Probing the Proton-Loading Site of Cytochrome C Oxidase Using Time-Resolved Fourier Transform Infrared Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setup for Flow-Flash FTIR Measurements
2.2. Enzyme Preparation
2.3. Sample Quality Control
2.4. The Oxygen Reaction Measured by Time-Resolved ATR-FTIR Spectroscopy
2.5. Data Analysis and Structural Visualization.
3. Results
3.1. FTIR Spectra of “Fast” and “Slow” Kinetic Phases of CcO Mutants with Blocked D-Channel
3.2. Comparison of “Fast” Kinetic Spectra of D-Blocked Channel Mutants and E278Q
4. Discussion
- Asp/Glu. The next least probable candidates are Asp and Glu residues. Even though there is Asp-399 hydrogen bonded to A-Prp, this residue is less probable because of the position of the C=O symmetrical protonation bands for the region of 1712–1788 cm−1 for Asp. A similar situation is with Asp, whose band position is in the region 1716–1788 cm−1 for the inside of a protein [55]. There are no bands in this region in the double-difference spectra except the earlier assigned Glu-278 bands [45], seen here as a drop at ~1740 cm−1. Even though Asp-399 was proposed as a possible PLS in [19], no full Asp protonation signature is evident in the spectra. A recent study with mutated Asp-399 and His-433 [56] described the importance of Asp-399 together with His-433 in proton-pumping, based on their mutations. Asp-399 was shown to be important in proton-pumping [19].
- Lys. Although the Lys side chain amino group gives rise to only weak IR bands, it can be excluded from consideration because there is no Lys close to A-Prp.
- Heme a3. The first probable candidate for the PLS is A-Prp of heme a3 itself. Protonated propionate has an intensive absorbance at about 1700 cm−1 (see Internet free databases [57] for example). However, if we assume that the extinction coefficient of Prp is close to that of Glu, if it takes a proton during the “fast” kinetic phase, it must hold only a fraction of it. Another fraction in this case must be distributed between other possible protonation sites. Behr et al. published [58] the IR difference spectrum of Prp in CcO, but it was done for the redox static spectrum of CcO.
- His. The second probable candidate is His, with both the first (imidazolium-minus-imidazole) and the second (imidazole-minus-imidazolate) protolytic transitions (for the spectra see [53]). The IR window around 1100 cm−1 is free from all other vibrations in enzymes except for histidines. There are two major bands that could be assigned: 1096 cm−1 to the 1st His transition and 1107 cm−1 to the second transition. The assignment of other characteristic bands to His in the double-difference spectra is difficult because of their interference with other residue, amide and heme bands. There is no known data for extinction coefficients for these two bands, thus it is impossible to estimate the contribution of each of them to the double-difference spectra. Moreover, there is His-403 (Figure 1) close to A-Prp and a hydrogen bond that additionally proves that there is a contribution of His absorption to the PLS. The structural analysis of the corresponding structure (PDB ID: 3HB3, 2.25 Å) suggests that proton-pumping does not require either a histidine or an aspartate hydrogen bonded to A-Prp.
