Combining In Silico and In Vitro Studies to Evaluate the Acetylcholinesterase Inhibitory Profile of Different Accessions and the Biomarker Triterpenes of Centella asiatica
Abstract
:1. Introduction
2. Results
2.1. Characterization of CA Accessions
2.2. Percentage Yield of Extraction
2.3. HPLC Analysis
2.4. Acetylcholinesterase Inhibitory Activity
2.5. Molecular Docking
3. Chemicals and Reagents
3.1. Chemicals and Reagents
3.2. Plant Characterization and Extraction
3.3. HPLC Fingerprinting Analysis
3.4. Acetylcholinesterase Inhibitory Activities
- Ac: Absorbance of negative control
- As: Absorbance of sample
3.5. Molecular Docking
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Ibrar, A.; Khan, A.L.; Ali, M.; Sarwar, R.; Mehsud, S.; Farooq, U.; Halimi, S.M.A.; Khan, I.; Al-Harrasi, A. Combined in vitro and in silico studies for the anticholinesterase activity and pharmacokinetics of coumarinyl thiazoles and oxadiazoles. Front. Chem. 2018, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kuppusamy, A.; Arumugam, M.; George, S. Combining in silico and in vitro approaches to evaluate the acetylcholinesterase inhibitory profile of some commercially available flavonoids in the management of Alzheimer’s disease. Int. J. Boil. Macromol. 2017, 95, 199–203. [Google Scholar] [CrossRef]
- Thu, N.T.; Hai, N.T.; Tung, B.T. In vitro antioxidant and acetylcholinesterase inhibitory activities of fractions from centella asiatica (Linn.) extract. Curr. Bioact. Compd. 2018, 14, 86–91. [Google Scholar] [CrossRef]
- Wu, J.; Pistolozzi, M.; Liu, S.; Tan, W. Design, synthesis and biological evaluation of novel carbamates as potential inhibitors of acetylcholinesterase and butyrylcholinesterase. Bioorgan. Med. Chem. 2020, 28, 115324. [Google Scholar] [CrossRef]
- Kumar, A.; Pintus, F.; Di Petrillo, A.; Medda, R.; Caria, P.; Matos, M.J.; Viña, D.; Pieroni, E.; Delogu, F.; Era, B.; et al. Novel 2-pheynlbenzofuran derivatives as selective butyrylcholinesterase inhibitors for Alzheimer’s disease. Sci. Rep. 2018, 8, 4424. [Google Scholar] [CrossRef] [Green Version]
- Ajayi, O.; Aderogba, M.; Obuotor, E.; Majinda, R. Acetylcholinesterase inhibitor from anthocleista vogelii leaf extracts. J. Ethnopharmacol. 2018, 231, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Hafiz, Z.Z.; Amin, M.; James, R.M.J.; Teh, L.K.; Salleh, M.Z.; Adenan, M.I. Inhibitory effects of Raw-Extract Centella Asiatica (RECA) on Acetylcholinesterase, Inflammations, and oxidative stress activities via in vitro and in vivo. Molecules 2020, 25, 892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akıncıoğlu, A.; Kocaman, E.; Akıncıoğlu, H.; Salmas, R.E.; Durdaği, S.; Gülçin, I.; Supuran, C.T.; Göksu, S. The synthesis of novel sulfamides derived from β-benzylphenethylamines as acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase enzymes inhibitors. Bioorgan. Chem. 2017, 74, 238–250. [Google Scholar] [CrossRef]
- Bhadra, S.; Dalai, M.; Chanda, J.; Mukherjee, P.K. Evaluation of bioactive compounds as acetylcholinesterase inhibitors from medicinal plants. In Evidence-Based Validation of Herbal Medicine; Elsevier BV: Amsterdam, The Netherlands, 2015; pp. 273–306. [Google Scholar]
- Colovic, M.; Krstić, D.; Lazarevic-Pasti, T.; Bondžić, A.M.; Vasić, V.M. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharmacol. 2013, 11, 315–335. [Google Scholar] [CrossRef] [Green Version]
