Analysis of the Effect of the Biomass Torrefaction Process on Selected Parameters of Dust Explosivity
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Torrefaction Process
3.2. Samples Analysis
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
WT1 | willow torrefied at 220 °C |
WT2 | willow torrefied at 240 °C |
WT3 | willow torrefied at 260 °C |
WT4 | willow torrefied at 280 °C |
WT5 | willow torrefied at 300 °C |
S0 | raw wheat straw |
ST1 | straw torrefied at 220 °C |
ST2 | straw torrefied at 240 °C |
ST3 | straw torrefied at 260 °C |
ST4 | straw torrefied at 280 °C |
ST5 | straw torrefied at 300 °C |
References
- Azzuni, A.; Breyer, C. Global energy security index and its application on national level. Energies 2020, 13, 2502. [Google Scholar] [CrossRef]
- Nyga-Łukaszewska, H.; Aruga, K.; Stala-Szlugaj, K. Energy security of poland and coal supply: Price analysis. Sustainability 2020, 12, 2541. [Google Scholar] [CrossRef] [Green Version]
- Loeschel, A.; Moslener, U.; Ruebellke, D.T.G. Indicators of energy security in industrialised countries. Energy Policy 2010, 38, 1665–1671. [Google Scholar] [CrossRef]
- Euracoal Statistics. 2019. Available online: https://euracoal.eu/info/euracoal-eu-statistics/ (accessed on 4 May 2020).
- Ymeri, P.; Gyuricza, C.; Fogarassy, C. Farmers’ attitudes towards the use of biomass as renewable energy—A case study from southeastern europe. Sustainability 2020, 12, 4009. [Google Scholar] [CrossRef]
- Lee, T.; Han, E.; Moon, U.-C.; Lee, K.Y. Supplementary control of air–fuel ratio using dynamic matrix control for thermal power plant emission. Energies 2020, 13, 226. [Google Scholar] [CrossRef] [Green Version]
- Ratte, J.; Fardet, E.; Mateos, D.; Hery, J.S. Mathematical modelling of a continuous biomass torrefaction reactor: TORSPYD (TM) column. Biomass Bioenergy 2011, 35, 3481–3495. [Google Scholar] [CrossRef]
- Uslu, A.; Faaij, A.P.C.; Bergman, P.C.A. Pre-treatment technologies and their effect on international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction fast pyrolysis and pelletisation. Energy 2008, 33, 1206–1223. [Google Scholar] [CrossRef]
- Bergman, P.C.A.; Kiel, J.H.A. Torrefaction for biomass upgrading. Report ECN-RX-05-180. In Proceedings of the 14th European Biomass Conference & Exhibition, Paris, France, 17–21 October 2005. [Google Scholar]
- Chen, W.; Kuo, P. A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 2010, 35, 2580–2586. [Google Scholar] [CrossRef]
- Bridgeman, T.G.; Jones, J.M.; Shield, I.; Williams, P.T. Torrefaction of reed canary grass wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 2008, 87, 844–856. [Google Scholar] [CrossRef]
- Arias, B.; Pevida, C.; Fermoso, J.; Plaza, M.G.; Rubeira, F.; Pis, J.J. Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process. Technol. 2008, 89, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Medic, D.; Darr, M.; Shah, A.; Potter, B.; Zimmerman, J. Effects of torrefaction process parameters on biomass feedstock upgrading. Fuel 2012, 91, 147–154. [Google Scholar] [CrossRef]