- Water clusters. Finally, the last and the most probable candidate for consideration as a contributor to the PLS absorption is water cluster(s). Since protonated water clusters could absorb in the region 1800–1000 cm−1 with weak extinction [59], the observed absorption could be putatively assigned to the contribution to the protonated PLS water molecules. Supekar et al. showed using multi-scale molecular simulation that a transient PLS may indeed be a protonated water cluster in the form of a Zundel or an Eigen ion [60]. Furthermore, Lu et al. predicted from their calculations that the PLS is not simply one residue, but a cluster composed of polar residues and water molecules [61], which is in agreement with the suggestion made in our work. Finally, a number of experimental studies conducted by Palese support our hypothesis about the significance of the protonated water clusters in the realization of the proton pathway through the cytochrome CcO [62,63,64]. Due to the technical challenges in the assignment of the spectra of particular water molecules belonging to the “water region” (Figure 2) and because it is beyond the scope of this work, we leave the question about the roles of individual water molecules in proton transfer open for future studies. Instead we define the “water region” by the distance cut-off of 4 Å from the amino acid residues comprising the channels, shown in Figure 2.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ATR | attenuated total reflectance |
BG | background |
BNC | binuclear center |
CcO | cytochrome c oxidase |
FRCO | fully-reduced CO-inhibited enzyme |
FTIR | Fourier transform infrared |
IR | infrared |
PLS | proton-loading site |
Prp | propionate |
References
- Wikström, M.K.F. Proton pump coupled to cytochrome c oxidase in mitochondria. Nature 1977, 266, 271–273. [Google Scholar] [CrossRef] [PubMed]
- Babcock, G.T.; Wikström, M. Oxygen activation and the conservation of energy in cell respiration. Nature 1992, 356, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Wikström, M. Cytochrome c oxidase: 25 years of the elusive proton pump. Biochim. Biophys. Acta BBA 2004, 1655, 241–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brzezinski, P. Redox-driven membrane-bound proton pumps. Trends Biochem. Sci. 2004, 29, 380–387. [Google Scholar] [CrossRef]
- Hosler, J.P.; Ferguson-Miller, S.; Calhoun, M.W.; Thomas, J.W.; Hill, J.; Lemieux, L.; Ma, J.; Georgiou, C.; Fetter, J.; Shapleigh, J.; et al. Insight into the active-site structure and function of cytochrome oxidase by analysis of site-directed mutants of bacterial cytochromeaa 3 and cytochromebo. J. Bioenerg. Biomembr. 1993, 25, 121–136. [Google Scholar] [CrossRef]
- Fetter, J.R.; Qian, J.; Shapleigh, J.; Thomas, J.W.; Garcia-Horsman, A.; Schmidt, E.; Hosler, J.; Babcock, G.T.; Gennis, R.B.; Ferguson-Miller, S. Possible proton relay pathways in cytochrome c oxidase. Proc. Natl. Acad. Sci. USA 1995, 92, 1604–1608. [Google Scholar] [CrossRef] [Green Version]
- Iwata, S.; Ostermeier, C.; Ludwig, B.; Michel, H. Structure at 2.8 Å resolution of cytochrome c oxidase from Paracoccus denitrificans. Nature 1995, 376, 660–669. [Google Scholar] [CrossRef]
- Tsukihara, T.; Aoyama, H.; Yamashita, E.; Tomizaki, T.; Yamaguchi, H.; Shinzawa-Itoh, K.; Nakashima, R.; Yaono, R.; Yoshikawa, S. The Whole Structure of the 13-Subunit Oxidized Cytochrome c Oxidase at 2.8 Å. Science 1996, 272, 1136–1144. [Google Scholar] [CrossRef]
- Thomas, J.W.; Puustinen, A.; Alben, J.O.; Gennis, R.B.; Wikström, M. Substitution of asparagine for aspartate-135 in subunit I of the cytochrome bo ubiquinol oxidase of Escherichia coli eliminates proton-pumping activity. Biochemistry 1993, 32, 10923–10928. [Google Scholar] [CrossRef] [PubMed]
