Fatty Acid Allosteric Regulation of C-H Activation in Plant and Animal Lipoxygenases
Abstract
:1. Introduction
2. Structures of Lipoxygenases
2.1. Catalytic Domain
2.2. PLAT Domain
3. The Lipoxygenase Reaction
3.1. General Mechanism
3.2. C-H Activation by Tunneling
3.3. Second-Order KIEs Indicate Substrate Binding as Partial Rate-Limiting at Lower Temperatures
4. Allosteric Regulation by Fatty Acids and Their Derivatives
4.1. Control of Rate-Limiting Steps
4.2. Change in Substrate Preference and Product Distribution
5. Location of the Fatty Acid Allosteric Site
5.1. Kinetic Properties of PLAT-deficient LOXs: Implications for the PLAT Domain
5.1.1. Effect of Removal of PLAT Domain of h15-LOX-2
5.1.2. Kinetic and Structural Studies of Fungal LOXs
5.2. Identification of pKa in Effector Binding: Putative Role for Histidine
5.3. Docking Model
6. Long-Range Allosteric Network
6.1. Multi-Temperature HDX-MS
6.2. Role of a Cation-π at the Domain Intersection
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Brash, A.R. Lipoxygenases: Occurrence, functions, catalysis, and acquisition of substrate. J. Biol. Chem. 1999, 274, 23679–23682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grechkin, A.N. Recent developments in biochemistry of the plant lipoxygenase pathway. Prog. Lipid Res. 1998, 37, 317–352. [Google Scholar] [CrossRef]
- Ivanov, I.; Heydeck, D.; Hofheinz, K.; Roffeis, J.; O’Donnell, V.; Kuhn, H.; Walther, M. Molecular enzymology of lipoxygenases. Arch. Biochem. Biophys. 2010, 503, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Oliw, E.H. Plant and fungal lipoxygenases. Prostag. Other Lipid Mediat. 2002, 68, 313–323. [Google Scholar] [CrossRef]
- Kuhn, H.; Banthiya, S.; Van Leyen, K. Mammalian lipoxygenases and their biological relevance. Biochim. Biophys. Acta 2015, 1851, 308–330. [Google Scholar] [CrossRef]
- Serhan, C.N.; Petasis, N.A. Resolvins and protectins in inflammation resolution. Chem. Rev. 2011, 111, 5922–5943. [Google Scholar] [CrossRef] [Green Version]
- Werner, M.; Jordan, P.M.; Romp, E.; Czapka, A.; Rao, Z.; Kretzer, C.; Koeberle, A.; Garscha, U.; Pace, S.; Claesson, H.-E.; et al. Targeting biosynthetic networks of the proinflammatory and proresolving lipid metabolome. FASEB J. 2019, 33, 6140–6153. [Google Scholar] [CrossRef]
- Yeung, J.; Hawley, M.; Holinstat, M. The expansive role of oxylipins on platelet biology. J. Mol. Med. 2017, 95, 575–588. [Google Scholar] [CrossRef] [Green Version]
- Newcomer, M.E.; Brash, A.R. The structural basis for specificity in lipoxygenase catalysis. Protein Sci. 2015, 24, 298–309. [Google Scholar] [CrossRef] [Green Version]
- Berger, W.; De Chandt, M.T.M.; Cairns, C.B. Zileuton: Clinical implications of 5-Lipoxygenase inhibition in severe airway disease. Int. J. Clin. Pr. 2007, 61, 663–676. [Google Scholar] [CrossRef]
- Luci, D.K.; Jameson, J.B.; Yasgar, A.; Diaz, G.; Joshi, N.; Kantz, A.; Markham, K.; Perry, S.; Kuhn, N.; Yeung, J.; et al. Synthesis and structure–activity relationship studies of 4-((2-hydroxy-3-methoxybenzyl)amino)benzenesulfonamide derivatives as potent and selective inhibitors of 12-lipoxygenase. J. Med. Chem. 2014, 57, 495–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, G.; Joshi, N.; Jung, J.E.; Liu, Y.; Schultz, L.; Yasgar, A.; Perry, S.; Diaz, G.; Zhang, Q.; Kenyon, V.; et al. Potent and selective inhibitors of human reticulocyte 12/15-lipoxygenase as anti-stroke therapies. J. Med. Chem. 2014, 57, 4035–4048. [Google Scholar] [CrossRef] [PubMed]
- Rai, G.; Jadhav, A.; Schultz, L.; Kenyon, V.; Leister, W.; Simeonov, A.; Holman, T.R.; Maloney, D.J. Probe Reports from the NIH Molecular Libraries Program; Bethesda: Rockville, MD, USA, 2011. [Google Scholar]
- Rai, G.; Kenyon, V.; Jadhav, A.; Schultz, L.; Armstrong, M.; Jameson, I.J.B.; Hoobler, E.; Leister, W.; Simeonov, A.; Holman, T.R.; et al. Discovery of potent and selective inhibitors of human reticulocyte 15-lipoxygenase-1. J. Med. Chem. 2010, 53, 7392–7404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinstein, D.S.; Liu, W.; Ngu, K.; Langevine, C.; Combs, D.W.; Zhuang, S.; Chen, C.; Madsen, C.S.; Harper, T.W.; Robl, J.A. Discovery of selective imidazole-based inhibitors of mammalian 15-lipoxygenase: Highly potent against human enzyme within a cellular environment. Bioorg. Med. Chem. Lett. 2007, 17, 5115–5120. [Google Scholar] [CrossRef] [PubMed]