- Stelte, W.; Holm, J.; Sanadi, A.; Barsberg, S.; Ahrenfeldt, J.; Henriksen, U. Fuel pellets from biomass: The importance of the pelletizing pressure and its dependency on the processing conditions. Fuel 2011, 90, 3285–3290. [Google Scholar] [CrossRef] [Green Version]
- Styks, J.; Wróbel, M.; Frączek, J.; Knapczyk, A. Effect of compaction pressure and moisture content on quality parameters of perennial biomass pellets. Energies 2020, 13, 1859. [Google Scholar] [CrossRef] [Green Version]
- Popovicheva, O.; Ivanov, A.; Vojtisek, M. Functional factors of biomass burning contribution to spring aerosol composition in a megacity: Combined FTIR-PCA analyses. Atmosphere 2020, 11, 319. [Google Scholar] [CrossRef] [Green Version]
- Pérez, J.; Melgar, A.; Nel Benjumea, P. Effect of operating and design parameters on the gasification/combustion process of waste biomass in fixed bed downdraft reactors: An experimental study. Fuel 2012, 96, 487–496. [Google Scholar] [CrossRef]
- Duan, F.; Zhang, J.-P.; Chyang, C.-S.; Wang, Y.-J.; Tso, J. Combustion of crushed and pelletized peanut shells in a pilot-scale fluidized-bed combustor with flue gas recirculation. Fuel Process. Technol. 2014, 128, 28–35. [Google Scholar] [CrossRef]
- Amyotte, P.R. Some myths and realities about dust explosions. Process Saf. Environ. Prot. 2014, 92, 292–299. [Google Scholar] [CrossRef]
- Kauschinger, B.; Schroeder, S. Uncertainties in heat loss models of rolling bearings of machine tools. Procedia CIRP 2016, 46, 107–110. [Google Scholar] [CrossRef] [Green Version]
- Haghighi Mood, S.; Hossein Golfeshan, A.; Tabatabaei, M.; Salehi Jouzani, G.; Hassan Najafi, G.; Gholami, M.; Ardjmand, M. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sustain. Energy Rev. 2013, 27, 77–93. [Google Scholar] [CrossRef]
- Hawksworth, S.; Rogers, R.; Proust, C.; Beyer, M.; Zakel, S.; Gummer, J. Ignition of explosive atmosphere by mechanical equipment. In Manchester Hazards XVIII. Process Safety-Sharing Best Practice; Icheme: London, UK, 2010; pp. 337–347. [Google Scholar]
- Kakitis, A.; Nulle, I. Electrostatic biomass mixing. Eng. Rural. Dev. 2009, 5, 247–252. [Google Scholar]
- Tumuluru, J.S.; Heikkila, D.J. Biomass grinding process optimization using response surface methodology and a hybrid genetic algorithm. Bioengineering 2019, 6, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dibble, C.J.; Shatova, T.A.; Jorgenson, J.L.; Stickel, J.J. Particle morphology characterization and manipulation in biomass slurries and the effect on rheological properties and enzymatic conversion. Biotechnol. Progr. 2011, 27, 1751–1759. [Google Scholar] [CrossRef] [PubMed]
- Dahn, C.J.; Dastidar, A.G. Requirements for a minimum ignition energy standard. Process. Saf. Prog. 2003, 22, 44–47. [Google Scholar] [CrossRef]
- Randeberg, E.; Eckhoff, R.K. Initiation of dust explosions by electric spark discharges tr iggered by the explosive dust cloud itself. J. Loss Prev. Process Ind. 2006, 19, 154–160. [Google Scholar] [CrossRef]
- Węgrzyn, A.; Zając, G. Selected aspects of research on energetic effectiveness of plant biomass production technology. Acta Agroph. 2008, 11, 799–806. [Google Scholar]