- Ostermeier, C.; Harrenga, A.; Ermler, U.; Michel, H. Structure at 2.7 Å resolution of the paracoccus denitrificans two-subunit cytochrome c oxidase complexed with an antibody fv fragment. Proc. Natl. Acad. Sci. USA 1997, 94, 10547–10553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshikawa, S.; Shinzawa-Itoh, K.; Nakashima, R.; Yaono, R.; Yamashita, E.; Inoue, N.; Yao, M.; Fei, M.J.; Libeu, C.P.; Mizushima, T.; et al. Redox-Coupled Crystal Structural Changes in Bovine Heart Cytochrome c Oxidase. Science 1998, 280, 1723–1729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsukihara, T.; Aoyama, H.; Yamashita, E.; Tomizaki, T.; Yamaguchi, H.; Shinzawa-Itoh, K.; Nakashima, R.; Yaono, R.; Yoshikawa, S. Structures of metal sites of oxidized bovine heart cytochrome c oxidase at 2.8 A. Science 1995, 269, 1069–1074. [Google Scholar] [CrossRef]
- Wikström, M.; Verkhovsky, M.I. Mechanism and energetics of proton translocation by the respiratory heme-copper oxidases. Biochim. Biophys. Acta BBA 2007, 1767, 1200–1214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, R.; Swanson, J.M.; Peng, Y.; Wikstrom, M.; Voth, G.A. Multiscale simulations reveal key features of the proton-pumping mechanism in cytochrome c oxidase. Proc. Natl. Acad. Sci. USA 2016, 113, 7420–7425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belevich, I.; Bloch, D.A.; Belevich, N.; Wikstrom, M.; Verkhovsky, M.I. Exploring the proton pump mechanism of cytochrome c oxidase in real time. Proc. Natl. Acad. Sci. USA 2007, 104, 2685–2690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gobrikova, E. Oxygen reduction and proton translocation by cytochrome c oxidase. Ph.D. Thesis, University of Helsinki, Department of Biological and Environmental Sciences & Institute of Biotechnology & National Graduate School in Informational and Structural Biology Åbo Akademi, Helsinki, Norway, 2009. [Google Scholar]
- Kaila, V.R.I.; Sharma, V.; Wikström, M. The identity of the transient proton loading site of the proton-pumping mechanism of cytochrome c oxidase. Biochim. Biophys. Acta BBA 2011, 1807, 80–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egawa, T.; Yeh, S.R.; Rousseau, D.L. Redox-Controlled Proton Gating in Bovine Cytochrome c Oxidase. PLoS ONE 2013, 8, e63669. [Google Scholar] [CrossRef] [Green Version]
- Von Ballmoos, C.; Gonska, N.; Lachmann, P.; Gennis, R.B.; Adelroth, P.; Brzezinski, P. Mutation of a single residue in the ba3 oxidase specifically impairs protonation of the pump site. Proc. Natl. Acad. Sci. USA 2015, 112, 3397–3402. [Google Scholar] [CrossRef] [Green Version]
- Nicolaides, A.; Soulimane, T.; Varotsis, C. Detection of functional hydrogen-bonded water molecules with protonated/deprotonated key carboxyl side chains in the respiratory enzyme ba 3-oxidoreductase. Phys. Chem. Chem. Phys. 2015, 17, 8113–8119. [Google Scholar] [CrossRef]
- Griffiths, P.R.; De Haseth, J.A. Fourier Transform Infrared Spectrometry, 2nd ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2007. [Google Scholar] [CrossRef] [Green Version]
- Papadopoulos, P. Friedrich Siebert and Peter Hildebrandt, vibrational spectroscopy in life science. Colloid Polym. Sci. 2008, 286, 487. [Google Scholar] [CrossRef]
- Gunzler, H.; Gremlich, H.-U. Ir Spectroscopy: An Introduction; WILEY-VCH Verlag GmbH: Weinheim, Germany, 2002. [Google Scholar]
- Stuart, B.H. Infrared Spectroscopy: Fundamentals and Applications; John Wiley & Sons, Ltd.: Chichester, UK, 2004. [Google Scholar] [CrossRef]
- Stuart, B.H. Biological Applications of Infrared Spectroscopy; John Wiley & Sons, Ltd.: Chichester, UK, 1997. [Google Scholar]
- Barth, A.; Haris, P.I. Biological and Biomedical Infrared Spectroscopy; IOS Press: Amsterdam, The Netherlands, 2009. [Google Scholar] [CrossRef]