- Ngu, K.; Weinstein, D.S.; Liu, W.; Langevine, C.; Combs, D.W.; Zhuang, S.; Chen, X.; Madsen, C.S.; Harper, T.W.; Ahmad, S.; et al. Pyrazole-based sulfonamide and sulfamides as potent inhibitors of mammalian 15-lipoxygenase. Bioorg. Med. Chem. Lett. 2011, 21, 4141–4145. [Google Scholar] [CrossRef] [PubMed]
- Pelcman, B.; Sanin, A.; Nilsson, P.; No, K.; Schaal, W.; Öhrman, S.; Krog-Jensen, C.; Forsell, P.; Hallberg, A.; Larhed, M.; et al. 3-Substituted pyrazoles and 4-substituted triazoles as inhibitors of human 15-lipoxygenase-1. Bioorg. Med. Chem. Lett. 2015, 25, 3024–3029. [Google Scholar] [CrossRef]
- Eleftheriadis, N.; Poelman, H.; Leus, N.G.J.; Honrath, B.; Neochoritis, C.G.; Dolga, A.M.; Dömling, A.; Dekker, F.J. Design of a novel thiophene inhibitor of 15-lipoxygenase-1 with both anti-inflammatory and neuroprotective properties. Eur. J. Med. Chem. 2016, 122, 786–801. [Google Scholar] [CrossRef] [Green Version]
- Eleftheriadis, N.; Thee, S.; Biesebeek, J.T.; Van Der Wouden, P.; Baas, B.-J.; Dekker, F.J. Identification of 6-benzyloxysalicylates as a novel class of inhibitors of 15-lipoxygenase-1. Eur. J. Med. Chem. 2015, 94, 265–275. [Google Scholar] [CrossRef]
- Prigge, S.T.; Boyington, J.C.; Gaffney, B.J.; Amzel, L.M. Structure conservation in lipoxygenases: Structural analysis of soybean lipoxygenase-1 and modeling of human lipoxygenases. Proteins Struct. Funct. Bioinform. 1996, 24, 275–291. [Google Scholar] [CrossRef]
- Horitani, M.; Offenbacher, A.R.; Carr, C.A.M.; Yu, T.; Hoeke, V.; Cutsail, G.E.; Hammes-Schiffer, S.; Klinman, J.P.; Hoffman, B.M. 13C ENDOR spectroscopy of lipoxygenase–substrate complexes reveals the structural basis for C–H activation by tunneling. J. Am. Chem. Soc. 2017, 139, 1984–1997. [Google Scholar] [CrossRef]
- Boyington, J.; Gaffney, B.; Amzel, L.M. The three-dimensional structure of an arachidonic acid 15-lipoxygenase. Science 1993, 260, 1482–1486. [Google Scholar] [CrossRef] [PubMed]
- Minor, W.; Steczko, J.; Bolin, J.T.; Otwinowski, Z.; Axelrod, B. Crystallographic determination of the active site iron and its ligands in soybean lipoxygenase L-1. Biochemistry 1993, 32, 6320–6323. [Google Scholar] [CrossRef] [PubMed]
- Minor, W.; Steczko, J.; Stec, B.; Otwinowski, Z.; Bolin, J.T.; Walter, R.; Axelrod, B. Crystal structure of soybean lipoxygenase L-1 at 1.4 Å resolution. Biochemistry 1996, 35, 10687–10701. [Google Scholar] [CrossRef] [PubMed]
- Tomchick, D.R.; Phan, P.; Cymborowski, M.; Minor, W.; Holman, T.R. Structural and functional characterization of second-coordination sphere mutants of soybean lipoxygenase-1. Biochemistry 2001, 40, 7509–7517. [Google Scholar] [CrossRef]
- Meyer, M.P.; Tomchick, D.R.; Klinman, J.P. Enzyme structure and dynamics affect hydrogen tunneling: The impact of a remote side chain (I553) in soybean lipoxygenase-1. Proc. Natl. Acad. Sci. USA 2008, 105, 1146–1151. [Google Scholar] [CrossRef] [Green Version]
- Offenbacher, A.R.; Hu, S.; Poss, E.M.; Carr, C.A.M.; Scouras, A.D.; Prigozhin, D.M.; Iavarone, A.T.; Palla, A.; Alber, T.; Fraser, J.S.; et al. Hydrogen–deuterium exchange of lipoxygenase uncovers a relationship between distal, solvent exposed protein motions and the thermal activation barrier for catalytic proton-coupled electron tunneling. ACS Cent. Sci. 2017, 3, 570–579. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Offenbacher, A.R.; Thompson, E.M.; Gee, C.L.; Wilcoxen, J.; Carr, C.A.M.; Prigozhin, D.M.; Yang, V.; Alber, T.; Hu, Y.; et al. Biophysical characterization of a disabled double mutant of soybean lipoxygenase: the “undoing” of precise substrate positioning relative to metal cofactor and an identified dynamical network. J. Am. Chem. Soc. 2019, 141, 1555–1567. [Google Scholar] [CrossRef]
- Skrzypczak-Jankun, E.; Bross, R.A.; Carroll, R.T.; Dunham, W.R.; Funk, M.O. Three-dimensional structure of a purple lipoxygenase. J. Am. Chem. Soc. 2001, 123, 10814–10820. [Google Scholar] [CrossRef]