- Chin, K.; H’ng, P.; Go, W.; Wong, W.; Lim, T.; Maminski, M.; Paridah, M.; Luqman, A. Optimization of torrefaction conditions for high energy density solid biofuel from oil palm biomass and fast growing species available in Malaysia. Ind. Crops Prod. 2013, 49, 768–774. [Google Scholar] [CrossRef]
- Poudel, J.; Karki, S.; Oh, S.C. Valorization of waste wood as a solid fuel by torrefaction. Energies 2018, 11, 1641. [Google Scholar] [CrossRef] [Green Version]
- Werkelin, J.; Skrifvars, B.J.; Hupa, M. Ash-forming elements in four Scandinavian wood species. Part. 1. Summer harvest. Biomass Bioenergy 2005, 29, 451–466. [Google Scholar] [CrossRef]
- Bajcar, M.; Zaguła, G.; Saletnik, B.; Tarapatskyy, M.; Puchalski, C. Relationship between torrefaction parameters and physicochemical properties of torrefied products obtained from selected plant biomass. Energies 2018, 11, 2919. [Google Scholar] [CrossRef] [Green Version]
- Cashdollar, K.L. Overview of dust explosibility characteristics. J. Loss Prev. Process Ind. 2000, 13, 183–199. [Google Scholar] [CrossRef]
- Cordero, T.; Marquez, F.; Rodriquez-Mirasol, J.; Rodriguez, J.J. Predicting heating values of lignocellulosic and carbonaceous materials from proximate analysis. Fuel 2001, 80, 1567–1571. [Google Scholar] [CrossRef]
- Demirbaş, A. Calculation of higher heating values of biomass fuels. Fuel 1997, 76, 431–434. [Google Scholar] [CrossRef]
- Torrent, J.G.; Lazaro, E.C.; Wilén, C.; Rautalin, A. Biomass dust explosibility at elevated initial pres sures. Fuel 1998, 77, 1093–1097. [Google Scholar] [CrossRef]
- Holbrow, P. Dust explosion venting of small vessels and flameless venting. Process Saf. Environ. Prot. 2013, 91, 183–190. [Google Scholar] [CrossRef]
- Kok, M.V.; Ozgur, E. Thermal analysis and kinetics of biomass samples. Fuel Process. Technol. 2013, 106, 739–743. [Google Scholar] [CrossRef]
- Medina, C.h.; Phylaktou, H.N.; Sattar, H.; Andrews, G.E.; Gibbs, B.M. The development of an experimental method for the determination of the minimum explosible concentration of biomass powders. Biomass Bioenergy 2013, 53, 95–104. [Google Scholar] [CrossRef]
- Ragland, K.W.; Aerts, D.J.; Baker, A.J. Properties of wood for combustion analysis. Bioresour. Technol. 1991, 37, 161–168. [Google Scholar] [CrossRef]
- Eckhoff, R.K. Current status and expected future trends in dust explosion research. J. Loss Prev. Process Ind. 2005, 18, 225–237. [Google Scholar] [CrossRef]
- Taveau, J. Application of dust explosion protection systems. Procedia Eng. 2014, 84, 297–305. [Google Scholar] [CrossRef] [Green Version]
- Arnaldos, J.; Casal, J.; Planas-Cuchi, E. Prediction of flammability limits at reduced pressures. Chem. Eng. Sci. 2001, 56, 3829–3843. [Google Scholar] [CrossRef]
- Porowski, R.; Rudy, W.; Teodorczyk, A. Analysis of experimental methods for explosion limits of flammable liquids. Fire Saf. Technol. 2012, 4, 63–70. [Google Scholar]
- PN-EN 14034-2—Determination of Explosion Characteristics of Dust Clouds. Available online: www.pkn.pl (accessed on 4 May 2020).
Sample Availability: Samples of the compounds are not available from the authors. |
Parameters | W0 | WT1 | WT2 | WT3 | WT4 | WT5 | |
---|---|---|---|---|---|---|---|