- Hellwig, P.; Rost, B.; Kaiser, U.; Ostermeier, C.; Michel, H.; Mäntele, W. Carboxyl group protonation upon reduction of the Paracoccus denitrificans cytochrome c oxidase: Direct evidence by FTIR spectroscopy. FEBS Lett. 1996, 385, 53–57. [Google Scholar] [CrossRef] [Green Version]
- Nyquist, R.M.; Heitbrink, D.; Bolwien, C.; Wells, T.A.; Gennis, R.B.; Heberle, J. Perfusion-induced redox differences in cytochrome c oxidase: ATR/FT-IR spectroscopy. FEBS Lett. 2001, 505, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Gorbikova, E.; Kalendar, R. Comparison between O and OH Intermediates of Cytochrome c Oxidase Studied by FTIR Spectroscopy. Front. Chem. 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Nicolaides, A.; Soulimane, T.; Varotsis, C. Ns-mus time-resolved step-scan FTIR of ba(3) oxidoreductase from thermus thermophilus: Protonic connectivity of w941-w946-w927. Int. J. Mol. Sci. 2016, 17, 1657. [Google Scholar] [CrossRef] [Green Version]
- Koutsoupakis, C.; Soulimane, T.; Varotsis, C. Discrete Ligand Binding and Electron Transfer Properties of ba3-Cytochrome c Oxidase from Thermus thermophilus: Evolutionary Adaption to Low Oxygen and High Temperature Environments. Acc. Chem. Res. 2019, 52, 1380–1390. [Google Scholar] [CrossRef]
- Kumar, S.; Li, C.; Montigny, C.; Le Maire, M.; Barth, A. Conformational changes of recombinant Ca2+-ATPase studied by reaction-induced infrared difference spectroscopy. FEBS J. 2013, 280, 5398–5407. [Google Scholar] [CrossRef]
- Berthomieu, C.; Hienerwadel, R. Vibrational spectroscopy to study the properties of redox-active tyrosines in photosystem II and other proteins. Biochim. Biophys. Acta BBA 2005, 1707, 51–66. [Google Scholar] [CrossRef] [Green Version]
- Dioumaev, A.K.; Brown, L.; Shih, J.; Spudich, E.N.; Spudich, A.J.L.; Lanyi, J.K. Proton Transfers in the Photochemical Reaction Cycle of Proteorhodopsin†. Biochemistry 2002, 41, 5348–5358. [Google Scholar] [CrossRef]
- Souvignier, G.; Gerwert, K. Proton uptake mechanism of bacteriorhodopsin as determined by time-resolved stroboscopic-FTIR-spectroscopy. Biophys. J. 1992, 63, 1393–1405. [Google Scholar] [CrossRef] [Green Version]
- Marshall, D.; Fisher, N.; Grigic, L.; Zickermann, V.; Brandt, U.; Shannon, R.J.; Hirst, J.; Lawrence, R.; Rich, P.R. Atr-ftir redox difference spectroscopy of yarrowia lipolytica and bovine complex I. Biochemistry 2006, 45, 5458–5467. [Google Scholar] [CrossRef]
- Zhang, J.; Oettmeier, W.; Gennis, R.B.; Hellwig, P. Ftir spectroscopic evidence for the involvement of an acidic residue in quinone binding in cytochrome bd from Escherichia coli. Biochemistry 2002, 41, 4612–4617. [Google Scholar] [CrossRef] [PubMed]
- Iwaki, M.; Yakovlev, G.; Hirst, J.; Osyczka, A.; Dutton, P.L.; Marshall, D.; Rich, P.R. Direct observation of redox-linked histidine protonation changes in the iron-sulfur protein of the cytochrome bc1 complex by atr-ftir spectroscopy. Biochemistry 2005, 44, 4230–4237. [Google Scholar] [CrossRef] [PubMed]
- Lorenz-Fonfria, V.A.; Resler, T.; Krause, N.; Nack, M.; Gossing, M.; Fischer von Mollard, G.; Bamann, C.; Bamberg, E.; Schlesinger, R.; Heberle, J. Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating. Proc. Natl. Acad. Sci. USA 2013, 110, E1273–E1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorenz-Fonfria, V.A.; Kandori, H.; Padrós, E. Probing Specific Molecular Processes and Intermediates by Time-Resolved Fourier Transform Infrared Spectroscopy: Application to the Bacteriorhodopsin Photocycle. J. Phys. Chem. B 2011, 115, 7972–7985. [Google Scholar] [CrossRef] [PubMed]