- Hatcher, E.; Soudackov, A.; Hammes-Schiffer, S. Proton-coupled electron transfer in soybean lipoxygenase. J. Am. Chem. Soc. 2004, 126, 5763–5775. [Google Scholar] [CrossRef]
- Coffa, G.; Imber, A.N.; Maguire, B.C.; Laxmikanthan, G.; Schneider, C.; Gaffney, B.J.; Brash, A.R. On the relationships of substrate orientation, hydrogen abstraction, and product stereochemistry in single and double dioxygenations by soybean lipoxygenase-1 and its Ala542Gly mutant. J. Biol. Chem. 2005, 280, 38756–38766. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Gaffney, B.J. Dynamic behavior of fatty acid spin labels within a binding site of soybean lipoxygenase-1. Biochemistry 2006, 45, 12510–12518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hershelman, D.; Kahler, K.M.; Price, M.J.; Lu, I.; Fu, Y.; Plumeri, P.A.; Karaisz, F.; Bassett, N.F.; Findeis, P.M.; Clapp, C.H. Oxygenation reactions catalyzed by the F557V mutant of soybean lipoxygenase-1: Evidence for two orientations of substrate binding. Arch. Biochem. Biophys. 2019, 674, 108082. [Google Scholar] [CrossRef] [PubMed]
- Gaffney, B.J.; Bradshaw, M.D.; Frausto, S.D.; Wu, F.; Freed, J.H.; Borbat, P. Locating a lipid at the portal to the lipoxygenase active site. Biophys. J. 2012, 103, 2134–2144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaffney, B.J. Connecting lipoxygenase function to structure by electron paramagnetic resonance. Acc. Chem. Res. 2014, 47, 3588–3595. [Google Scholar] [CrossRef]
- Bradshaw, M.D.; Gaffney, B.J. Fluctuations of an exposed π-helix involved in lipoxygenase substrate recognition. Biochemistry 2014, 53, 5102–5110. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, N.C.; Bartlett, S.G.; Waight, M.T.; Neau, D.B.; Boeglin, W.E.; Brash, A.R.; Newcomer, M.E. The structure of human 5-lipoxygenase. Science 2011, 331, 217–219. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, N.C.; Gerstmeier, J.; Schexnaydre, E.E.; Börner, F.; Garscha, U.; Neau, D.B.; Werz, O.; Newcomer, M.E. Structural and mechanistic insights into 5-lipoxygenase inhibition by natural products. Nat. Chem. Biol. 2020, 16, 783–790. [Google Scholar] [CrossRef]
- Mitra, S.; Bartlett, S.G.; Newcomer, M.E. Identification of the substrate access portal of 5-lipoxygenase. Biochemistry 2015, 54, 6333–6342. [Google Scholar] [CrossRef] [Green Version]
- Kobe, M.J.; Neau, D.B.; Mitchell, C.E.; Bartlett, S.G.; Newcomer, M.E. The structure of human 15-lipoxygenase-2 with a substrate mimic. J. Biol. Chem. 2014, 289, 8562–8569. [Google Scholar] [CrossRef] [Green Version]
- Neau, D.B.; Bender, G.; Boeglin, W.E.; Bartlett, S.G.; Brash, A.R.; Newcomer, M.E. Crystal structure of a lipoxygenase in complex with substrate. J. Biol. Chem. 2014, 289, 31905–31913. [Google Scholar] [CrossRef] [Green Version]
- Sigal, E.; Craik, C.S.; Highland, E.; Grunberger, D.; Costello, L.L.; Dixon, R.A.; Nadel, J.A. Molecular cloning and primary structure of human 15-lipoxygenase. Biochem. Biophys. Res. Commun. 1988, 157, 457–464. [Google Scholar] [CrossRef]
- Knapp, M.J.; Rickert, K.; Klinman, J.P. Temperature-dependent isotope effects in soybean lipoxygenase-1: Correlating hydrogen tunneling with protein dynamics. J. Am. Chem. Soc. 2002, 124, 3865–3874. [Google Scholar] [CrossRef] [PubMed]
- Aleem, A.M.; Tsai, W.-C.; Tena, J.; Alvarez, G.; Deschamps, J.; Kalyanaraman, C.; Jacobson, M.P.; Holman, T.R. Probing the electrostatic and steric requirements for substrate binding in human platelet-type 12-lipoxygenase. Biochemistry 2018, 58, 848–857. [Google Scholar] [CrossRef] [PubMed]
- Nalefski, E.A.; Falke, J.J. The C2 domain calcium-binding motif: Structural and functional diversity. Protein Sci. 1996, 5, 2375–2390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Aravind, L. Identification of novel families and classification of the C2 domain superfamily elucidate the origin and evolution of membrane targeting activities in eukaryotes. Gene 2010, 469, 18–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulkarni, S.; Das, S.; Funk, C.; Murray, D.; Cho, W. Molecular basis of the specific subcellular localization of the C2-like domain of 5-lipoxygenase. J. Biol. Chem. 2002, 277, 13167–13174. [Google Scholar] [CrossRef] [Green Version]
