 uptake by carcinoma cells. Cancer Res. 1985, 45, 6093–6099. [Google Scholar] [PubMed]
- Shibata, A.; Furukawa, K.; Abe, H.; Tsuneda, S.; Ito, Y. Rhodamine-based fluorogenic probe for imaging biological thiol. Bioorganic Med. Chem. Lett. 2008, 18, 2246–2249. [Google Scholar] [CrossRef]
- Jeannot, V.; Salmon, J.M.; Deumie, M.; Viallet, P. Intracellular accumulation of rhodamine 110 in single living cells. J. Histochem. Cytochem. Off. J. Histochem. Soc. 1997, 45, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Alford, R.; Simpson, H.M.; Duberman, J.; Hill, G.C.; Ogawa, M.; Regino, C.; Kobayashi, H.; Choyke, P.L. Toxicity of organic fluorophores used in molecular imaging: Literature review. Mol. Imaging 2009, 8, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Johnson, L.V.; Walsh, M.L.; Chen, L.B. Localization of mitochondria in living cells with rhodamine 123. Proc. Natl. Acad. Sci. USA 1980, 77, 990–994. [Google Scholar] [CrossRef] [Green Version]
- Heo, D.N.; Yang, D.H.; Moon, H.-J.; Lee, J.B.; Bae, M.S.; Lee, S.C.; Lee, W.J.; Sun, I.-C.; Kwon, I.K. Gold nanoparticles surface-functionalized with paclitaxel drug and biotin receptor as theranostic agents for cancer therapy. Biomaterials 2012, 33, 856–866. [Google Scholar] [CrossRef]
- Du, J.-Z.; Du, X.-J.; Mao, C.-Q.; Wang, J. Tailor-made dual pH-sensitive polymer–doxorubicin nanoparticles for efficient anticancer drug delivery. J. Am. Chem. Soc. 2011, 133, 17560–17563. [Google Scholar] [CrossRef]
- Allen, T.M.; Cullis, P.R. Drug delivery systems: Entering the mainstream. Science 2004, 303, 1818–1822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawasaki, E.S.; Player, A. Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomed. Nanotechnol. Biol. Med. 2005, 1, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.L.; Bendayan, R.; Rauth, A.M.; Xue, H.Y.; Babakhanian, K.; Wu, X.Y. A mechanistic study of enhanced doxorubicin uptake and retention in multidrug resistant breast cancer cells using a polymer-lipid hybrid nanoparticle system. J. Pharmacol. Exp. Ther. 2006, 317, 1372–1381. [Google Scholar] [CrossRef] [Green Version]
- Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces 2010, 75, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Warner, I.M.; El-Zahab, B.; Siraj, N. Perspectives on moving ionic liquid chemistry into the solid phase. Anal. Chem. 2014, 86, 7184–7191. [Google Scholar] [CrossRef] [PubMed]
- Magut, P.K.S.; Das, S.; Fernand, V.E.; Losso, J.; McDonough, K.; Naylor, B.M.; Aggarwal, S.; Warner, I.M. Tunable cytotoxicity of rhodamine 6G via anion variations. J. Am. Chem. Soc. 2013, 135, 15873–15879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattarai, N.; Mathis, J.M.; Chen, M.; Pérez, R.L.; Siraj, N.; Magut, P.K.; McDonough, K.; Sahasrabudhe, G.; Warner, I.M. Endocytic selective toxicity of rhodamine 6G nanoGUMBOS in breast cancer cells. Mol. Pharm. 2018, 15, 3837–3845. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Bhattarai, N.; Cong, M.; Pérez, R.L.; McDonough, K.C.; Warner, I.M. Mitochondria targeting IR780-based nanoGUMBOS for enhanced selective toxicity towards cancer cells. Rsc Adv. 2018, 8, 31700–31709. [Google Scholar] [CrossRef] [Green Version]
- Couvreur, P. Nanoparticles in drug delivery: Past, present and future. Adv. Drug Deliv. Rev. 2013, 65, 21–23. [Google Scholar] [CrossRef]
- Shen, Y.; Jin, E.; Zhang, B.; Murphy, C.J.; Sui, M.; Zhao, J.; Wang, J.; Tang, J.; Fan, M.; Van Kirk, E. Prodrugs forming high drug loading multifunctional nanocapsules for intracellular cancer drug delivery. J. Am. Chem. Soc. 2010, 132, 4259–4265. [Google Scholar] [CrossRef]