- Heberle, J. The dynamics of proton transfer across bacteriorhodopsin explored by FT-IR spectroscopy. Biochim. Biophys. Acta BBA 2005, 1458, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, T. Fourier transform infrared difference and time-resolved infrared detection of the electron and proton transfer dynamics in photosynthetic water oxidation. Biochim. Biophys. Acta BBA 2015, 1847, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Belevich, I.; Verkhovsky, M.I.; Wikström, M. Proton-coupled electron transfer drives the proton pump of cytochrome c oxidase. Nature 2006, 440, 829–832. [Google Scholar] [CrossRef]
- Belevich, I.; Gorbikova, E.; Belevich, N.P.; Rauhamaki, V.; Wikstrom, M.; Verkhovsky, M.I. Initiation of the proton pump of cytochrome c oxidase. Proc. Natl. Acad. Sci. USA 2010, 107, 18469–18474. [Google Scholar] [CrossRef] [Green Version]
- Gorbikova, E.A.; Belevich, N.P.; Wikstrom, M.; Verkhovsky, M.I. Time-resolved atr-ftir spectroscopy of the oxygen reaction in the d124n mutant of cytochrome c oxidase from paracoccus denitrificans. Biochemistry 2007, 46, 13141–13148. [Google Scholar] [CrossRef]
- Gorbikova, E.A.; Belevich, I.; Wikstrom, M.; Verkhovsky, M.I. The proton donor for o-o bond scission by cytochrome c oxidase. Proc. Natl. Acad. Sci. USA 2008, 105, 10733–10737. [Google Scholar] [CrossRef] [Green Version]
- Gorbikova, E.A.; Wikstrom, M.; Verkhovsky, M.I. The protonation state of the cross-linked tyrosine during the catalytic cycle of cytochrome c oxidase. J. Biol. Chem. 2008, 283, 34907–34912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riistama, S.; Laakkonen, L.; Wikstrom, M.; Verkhovsky, M.I.; Puustinen, A. The calcium binding site in cytochrome aa3 from paracoccus denitrificans. Biochemistry 1999, 38, 10670–10677. [Google Scholar] [CrossRef] [PubMed]
- Rich, P.R.; Breton, J. Attenuated total reflection fourier transform infrared studies of redox changes in bovine cytochrome c oxidase: Resolution of the redox fourier transform infrared difference spectrum of hemea3. Biochemistry 2002, 41, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, S.; Choc, M.G.; O’Toole, M.C.; Caughey, W.S. An infrared study of co binding to heart cytochrome c oxidase and hemoglobin a. Implications re o2 reactions. J. Boil. Chem. 1977, 252, 5498–5508. [Google Scholar]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Heitbrink, D.; Sigurdson, H.; Bolwien, C.; Brzezinski, P.; Heberle, J. Transient binding of CO to Cu(B) in cytochrome c oxidase is dynamically linked to structural changes around a carboxyl group: A time-resolved step-scan Fourier transform infrared investigation. Biophys. J. 2002, 82, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Wikström, M. Infrared protein spectroscopy as a tool to study protonation reactions within proteins. In Biophysical and Structural Aspects of Bioenergetics; Wikström, M., Ed.; RSC Publishing: Cambridge, UK, 2007; pp. 314–333. [Google Scholar] [CrossRef]
- Koepke, J.; Olkhova, E.; Angerer, H.; Müller, H.; Peng, G.; Michel, H. High resolution crystal structure of Paracoccus denitrificans cytochrome c oxidase: New insights into the active site and the proton transfer pathways. Biochim. Biophys. Acta BBA 2009, 1787, 635–645. [Google Scholar] [CrossRef] [Green Version]
- Barth, A. The infrared absorption of amino acid side chains. Prog. Biophys. Mol. Boil. 2000, 74, 141–173. [Google Scholar] [CrossRef]
- Chang, H.Y.; Choi, S.K.; Vakkasoglu, A.S.; Chen, Y.; Hemp, J.; Fee, J.A.; Gennis, R.B. Exploring the proton pump and exit pathway for pumped protons in cytochrome ba3 from thermus thermophilus. Proc. Natl. Acad. Sci. USA 2012, 109, 5259–5264. [Google Scholar] [CrossRef] [Green Version]
- Chemical Book. Propionic Acid. Available online: https://www.chemicalbook.com/SpectrumEN_79-09-4_IR2.htm (accessed on 7 July 2020).