- Maccarrone, M.; Salucci, M.L.; Van Zadelhoff, G.; Malatesta, F.; Veldink, G.; Vliegenthart, J.F.G.; Finazzi-Agrò, A. Tryptic digestion of soybean lipoxygenase-1 generates a 60 kDa fragment with improved activity and membrane binding ability. Biochemistry 2001, 40, 6819–6827. [Google Scholar] [CrossRef] [Green Version]
- Di Venere, A.; Van Zadelhoff, G.; Veldink, G.; Agrò, A.F.; Salucci, M.L.; Mei, G.; Rosato, N.; Maccarrone, M. Structure-to-function relationship of mini-lipoxygenase, a 60-kDa fragment of soybean lipoxygenase-1 with lower stability but higher enzymatic activity. J. Biol. Chem. 2003, 278, 18281–18288. [Google Scholar] [CrossRef] [Green Version]
- Walther, M.; Hofheinz, K.; Vogel, R.; Roffeis, J.; Kuhn, H.C. The N-terminal beta-barrel domain of mammalian lipoxygenases including mouse 5-lipoxygenase is not essential for catalytic activity and membrane binding but exhibits regulator functions. Arch. Biochem. Biophys. 2011, 516, 1–9. [Google Scholar] [CrossRef]
- Ryge, M.R.; Tanabe, M.; Provost, P.; Persson, B.; Chen, X.; Funk, C.; Rinaldo-Matthis, A.; Hofmann, B.; Steinhilber, D.; Watanabe, T.; et al. A mutation interfering with 5-lipoxygenase domain interaction leads to increased enzyme activity. Arch. Biochem. Biophys. 2014, 545, 179–185. [Google Scholar] [CrossRef]
- Hammarberg, T.; Provost, P.; Persson, B.; Rådmark, O. The N-terminal domain of 5-ipoxygenase binds calcium and mediates calcium stimulation of enzyme activity. J. Biol. Chem. 2000, 275, 38787–38793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oldham, M.L.; Brash, A.R.; Newcomer, M.E. Insights from the X-ray crystal structure of coral 8R-lipoxygenase: Calcium activation via a C2-like domain and a structural basis of product chirality. J. Biol. Chem. 2005, 280, 39545–39552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eek, P.; Järving, R.; Järving, I.; Gilbert, N.C.; Newcomer, M.E.; Samel, N. Structure of a calcium-dependent 11R-lipoxygenase suggests a mechanism for Ca2+ regulation. J. Biol. Chem. 2012, 287, 22377–22386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bender, G.; Schexnaydre, E.E.; Murphy, R.C.; Uhlson, C.; Newcomer, M.E. Membrane-dependent activities of human 15-LOX-2 and its murine counterpart. J. Biol. Chem. 2016, 291, 19413–19424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Droege, K.D.; Keithly, M.E.; Sanders, C.R.; Armstrong, R.N.; Thompson, M.K. Structural dynamics of 15-lipoxygenase-2 via hydrogen–deuterium exchange. Biochemistry 2017, 56, 5065–5074. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, G.L.; Snyder, H.E. Role of calcium in activating soybean lipoxygenase 2. J. Agr. Food Chem. 1974, 22, 802–805. [Google Scholar] [CrossRef]
- Tatulian, S.A.; Steczko, J.; Minor, W. Uncovering a calcium-regulated membrane-binding mechanism for soybean lipoxygenase-1. Biochemistry 1998, 37, 15481–15490. [Google Scholar] [CrossRef]
- Klinman, J.P.; Offenbacher, A.R.; Hu, S. Origins of enzyme catalysis: Experimental findings for C–H activation, new models, and their relevance to prevailing theoretical constructs. J. Am. Chem. Soc. 2017, 139, 18409–18427. [Google Scholar] [CrossRef]
- Lehnert, N.; Solomon, E.I. Density-functional investigation on the mechanism of H-atom abstraction by lipoxygenase. J. Biol. Inorg. Chem. 2003, 8, 294–305. [Google Scholar] [CrossRef]
- Dainese, E.; Angelucci, C.B.; Sabatucci, A.; De Filippis, V.; Mei, G.; Maccarrone, A.M. A novel role for iron in modulating the activity and membrane-binding ability of a trimmed soybean lipoxygenase-1. FASEB J. 2010, 24, 1725–1736. [Google Scholar] [CrossRef]
- Newie, J.; Kasanmascheff, M.; Bennati, M.; Feussner, I. Kinetics of bis-allylic hydroperoxide synthesis in the iron-containing lipoxygenase 2 from Cyanothece and the effects of manganese substitution. Lipids 2016, 51, 335–347. [Google Scholar] [CrossRef] [PubMed]