- Park, K. Nanotechnology: What it can do for drug delivery. J. Control. Release 2007, 120, 1. [Google Scholar]
- Zhao, J.L. The synthesis and characterization of SNAFR-5 derivatives. Psu Mcnair Sch. Online J. 2012, 6, 12. [Google Scholar] [CrossRef]
- Deng, Y.; Yuan, W.; Jia, Z.; Liu, G. H-and J-aggregation of fluorene-based chromophores. J. Phys. Chem. B 2014, 118, 14536–14545. [Google Scholar] [CrossRef] [PubMed]
- Fabian, J.; Nakazumi, H.; Matsuoka, M. Near-infrared absorbing dyes. Chem. Rev. 1992, 92, 1197–1226. [Google Scholar] [CrossRef]
- Gharib, M.I.; Burnett, A.K. Chemotherapy-induced cardiotoxicity: Current practice and prospects of prophylaxis. Eur. J. Heart Fail. 2002, 4, 235–242. [Google Scholar] [CrossRef]
- Jordan, K.; Kasper, C.; Schmoll, H.-J. Chemotherapy-induced nausea and vomiting: Current and new standards in the antiemetic prophylaxis and treatment. Eur. J. Cancer 2005, 41, 199–205. [Google Scholar] [CrossRef]
- Staff, N.P.; Grisold, A.; Grisold, W.; Windebank, A.J. Chemotherapy-induced peripheral neuropathy: A current review. Ann. Neurol. 2017, 81, 772–781. [Google Scholar] [CrossRef]
- Watters, J.W.; McLeod, H.L. Cancer pharmacogenomics: Current and future applications. Biochim. Et Biophys. Acta (Bba)–Rev. Cancer 2003, 1603, 99–111. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available. However, authors would be willing to provide assistance in synthesis. |
NanoGUMBOS | Zeta Potential |
---|---|
[R123][BETI] | −16.8 ± 1.1 mV |
[R123][TPB] | −16.5 ± 1.4 mV |
[SNAFR-5][BETI] | −17.4 ± 0.8 mV |
[SNAFR-5][TPB] | −16.9 ± 1.3 mV |
MDA-MB-231 IC50 (µM) | MiaPaca IC50 (µM) | MCF7 IC50 (µM) | |
---|---|---|---|
[R123][BETI] | 17.4 ± 3.7 | 1.6 ± 0.7 | ˃100 |
[R123][TPB] | 20.6 ± 3.5 | 2.5 ± 0.9 | ˃100 |
[R123][Cl] | 24.3 ± 2.2 | 3.1 ± 1.1 | ˃100 |
[SNAFR-5][BETI] | 8.7 ± 1.8 | 0.66 ± 0.03 | 32.5 ± 1.1 |
[SNAFR-5][TPB] | 12.2 ± 2.9 | 0.72 ± 0.02 | 26.7 ± 2.2 |
[SNAFR-5] | 1.3 ± 0.5 | 0.13 ± 0.02 | 3.7 ± 0.7 |
Compound | MDA-MB-231 IC50 (μM) | Hs578Bst IC50 (μM) |
---|---|---|
[RB][BETI] | 89.5 ± 3.4 | 540.3 ± 6.2 |
[RB][TPB] | 77.5 ± 5.7 | 533.7 ± 3.3 |
[RB][Cl] | 291.0 ± 1.2 | 500.2 ± 5.2 |
[R110][BETI] | 159.5 ± 1.1 | 843.8 ± 4.9 |
[R110][TPB] | 105.5 ± 3.1 | 850.2 ± 3.7 |
[R110][Cl] | 791.2 ± 2.7 | 836.1 ± 5.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhattarai, N.; Chen, M.; L. Pérez, R.; Ravula, S.; M. Strongin, R.; McDonough, K.; M. Warner, I. Comparison of Chemotherapeutic Activities of Rhodamine-Based GUMBOS and NanoGUMBOS. Molecules 2020, 25, 3272. https://doi.org/10.3390/molecules25143272
Bhattarai N, Chen M, L. Pérez R, Ravula S, M. Strongin R, McDonough K, M. Warner I. Comparison of Chemotherapeutic Activities of Rhodamine-Based GUMBOS and NanoGUMBOS. Molecules. 2020; 25(14):3272. https://doi.org/10.3390/molecules25143272
Chicago/Turabian StyleBhattarai, Nimisha, Mi Chen, Rocío L. Pérez, Sudhir Ravula, Robert M. Strongin, Karen McDonough, and Isiah M. Warner. 2020. "Comparison of Chemotherapeutic Activities of Rhodamine-Based GUMBOS and NanoGUMBOS" Molecules 25, no. 14: 3272. https://doi.org/10.3390/molecules25143272
APA StyleBhattarai, N., Chen, M., L. Pérez, R., Ravula, S., M. Strongin, R., McDonough, K., & M. Warner, I. (2020). Comparison of Chemotherapeutic Activities of Rhodamine-Based GUMBOS and NanoGUMBOS. Molecules, 25(14), 3272. https://doi.org/10.3390/molecules25143272