- Awasthi, M.; Upadhyay, A.; Singh, S.; Pandey, V.; Dwivedi, U.N. Terpenoids as promising therapeutic molecules against Alzheimer’s disease: Amyloid beta- and acetylcholinesterase-directed pharmacokinetic and molecular docking analyses. Mol. Simul. 2017, 44, 1–11. [Google Scholar] [CrossRef]
- Dhanasekaran, S.; Perumal, P.; Palayan, M. In-vitro screening for acetylcholinesterase enzyme inhibition potential and antioxidant activity of extracts of Ipomoea aquatica Forsk: Therapeutic lead for Alzheimer’s disease. J. Appl. Pharm. Sci. 2015, 5, 012–016. [Google Scholar] [CrossRef] [Green Version]
- Panche, A.N.; Chandra, S.; Diwan, A.D. Multi-Target β-Protease Inhibitors from Andrographis paniculata: In Silico and In Vitro Studies. Plants 2019, 8, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakayanathan, P.; Loganathan, C.; Kandasamy, S.; Ramanna, R.V.; Poomani, K.; Thayumanavan, P.; Penislusshiyan, S.; Chitra, L.; Saravanan, K.; Rajesh, R.V.; et al. In vitro and in silico analysis of novel astaxanthin-s-allyl cysteine as an inhibitor of butyrylcholinesterase and various globular forms of acetylcholinesterases. Int. J. Boil. Macromol. 2019, 140, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Mathew, M.; Subramanian, S. In vitro screening for anti-cholinesterase and antioxidant activity of methanolic extracts of ayurvedic medicinal plants used for cognitive disorders. PLoS ONE 2014, 9, e86804. [Google Scholar] [CrossRef]
- Ahmed, F.; Ghalib, R.M.; Sasikala, P.; Ahmed, K.K.M. Cholinesterase inhibitors from botanicals. Pharmacogn. Rev. 2013, 7, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Ternchoocheep, K.; Surangkul, D.; Ysothonsreekul, S. The recovery and protective effects of asiatic acid on differentiated human neuroblastoma SH-SY5Y cells cytotoxic-induced by cholesterol. Asian Pac. J. Trop. Biomed. 2017, 7, 416–420. [Google Scholar] [CrossRef]
- Adenan, M.I.; Jusril, N.A.; Radzun, K.A.; Hafiz, Z.Z. Comparative study on anti-acetylcholinesterase and anti-inflammatory activities of date and apple vinegars fortified with Centella asiatica. Int. J. Eng. Technol. 2018, 7, 116–120. [Google Scholar] [CrossRef]
- Chiroma, S.M.; Baharuldin, M.T.H.; Taib, C.N.M.; Amom, Z.; Jagadeesan, S.; Adenan, M.I.; Moklas, M.A.M. Protective effect of Centella asiatica against D-galactose and aluminium chloride induced rats: Behavioral and ultrastructural approaches. Biomed. Pharmacother. 2019, 109, 853–864. [Google Scholar] [CrossRef]
- Rafi, M.; Handayani, F.; Darusman, L.K.; Rohaeti, E.; Wahyu, Y.; Honda, K.; Putri, S.P. A combination of simultaneous quantification of four triterpenes and fingerprint analysis using HPLC for rapid identification of Centella asiatica from its related plants and classification based on cultivation ages. Ind. Crop. Prod. 2018, 122, 93–97. [Google Scholar] [CrossRef]
- Omar, N.; Lokanathan, Y.; Razi, Z.R.M.; Idrus, R.B.H. The effects of Centella asiatica (L.) Urban on neural differentiation of human mesenchymal stem cells in vitro. BMC Complement. Altern. Med. 2019, 19, 167. [Google Scholar] [CrossRef] [Green Version]
- Rahminiwati, M.; Darusman, L.K.; Sa, S.; Wulandari, T. The determination of asiaticoside content and screening of acetylcholinesterase inhibitory potency of Gotu Cola (Centella Asiatica) Harvested from different location. In Proceedings of the International Seminar and Expo on Jamu, Bandung, Indonesia, 3–6 November 2010; p. 105. [Google Scholar]