- De Groot, J.; Veldink, G.; Vliegenthart, J.; Boldingh, J.; Wever, R.; Van Gelder, B. Demonstration by EPR spectroscopy of the functional role of iron in soybean lipoxygenase-1. Biochim. Biophys. Acta 1975, 377, 71–79. [Google Scholar] [CrossRef]
- Jones, G.D.; Russell, L.; Darley-Usmar, V.M.; Stone, A.D.; Wilson, M.T. Role of lipid hydroperoxides in the activation of 15-ipoxygenase. Biochemistry 1996, 35, 7197–7203. [Google Scholar] [CrossRef] [PubMed]
- Samuelsson, B.; Dahlen, S.; Lindgren, J.; Rouzer, C.; Serhan, C. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science 1987, 237, 1171–1176. [Google Scholar] [CrossRef] [PubMed]
- Liavonchanka, A.; Feussner, I. Lipoxygenases: Occurrence, functions and catalysis. J. Plant Physiol. 2006, 163, 348–357. [Google Scholar] [CrossRef] [PubMed]
- Coffa, G.; Brash, A.R. A single active site residue directs oxygenation stereospecificity in lipoxygenases: Stereocontrol is linked to the position of oxygenation. Proc. Natl. Acad. Sci. USA 2004, 101, 15579–15584. [Google Scholar] [CrossRef] [Green Version]
- Collazo, L.; Klinman, J.P. Control of the position of oxygen delivery in soybean lipoxygenase-1 by amino acid side chains within a gas migration channel. J. Biol. Chem. 2016, 291, 9052–9059. [Google Scholar] [CrossRef] [Green Version]
- Bollinger, J.M., Jr.; Broderick, J.B. Frontiers in enzymatic C-H activation. Curr. Opin. Chem. Biol. 2009, 13, 51–57. [Google Scholar] [CrossRef]
- Stone, K.L.; Borovik, A.S. Lessons from nature: Unraveling biological C-H bond activation. Curr. Opin. Chem. Biol. 2009, 13, 114–118. [Google Scholar] [CrossRef] [Green Version]
- Khaliullin, B.; Ayikpoe, R.; Tuttle, M.; Latham, J.A. Mechanistic elucidation of the mycofactocin-biosynthetic radical S-adenosylmethionine protein, MftC. J. Biol. Chem. 2017, 292, 13022–13033. [Google Scholar] [CrossRef] [Green Version]
- Bauerle, M.R.; Schwalm, E.L.; Booker, S.J. Mechanistic diversity of radical S-adenosylmethionine (SAM)-dependent methylation. J. Biol. Chem. 2014, 290, 3995–4002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Groves, J.T. Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and C-H activation. J. Biol. Inorg. Chem. 2016, 22, 185–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barr, I.; Latham, J.A.; Iavarone, A.T.; Chantarojsiri, T.; Hwang, J.D.; Klinman, J.P. Demonstration that the radical S-adenoxylmethionine (SAM) enzyme PqqE catalyzes de novo carbon-carbon cross-linking within a peptide substrate PqqA in the presence of the peptide chaperone PqqD. J. Biol. Chem. 2016, 291, 8877–8884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schramma, K.R.; Bushin, L.B.; Seyedsayamdost, M.R. Structure and biosynthesis of a macrocyclic peptide containing an unprecedented lysine-to-tryptophan crosslink. Nat. Chem. 2015, 7, 431–437. [Google Scholar] [CrossRef] [PubMed]
- Nakai, T.; Ito, H.; Kobayashi, K.; Takahashi, Y.; Hori, H.; Tsubaki, M.; Tanizawa, K.; Okajima, T. The radical S-adenosyl-L-methonine enzyme QhpD catalyzes sequential formation of intra-protein sulfur-to-methylene carbon thioether bonds. J. Biol. Chem. 2015, 290, 11144–11166. [Google Scholar] [CrossRef] [Green Version]
- Hudson, G.A.; Burkhart, B.J.; DiCaprio, A.J.; Schwalen, C.J.; Kille, B.; Pogorelov, T.V.; Mitchell, D.A. Bioinformatic mapping of radical S-adenosylmethionine-dependent ribosomally synthesized and post-translationally modified peptides identifies new Cα, Cβ, and Cγ-linked thioether-containing peptides. J. Am. Chem. Soc. 2019, 141, 8228–8238. [Google Scholar] [CrossRef]
- Klinman, J.P. A new model for the origin of kinetic hydrogen isotope effects. J. Phys. Org. Chem. 2010, 23, 606–612. [Google Scholar] [CrossRef]
- Glickman, M.H.; Wiseman, J.S.; Klinman, J.P. Extremely large isotope effects in the soybean lipoxygenase-linoleic acid reaction. J. Am. Chem. Soc. 1994, 116, 793–794. [Google Scholar] [CrossRef]
- Su, C.; Sahlin, M.; Oliw, E.H. Kinetics of manganese lipoxygenase with a catalytic mononuclear redox center. J. Biol. Chem. 2000, 275, 18830–18835. [Google Scholar] [CrossRef] [Green Version]