x ± SD | |||||||
C | % | 48.05 c ± 0.1 | 48.23 c ± 0.35 | 49.12 bc ± 0.24 | 52.13 b ± 0.31 | 53.94 ab ± 0.22 | 55.46 a ± 0.14 |
H | 5.55 ab ± 0.03 | 5.87 a ± 0.03 | 5.94 a ± 0.08 | 4.42 c ± 0.12 | 4.06 cd ± 0.08 | 3.64 d ± 0.02 | |
N | 0.55 d ± 0.02 | 1.48 a ± 0.06 | 1.26 b ± 0.05 | 1.15 c ± 0.02 | 1.06 c ± 0.04 | 1.30 b ± 0.06 | |
Moisture Content | 10.31 a ± 0.1 | 9.12 b ± 0.07 | 8.74 bc ± 0.08 | 8.42 bc ± 0.1 | 8.16 c ± 0.17 | 7.96 c ± 0.1 | |
Ash Content | 3.15 b ± 0.1 | 3.17 b ± 0.1 | 3.38 ab ± 0.09 | 3.52 a ± 0.1 | 3.64 a ± 0.11 | 3.72 a ± 0.13 | |
Volatile Matter | 25.45 c ± 0.34 | 23.13 d ± 0.25 | 26.92 bc ± 0.19 | 31.63 b ± 0.41 | 40.27 a ± 0.21 | 44.91 a ± 0.31 | |
LHV | MJ·kg−1 | 17.51 c ± 0.25 | 19.24 b ± 0.06 | 20.14 b ± 0.12 | 21.39 a ± 0.22 | 21.42 a ± 0.12 | 21.46 a ± 0.09 |
S0 | ST1 | ST2 | ST3 | ST4 | ST5 | ||
C | % | 45.31 d ± 0.07 | 48.61 c ± 0.15 | 50.11 c ± 0.14 | 52.24 b ± 0.21 | 53.44 ab ± 0.18 | 55.08 a ± 0.04 |
H | 7.10 a ± 0.05 | 5.67 b ± 0.04 | 5.06 bc ± 0.05 | 4.22 c ± 0.12 | 4,09 c ± 0.08 | 3.54 d ± 0.02 | |
N | 0.15 d ± 0.01 | 1.05 c ± 0.06 | 1.08 c ± 0.03 | 1.18 b ± 0.02 | 1.11 b ± 0.04 | 1.07 a ± 0.06 | |
Moisture Content | 9.18 a ± 0.12 | 8.50 b ± 0.14 | 7.14 bc ± 0.14 | 6.32 c ± 0.11 | 5.87 c ± 0.11 | 4.52 d ± 0.1 | |
Ash Content | 4.56 d ± 0.12 | 6.27 c ± 0.13 | 6.94 c ± 0.16 | 8.66 b ± 0.1 | 9.04 a ± 0.09 | 9.25 a ± 0.1 | |
Volatile Matter | 17.70 d ± 0.19 | 20.48 c ± 0.3 | 28.74 bc ± 0.21 | 36.37 b ± 0.26 | 41.23 ab ± 0.24 | 47.86 a ± 0.25 | |
LHV | MJ·kg−1 | 17.59 d ± 0.1 | 18.77 c ± 0.09 | 19.04 c ± 0.17 | 19.75 b ± 0.31 | 20.14 b ± 0.15 | 20.96 a ± 0.31 |
Material | Pmax | (dp/dt)max | LEL—Lower Explosion Limit |
---|---|---|---|
[bar] | [bar·s−1] | [g·m3] | |
W0 | 7.2 | 261.3 | 500 |
WT1 | 7.0 | 268.1 | 500 |
WT2 | 7.9 | 272.4 | 500 |
WT3 | 8.2 | 279.6 | 500 |
WT4 | 8.6 | 284.3 | 250 |
WT5 | 9.2 | 296.6 | 250 |
S0 | 7,3 | 201,4 | 500 |
ST1 | 7.5 | 209.6 | 500 |
ST2 | 7.7 | 214.9 | 500 |
ST3 | 8.1 | 219.5 | 500 |
ST4 | 8.3 | 224.3 | 500 |
ST5 | 8.8 | 231.6 | 250 |
Explosivity Class | Value Kst max [bar*s−1] |
---|---|
St 1 | ≤200 |
St 2 | 200–300 |
St 3 | >300 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bajcar, M.; Saletnik, B.; Zaguła, G.; Puchalski, C. Analysis of the Effect of the Biomass Torrefaction Process on Selected Parameters of Dust Explosivity. Molecules 2020, 25, 3525. https://doi.org/10.3390/molecules25153525
Bajcar M, Saletnik B, Zaguła G, Puchalski C. Analysis of the Effect of the Biomass Torrefaction Process on Selected Parameters of Dust Explosivity. Molecules. 2020; 25(15):3525. https://doi.org/10.3390/molecules25153525
Chicago/Turabian StyleBajcar, Marcin, Bogdan Saletnik, Grzegorz Zaguła, and Czesław Puchalski. 2020. "Analysis of the Effect of the Biomass Torrefaction Process on Selected Parameters of Dust Explosivity" Molecules 25, no. 15: 3525. https://doi.org/10.3390/molecules25153525
APA StyleBajcar, M., Saletnik, B., Zaguła, G., & Puchalski, C. (2020). Analysis of the Effect of the Biomass Torrefaction Process on Selected Parameters of Dust Explosivity. Molecules, 25(15), 3525. https://doi.org/10.3390/molecules25153525