- Devkota, A.; Panneerselvam, C.; Comai, S.; Innocenti, G.; Jha, P.K. Centella asiatica (L.) urban from Nepal: Quali-quantitative analysis of samples from several sites, and selection of high terpene containing populations for cultivation. Biochem. Syst. Ecol. 2010, 38, 12–22. [Google Scholar] [CrossRef]
- Begum, S.; Nizami, S.S.; Mahmood, U.; Masood, S.; Iftikhar, S.; Saied, S.; Masood, S. In-vitro evaluation and in-silico studies applied on newly synthesized amide derivatives of N-phthaloylglycine as Butyrylcholinesterase (BChE) inhibitors. Comput. Boil. Chem. 2018, 74, 212–217. [Google Scholar] [CrossRef]
- Ranjan, A.; Chauhan, A.; Jindal, T. In-silico and in-vitro evaluation of human acetylcholinesterase inhibition by organophosphates. Environ. Toxicol. Pharmacol. 2017, 57, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Abdulfatai, U.; Uba, S.; Umar, B.A.; Ibrahim, M.T. Molecular design and docking analysis of the inhibitory activities of some α_substituted acetamido-N-benzylacetamide as anticonvulsant agents. SN Appl. Sci. 2019, 1, 499. [Google Scholar] [CrossRef] [Green Version]
- Zainol, N.A.; Voo, S.C.; Sarmidi, M.R.; Aziz, R.A. Profiling of centella asiatica (L.) Urban extract. Malays. J. Anal. Sci. 2008, 12, 322–327. [Google Scholar]
- Zainol, M.; Abd-Hamid, A.; Yusof, S.; Muse, R. Antioxidative activity and total phenolic compounds of leaf, root and petiole of four accessions of Centella asiatica (L.) Urban. Food Chem. 2003, 81, 575–581. [Google Scholar] [CrossRef]
- Singh, J.; Sangwan, N.S.; Gupta, S.; Saxena, S.; Sangwan, N.S. Profiling of triterpenoid saponin content variation in different chemotypic accessions of Centella asiatica L. Plant Genet. Resour. 2014, 13, 176–179. [Google Scholar] [CrossRef]
- Kundu, S.; Haque, S.M.; Ghosh, B. Comparative analysis of bioactive compounds in different habitat of Centella asiatica (L.) Urban: Application for in vitro clonal propagationof elite ecotype. J. Appl. Pharm. Sci. 2015, 5, 30–36. [Google Scholar]
- Zhang, X.-G.; Han, T.; He, Z.-G.; Zhang, Q.-Y.; Zhang, L.; Rahman, K.; Qin, L.-P. Genetic diversity of Centella asiatica in China analyzed by inter-simple sequence repeat (ISSR) markers: Combination analysis with chemical diversity. J. Nat. Med. 2011, 66, 241–247. [Google Scholar] [CrossRef]
- Tan, S.-H. Morphological and biochemical characteristics on different accession of pegaga. Indian J. Sci. Technol. 2017, 10, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Meeran, M.F.N.; Goyal, S.N.; Suchal, K.; Sharma, C.; Patil, C.R.; Ojha, S. Pharmacological properties, molecular mechanisms, and pharmaceutical development of asiatic acid: A pentacyclic triterpenoid of therapeutic promise. Front. Pharmacol. 2018, 9, 892. [Google Scholar] [CrossRef] [PubMed]
- Yulianti, L.; Bramono, K.; Freisleben, H.J. In silico molecular modeling and docking studies of Aquaporin-3 with Centella asiatica active compound. Int. J. Pharm. Sci. Scient. Res. 2017, 3, 71–73. [Google Scholar]
- Hashim, P.; Sidek, H.; Helan, M.H.M.; Sabery, A.; Palanisamy, U.D.; Ilham, M. Triterpene composition and bioactivities of centella asiatica. Molecules 2011, 16, 1310–1322. [Google Scholar] [CrossRef] [PubMed]
- Aziz, Z.A.; Davey, M.R.; Power, J.B.; Anthony, P.; Smith, R.; Lowe, K.C. Production of asiaticoside and madecassoside in Centella asiatica in vitro and in vivo. Boil. Plant. 2007, 51, 34–42. [Google Scholar] [CrossRef]