- Wecksler, A.T.; Kenyon, V.; Garcia, N.K.; Deschamps, J.D.; Van Der Donk, W.A.; Holman, T.R. Kinetic and structural investigations of the allosteric site in human epithelial 15-lipoxygenase-2. Biochemistry 2009, 48, 8721–8730. [Google Scholar] [CrossRef] [Green Version]
- Carr, C.A.M.; Klinman, J.P. Hydrogen tunneling in a prokaryotic lipoxygenase. Biochemistry 2014, 53, 2212–2214. [Google Scholar] [CrossRef] [PubMed]
- Kostenko, A.; Ray, K.; Iavarone, A.T.; Offenbacher, A.R. Kinetic characterization of the C–H activation step for the lipoxygenase from the pathogenic fungus Magnaporthe oryzae: Impact of N-linked glycosylation. Biochemistry 2019, 58, 3193–3203. [Google Scholar] [CrossRef] [PubMed]
- Klinman, J.P.; Offenbacher, A.R. Understanding biological hydrogen transfer through the lens of temperature dependent kinetic isotope effects. Acc. Chem. Res. 2018, 51, 1966–1974. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Van Der Donk, W.A. An unusual isotope effect on substrate inhibition in the oxidation of arachidonic acid by lipoxygenase. J. Am. Chem. Soc. 2003, 125, 8988–8989. [Google Scholar] [CrossRef]
- Glickman, M.; Klinman, J.P. Lipoxygenase reaction mechanism: Demonstration that hydrogen abstraction from substrate precedes dioxygen binding during catalytic turnover. Biochemistry 1996, 35, 12882–12892. [Google Scholar] [CrossRef]
- Knapp, M.J.; Klinman, J.P. Kinetic studies of oxygen reactivity in soybean lipoxygenase-1. Biochemistry 2003, 42, 11466–11475. [Google Scholar] [CrossRef]
- Jonsson, T.; Glickman, M.H.; Sun, S.; Klinman, J.P. Experimental evidence for extensive tunneling of hydrogen in the lipoxygenase reaction: implications for enzyme catalysis. J. Am. Chem. Soc. 1996, 118, 10319–10320. [Google Scholar] [CrossRef]
- Glickman, M.H.; Klinman, J.P. Nature of rate-limiting steps in the soybean lipoxygenase-1 reaction. Biochemistry 1995, 34, 14077–14092. [Google Scholar] [CrossRef]
- Rickert, K.W.; Klinman, J.P. Nature of hydrogen transfer in soybean lipoxygenase 1: Separation of primary and secondary isotope effects. Biochemistry 1999, 38, 12218–12228. [Google Scholar] [CrossRef]
- Soudackov, A.V.; Hammes-Schiffer, S. Proton-coupled electron transfer reactions: Analytical rate constants and case study of kinetic isotope effects in lipoxygenase. Faraday Discuss. 2016, 195, 171–189. [Google Scholar] [CrossRef] [Green Version]
- Salna, B.; Benabbas, A.; Russo, D.; Champion, P.M. Tunneling kinetics and nonadiabatic proton-coupled electron transfer in proteins: the effect of electric fields and anharmonic donor–acceptor interactions. J. Phys. Chem. B 2017, 121, 6869–6881. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Soudackov, A.; Hammes-Schiffer, S. Fundamental insights into proton-coupled electron transfer in soybean lipoxygenase from quantum mechanical/molecular mechanical free energy simulations. J. Am. Chem. Soc. 2018, 140, 3068–3076. [Google Scholar] [CrossRef] [PubMed]
- Zaragoza, J.P.T.; Nguy, A.; Minnetian, N.; Deng, Z.; Iavarone, A.T.; Offenbacher, A.R.; Klinman, J.P. Detecting and characterizing the kinetic activation of thermal networks in proteins: Thermal transfer from a distal, solvent-exposed loop to the active site in soybean lipoxygenase. J. Phys. Chem. B 2019, 123, 8662–8674. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Soudackov, A.V.; Hammes-Schiffer, S.; Klinman, J.P. Enhanced rigidification within a double mutant of soybean lipoxygenase provides experimental support for vibronically nonadiabatic proton-coupled electron transfer models. ACS Catal. 2017, 7, 3569–3574. [Google Scholar] [CrossRef] [PubMed]
- Offenbacher, A.R.; Sharma, A.; Doan, P.E.; Klinman, J.P.; Hoffman, B.M. The soybean lipoxygenase–substrate complex: Correlation between the properties of tunneling-ready states and ENDOR-detected structures of ground states. Biochemistry 2020, 59, 901–910. [Google Scholar] [CrossRef] [PubMed]
- Lewis, E.R.; Johansen, E.; Holman, T.R. Large competitive kinetic isotope effects in human 15-lipoxygenase catalysis measured by a novel HPLC method. J. Am. Chem. Soc. 1999, 121, 1395–1396. [Google Scholar] [CrossRef]