- Behr, J.; Hellwig, P.; Mantele, W.; Michel, H. Redox dependent changes at the heme propionates in cytochrome c oxidase from paracoccus denitrificans: Direct evidence from ftir difference spectroscopy in combination with heme propionate 13c labeling. Biochemistry 1998, 37, 7400–7406. [Google Scholar] [CrossRef]
- Headrick, J.M.; Diken, E.G.; Walters, R.S.; Hammer, N.I.; Christie, R.A.; Cui, J.; Myshakin, E.M.; Duncan, M.A.; Johnson, M.A.; Jordan, K.D. Spectral signatures of hydrated proton vibrations in water clusters. Science 2005, 308, 1765–1769. [Google Scholar] [CrossRef] [PubMed]
- Supekar, S.; Gamiz-Hernandez, A.P.; Kaila, V.R. A Protonated Water Cluster as a Transient Proton-Loading Site in Cytochrome cOxidase. Angew. Chem. Int. Ed. 2016, 55, 11940–11944. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Gunner, M.R. Characterizing the proton loading site in cytochrome c oxidase. Proc. Natl. Acad. Sci. USA 2014, 111, 12414–12419. [Google Scholar] [CrossRef] [Green Version]
- Palese, L.L. Cytochrome c oxidase structures suggest a four-state stochastic pump mechanism. Phys. Chem. Chem. Phys. 2019, 21, 4822–4830. [Google Scholar] [CrossRef] [PubMed]
- Palese, L.L. Explaining leak states in the proton pump of heme-copper oxidases observed in single-molecule experiments. Biophys. Chem. 2019, 256, 106276. [Google Scholar] [CrossRef] [PubMed]
- Palese, L.L. Oxygen-oxygen distances in protein-bound crystallographic water suggest the presence of protonated clusters. Biochim. Biophys. Acta BBA 2020, 1864, 129480. [Google Scholar] [CrossRef] [PubMed]
Wavenumber, cm−1 | Assignment |
---|---|
1965 | C≡O-heme a3 |
1712–1788 | Asp-399 |
1740 | Glu-278 |
1700 | A-Prp of heme a3 |
1666 | Arg residues |
1308 | Tyr-280 |
1247 | Tyr-35 |
1107 | His residues, second transition |
1096 | His residues, first transition |
1000–1800 | Water |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorbikova, E.; Samsonov, S.A.; Kalendar, R. Probing the Proton-Loading Site of Cytochrome C Oxidase Using Time-Resolved Fourier Transform Infrared Spectroscopy. Molecules 2020, 25, 3393. https://doi.org/10.3390/molecules25153393
Gorbikova E, Samsonov SA, Kalendar R. Probing the Proton-Loading Site of Cytochrome C Oxidase Using Time-Resolved Fourier Transform Infrared Spectroscopy. Molecules. 2020; 25(15):3393. https://doi.org/10.3390/molecules25153393
Chicago/Turabian StyleGorbikova, Elena, Sergey A. Samsonov, and Ruslan Kalendar. 2020. "Probing the Proton-Loading Site of Cytochrome C Oxidase Using Time-Resolved Fourier Transform Infrared Spectroscopy" Molecules 25, no. 15: 3393. https://doi.org/10.3390/molecules25153393
APA StyleGorbikova, E., Samsonov, S. A., & Kalendar, R. (2020). Probing the Proton-Loading Site of Cytochrome C Oxidase Using Time-Resolved Fourier Transform Infrared Spectroscopy. Molecules, 25(15), 3393. https://doi.org/10.3390/molecules25153393