- Wagle, A.; Seong, S.H.; Castro, M.J.; Faraoni, M.B.; Murray, A.P.; Jung, H.A.; Choi, J.S. Influence of functional moiety in lupane-type triterpenoids in BACE1 inhibition. Comput. Boil. Chem. 2019, 83, 107101. [Google Scholar] [CrossRef]
- James, J.T.; Dubery, I.A. Pentacyclic triterpenoids from the medicinal herb, Centella asiatica (L.) Urban. Molecules 2009, 14, 3922–3941. [Google Scholar] [CrossRef] [Green Version]
- Dhananjayan, K.; Sumathy, A.; Palanisamy, S. Molecular docking studies and in-vitro acetylcholinesterase inhibition by terpenoids and flavonoids. Asian J. Res. Chem. 2013, 6, 1011–1017. [Google Scholar]
- Lee, S.; Youn, K.; Lim, G.; Lee, J.; Jun, M. In silico docking and in vitro approaches towards BACE1 and cholinesterases inhibitory effect of citrus flavanones. Molecules 2018, 23, 1509. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Zhang, H.; Sun, F.; Sun, S.; Zhu, Z.; Chai, Y. Biopharmaceutical and pharmacokinetic characterization of asiatic acid in Centella asiatica as determined by a sensitive and robust HPLC–MS method. J. Ethnopharmacol. 2015, 163, 31–38. [Google Scholar] [CrossRef]
- Neagu, E.; Radu, G.L.; Albu, C.; Paun, G. Antioxidant activity, acetylcholinesterase and tyrosinase inhibitory potential of Pulmonaria officinalis and Centarium umbellatum extracts. Saudi J. Boil. Sci. 2018, 25, 578–585. [Google Scholar] [CrossRef] [Green Version]
- Arora, R.; Kumar, R.; Agarwal, A.; Reeta, K.; Gupta, Y. Comparison of three different extracts of Centella asiatica for anti-amnesic, antioxidant and anticholinergic activities: In vitro and in vivo study. Biomed. Pharmacother. 2018, 105, 1344–1352. [Google Scholar] [CrossRef] [PubMed]
- Moraga-Nicolás, F.; Jara, C.; Godoy, R.; Iturriaga-Vásquez, P.; Venthur, H.; Quiroz, A.; Becerra, J.; Mutis, A.; Hormazábal, E. Rhodolirium andicola: A new renewable source of alkaloids with acetylcholinesterase inhibitory activity, a study from nature to molecular docking. Rev. Bras. Farm. 2018, 28, 34–43. [Google Scholar] [CrossRef]
- Legiawati, L.; Fadilah, F.; Bramono, K.; Indriatmi, W. In silico study of Centella asiatica active compounds as anti-inflammatory agent by decreasing Il-1 and Il-6 activity, promoting Il-4 activity. J. Pharm. Sci. Res. 2018, 10, 2142–2147. [Google Scholar]
- Kua, J.; Zhang, Y.; Eslami, A.C.; Butler, J.R.; McCammon, J.A. Studying the roles of W86, E202, and Y337 in binding of acetylcholine to acetylcholinesterase using a combined molecular dynamics and multiple docking approach. Protein Sci. 2003, 12, 2675–2684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranjan, A.; Ghosh, S.; Chauhan, A.; Jindal, T. Molecular docking and site directed mutagenic approach to investigate the role of Trp86 of human acetylcholinesterase with organophosphates. Int. J. Pharm. Sci. Res. 2016, 7, 3802. [Google Scholar]
- Tallini, L.R.; Osorio, E.; Dos Santos, V.D.; Borges, W.D.S.; Kaiser, M.; Viladomat, F.; Zuanazzi, J.A.S.; Bastida, J. Hippeastrum reticulatum (amaryllidaceae): Alkaloid Profiling, Biological Activities and Molecular Docking. Molecules 2017, 22, 2191. [Google Scholar] [CrossRef] [Green Version]
- Rafamantanana, M.H.; Rozet, E.; Raoelison, G.; Cheuk, K.; Ratsimamanga, S.; Hubert, P.; Leclercq, J.Q. An improved HPLC-UV method for the simultaneous quantification of triterpenic glycosides and aglycones in leaves of Centella asiatica (L.) Urb (APIACEAE). J. Chromatogr. B 2009, 877, 2396–2402. [Google Scholar] [CrossRef] [PubMed]