- Klinman, J.P. Importance of protein dynamics during enzymatic C–H bond cleavage catalysis. Biochemistry 2013, 52, 2068–2077. [Google Scholar] [CrossRef]
- Hu, S.; Offenbacher, A.R.; Lu, E.D.; Klinman, J.P. Comparative kinetic isotope effects on first- and second-order rate constants of soybean lipoxygenase variants uncover a substrate-binding network. J. Biol. Chem. 2019, 294, 18069–18076. [Google Scholar] [CrossRef]
- Mogul, R.; Johansen, E.; Holman, T.R. Oleyl sulfate reveals allosteric inhibition of soybean lipoxygenase-1 and human 15-lipoxygenase. Biochemistry 2000, 39, 4801–4807. [Google Scholar] [CrossRef]
- Ruddat, V.C.; Whitman, S.; Holman, T.R.; Bernasconi, C.F. Stopped-flow kinetic investigations of the activation of soybean lipoxygenase-1 and the influence of inhibitors on the allosteric site. Biochemistry 2003, 42, 4172–4178. [Google Scholar] [CrossRef]
- Offenbacher, A.R.; Iavarone, A.T.; Klinman, J.P. Hydrogen–deuterium exchange reveals long-range dynamical allostery in soybean lipoxygenase. J. Biol. Chem. 2017, 293, 1138–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wecksler, A.T.; Kenyon, V.; Deschamps, J.D.; Holman, T.R. Substrate specificity changes for human reticulocyte and epithelial 15-lipoxygenases reveal allosteric product regulation. Biochemistry 2008, 47, 7364–7375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wecksler, A.T.; Garcia, N.K.; Holman, T.R. Substrate specificity effects of lipoxygenase products and inhibitors on soybean lipoxygenase-1. Bioorg. Med. Chem. 2009, 17, 6534–6539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, N.; Hoobler, E.K.; Perry, S.; Diaz, G.; Fox, B.; Holman, T.R. Kinetic and structural investigations into the allosteric and pH effect on the substrate specificity of human epithelial 15-lipoxygenase-2. Biochemistry 2013, 52, 8026–8035. [Google Scholar] [CrossRef] [Green Version]
- Freedman, C.J.; Tran, A.; Tourdot, B.E.; Kalyanaraman, C.; Perry, S.; Holinstat, M.; Jacobson, M.P.; Holman, T.R. Biosynthesis of the maresin intermediate, 13S,14S-epoxy-DHA, by human 15-lipoxygenase and 12-lipoxygenase and its regulation through negative allosteric modulators. Biochemistry 2020, 59, 1832–1844. [Google Scholar] [CrossRef]
- Perry, S.C.; Kalyanaraman, C.; Tourdot, B.E.; Conrad, W.S.; Akinkugbe, O.; Freedman, J.C.; Holinstat, M.; Jacobson, M.P.; Holman, T.R. 15-Lipoxygenase-1 biosynthesis of 7S,14S-diHDHA implicates 15-Lipoxygenase-2 in biosynthesis of resolvin D5. J. Lipid Res. 2020. [Google Scholar] [CrossRef]
- Serhan, C.N.; Chiang, N.; Van Dyke, T.E. Resolving inflammation: Dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 2008, 8, 349–361. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.-W.; Colas, R.A.; Dalli, J.P.; Arnardottir, H.H.; Nguyen, D.; Hasturk, H.; Chiang, N.; Van Dyke, T.E.; Serhan, C.N. Maresin 1 biosynthesis and proresolving anti-infective functions with human-localized aggressive periodontitis leukocytes. Infect. Immun. 2015, 84, 658–665. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Wan, M.; Huang, W.; Stanton, R.C.; Xu, Y. Maresins: Specialized proresolving lipid mediators and their potential role in inflammatory-related diseases. Mediat. Inflamm. 2018, 2018, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wennman, A.; Oliw, E.H.; Karkehabadi, S.; Chen, Y. Crystal structure of manganese lipoxygenase of the rice blast fungus Magnaporthe oryzae. J. Biol. Chem. 2016, 291, 8130–8139. [Google Scholar] [CrossRef] [Green Version]
- Su, C.; Oliw, E.H. Manganese lipoxygenase. Purification and characterization. J. Biol. Chem. 1998, 273, 13072–13079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamberg, M.; Su, C.; Oliw, E. Manganese lipoxygenase. Discovery of a bis-allylic hydroperoxide as product and intermediate in a lipoxygenase reaction. J. Biol. Chem. 1998, 273, 13080–13088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Wennman, A.; Karkehabadi, S.; Engström, A.; Oliw, E.H. Crystal structure of linoleate 13R-manganese lipoxygenase in complex with an adhesion protein1. J. Lipid Res. 2016, 57, 1574–1588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wennman, A.; Jernerén, F.; Magnuson, A.; Oliw, E.H. Expression and characterization of manganese lipoxygenase of the rice blast fungus reveals prominent sequential lipoxygenation of α-linolenic acid. Arch. Biochem. Biophys. 2015, 583, 87–95. [Google Scholar] [CrossRef]
- Anand, G.S.; Hughes, C.A.; Jones, J.M.; Taylor, S.S.; Komives, E.A. Amide H/2H exchange reveals communication between the cAMP and catalytic subunit-binding sites in the R(I)alpha subunit of protein kinase A. J. Mol. Biol. 2002, 323, 377–386. [Google Scholar] [CrossRef]
- Rand, K.D.; Jørgensen, T.J.D.; Olsen, O.H.; Persson, E.; Jensen, O.N.; Stennicke, H.R.; Andersen, M.D. Allosteric activation of coagulation factor VIIa visualized by hydrogen exchange. J. Biol. Chem. 2006, 281, 23018–23024. [Google Scholar] [CrossRef] [Green Version]
- Deredge, D.; Li, J.; Johnson, K.A.; Wintrode, P.L. Hydrogen/deuterium exchange kinetics demonstrate long range allosteric effects of thumb site 2 inhibitors of hepatitis C viral RNA-dependent RNA polymerase. J. Biol. Chem. 2016, 291, 10078–10088. [Google Scholar] [CrossRef] [Green Version]
- Hanson, Q.M.; Carley, J.R.; Gilbreath, T.J.; Smith, B.C.; Underbakke, E.S. Calmodulin-induced conformational control and allostery underlying neuronal nitric oxide synthase activation. J. Mol. Biol. 2018, 430, 935–947. [Google Scholar] [CrossRef]
- Berry, L.; Poudel, S.; Tokmina-Lukaszewska, M.; Colman, D.R.; Nguyen, D.M.; Schut, G.J.; Adams, M.W.; Peters, J.W.; Boyd, E.S.; Bothner, B. H/D exchange mass spectrometry and statistical coupling analysis reveal a role for allostery in a ferrodoxin-dependent bifurcation transhydrogenase catalytic cycle. Biochim. Biophys. Acta 2018, 1862, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Wales, T.E.; Engen, J.R. Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom. Rev. 2005, 25, 158–170. [Google Scholar] [CrossRef]
- Englander, S.W. Hydrogen exchange and mass spectrometry: A historical perspective. J. Am. Soc. Mass Spectrom. 2006, 17, 1481–1489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoofnagle, A.N.; Resing, K.A.; Ahn, N.G. Protein analysis by hydrogen exchange mass spectrometry. Ann. Rev. Biophys. Biomol. Struct. 2003, 32, 1–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortimer, M.; Järving, R.; Brash, A.R.; Samel, N.; Järving, I. Identification and characterization of an arachidonate 11R-lipoxygenase. Arch. Biochem. Biophys. 2006, 445, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Allard, J.B.; Brock, T.G. Structural organization of the regulatory domain of human 5- lipoxygenase. Curr. Protein Pept. Sci. 2005, 6, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Eek, P.; Piht, M.-A.; Ratsep, M.; Freiberg, A.; Jarving, I.; Samel, N. A conserved π-cation and an electrostatic bridge are essential for 11R-lipoxygenase catalysis and structural stability. Biochim. Biophys. Acta 2015, 1851, 1377–1382. [Google Scholar] [CrossRef]
(kcat/KM)AA/(kcat/KM)LA | IC50 (μM) | |
---|---|---|
SLO-1 | 1.8 ± 0.2 | N.A. a |
+OS | 4.8 ± 0.3 | 1.0 ± 0.1 |
+PS | 4.0 ± 0.3 | 13 ± 2 |
(kcat/KM)AA/(kcat/KM)GLA | ||
pH 7.5 | pH 8.5 | |
h15-LOX-2 | 0.63 ± 0.04 | 2.1 ± 0.2 |
+13S-HODE | 2.3 ± 0.3 | 6.7 ± 0.8 |
No PLAT | 1.3 ± 0.2 | 3.6 ± 0.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Offenbacher, A.R.; Holman, T.R. Fatty Acid Allosteric Regulation of C-H Activation in Plant and Animal Lipoxygenases. Molecules 2020, 25, 3374. https://doi.org/10.3390/molecules25153374
Offenbacher AR, Holman TR. Fatty Acid Allosteric Regulation of C-H Activation in Plant and Animal Lipoxygenases. Molecules. 2020; 25(15):3374. https://doi.org/10.3390/molecules25153374
Chicago/Turabian StyleOffenbacher, Adam R., and Theodore R. Holman. 2020. "Fatty Acid Allosteric Regulation of C-H Activation in Plant and Animal Lipoxygenases" Molecules 25, no. 15: 3374. https://doi.org/10.3390/molecules25153374
APA StyleOffenbacher, A. R., & Holman, T. R. (2020). Fatty Acid Allosteric Regulation of C-H Activation in Plant and Animal Lipoxygenases. Molecules, 25(15), 3374. https://doi.org/10.3390/molecules25153374