- Osama, A.; Awadelkarim, S.; Ali, A. Antioxidant activity, acetylcholinesterase inhibitory potential and phytochemical analysis of Sarcocephalus latifolius Sm. bark used in traditional medicine in Sudan. BMC Complement. Altern. Med. 2017, 17, 270. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Samples of the compounds are not available. |
Accessions | Characteristics | |
---|---|---|
CA-K017 | Known as pegaga kampung Green colour Glabrous stem Crenate with dentate base Mean leaves diameter: 2.88 ± 0.03 cm | |
CA-K018 | Known as pegaga daun lebar Glabrous stem Dark green colour Crenate leaves Mean leaves diameter: 7.57 ± 0.14 cm | |
CA-K019 | Known as pegaga nyonya Glabrous stem Light green colour Crenulate Mean leaves diameter: 4.17 ± 0.05 cm |
Accessions | Extracts | Yield of Extraction (%) |
---|---|---|
CA-K017 | SECA-K017 | 9.80 |
CA-K018 | SECA-K018 | 56.00 |
CA-K019 | SECA-K019 | 12.30 |
Triterpenes Compounds | Peak | Retention Time, min | Concentration of Triterpenes in CA Accessions ± SEM (mg/g) | ||
---|---|---|---|---|---|
SECA-K017 | SECA-K018 | SECA-K019 | |||
Madecassoside | 1 | 9.395 | 239.23 | 179.64 | 252.67 |
Asiaticoside | 2 | 11.709 | 190.37 | 105.71 | 139.46 |
Madecassic acid | 3 | 22.679 | 114.51 | 112.82 | 57.88 |
Asiatic acid | 4 | 25.925 | 122.1 | 132.26 | 103.51 |
Compounds/Extracts | IC50 Values (µg/mL) |
---|---|
Madecassoside | 37.14 ± 0.04 |
Asiaticoside | 59.13 ± 0.18 |
Madecassic acid | 17.83 ± 0.06 |
Asiatic acid | 15.05 ± 0.05 |
SECA-K017 | 481.5 ± 0.13 |
SECA-K018 | 763.5 ± 0.16 |
SECA-K019 | >1000 |
Eserine | 0.05 ± 0.12 |
Compounds | Binding Energy (Kcal·mol−1) |
---|---|
Madecassoside | 81.61 |
Asiaticoside | 41.72 |
Madecassic acid | −8.7 |
Asiatic acid | −10.27 |
Eserine | −9.4 |
Time (min) | Pump A, Water (%) | Pump B, Acetonitrile (%) |
---|---|---|
0 | 80 | 20 |
15 | 65 | 35 |
30 | 35 | 65 |
35 | 20 | 80 |
40 | 20 | 80 |
45 | 80 | 20 |
55 | 80 | 20 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jusril, N.A.; Muhamad Juhari, A.N.N.; Abu Bakar, S.I.; Md Saad, W.M.; Adenan, M.I. Combining In Silico and In Vitro Studies to Evaluate the Acetylcholinesterase Inhibitory Profile of Different Accessions and the Biomarker Triterpenes of Centella asiatica. Molecules 2020, 25, 3353. https://doi.org/10.3390/molecules25153353
Jusril NA, Muhamad Juhari ANN, Abu Bakar SI, Md Saad WM, Adenan MI. Combining In Silico and In Vitro Studies to Evaluate the Acetylcholinesterase Inhibitory Profile of Different Accessions and the Biomarker Triterpenes of Centella asiatica. Molecules. 2020; 25(15):3353. https://doi.org/10.3390/molecules25153353
Chicago/Turabian StyleJusril, Nor Atiqah, Ain Nur Najihah Muhamad Juhari, Syahrul Imran Abu Bakar, Wan Mazlina Md Saad, and Mohd Ilham Adenan. 2020. "Combining In Silico and In Vitro Studies to Evaluate the Acetylcholinesterase Inhibitory Profile of Different Accessions and the Biomarker Triterpenes of Centella asiatica" Molecules 25, no. 15: 3353. https://doi.org/10.3390/molecules25153353
APA StyleJusril, N. A., Muhamad Juhari, A. N. N., Abu Bakar, S. I., Md Saad, W. M., & Adenan, M. I. (2020). Combining In Silico and In Vitro Studies to Evaluate the Acetylcholinesterase Inhibitory Profile of Different Accessions and the Biomarker Triterpenes of Centella asiatica. Molecules, 25(15), 3353. https://doi.org/10.3390/molecules25153353