Evaluation of a Stable Isotope-Based Direct Quantification Method for Dicamba Analysis from Air and Water Using Single-Quadrupole LC–MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. LC–MS Analysis
2.3. Dicamba Quantification
3. Results and Discussion
3.1. SIM Ion Selection and Optimization
3.2. Method Performance
3.2.1. Linearity
3.2.2. Sensitivity
3.2.3. Recovery and Repeatability
3.2.4. Matrix Effect Evaluation
3.3. Air Sample Analysis
3.4. Water Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gleason, C.; Foley, R.C.; Singh, K.B. Mutant analysis in Arabidopsis provides insight into the molecular mode of action of the auxinic herbicide dicamba. PLoS ONE 2011, 6, e17245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riter, L.S.; Sall, E.D.; Pai, N.; Beachum, C.E.; Orr, T.B. Quantifying Dicamba Volatility under Field Conditions: Part, I., Methodology. J. Agric. Food Chem. 2020, 68, 2277–2285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egan, J.F.; Mortensen, D.A. Quantifying vapor drift of dicamba herbicides applied to soybean. Env. Toxicol. Chem. 2012, 31, 1023–1031. [Google Scholar] [CrossRef] [PubMed]
- Sall, E.D.; Huang, K.; Pai, N.; Schapaugh, A.W.; Honegger, J.L.; Orr, T.B.; Riter, L.S. Quantifying Dicamba Volatility under Field Conditions: Part II, Comparative Analysis of 23 Dicamba Volatility Field Trials. J. Agric. Food Chem. 2020, 68, 2286–2296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mueller, T.C. Methods To Measure Herbicide Volatility. Weed Sci. 2015, 63, 116–120. [Google Scholar] [CrossRef] [Green Version]
- Mueller, T.C.; Steckel, L.E. Dicamba volatility in humidomes as affected by temperature and herbicide treatment. Weed Technol. 2019, 33, 541–546. [Google Scholar] [CrossRef] [Green Version]
- Strachan, S.D.; Casini, M.S.; Heldreth, K.M.; Scocas, J.A.; Nissen, S.J.; Bukun, B.; Lindenmayer, R.B.; Shaner, D.L.; Westra, P.; Brunk, G. Vapor Movement of Synthetic Auxin Herbicides: Aminocyclopyrachlor, Aminocyclopyrachlor-Methyl Ester, Dicamba, and Aminopyralid. Weed Sci. 2010, 58, 103–108. [Google Scholar] [CrossRef]
- Behrens, R.; Lueschen, W.E. Dicamba Voiatility. Weed Sci. 1979, 27, 486–493. [Google Scholar] [CrossRef]
- Willett, C.D.; Grantz, E.M.; Lee, J.A.; Thompson, M.N.; Norsworthy, J.K. Soybean response to dicamba in irrigation water under controlled environmental conditions. Weed Sci. 2019, 67, 354–360. [Google Scholar] [CrossRef]
- Picó, Y.; Blasco, C.; Font, G. Environmental and food applications of LC-tandem mass spectrometry in pesticide-residue analysis: An overview. Mass Spectrom. Rev. 2004, 23, 45–85. [Google Scholar] [CrossRef]
- Malik, A.K.; Blasco, C.; Picó, Y. Liquid chromatography-mass spectrometry in food safety. J. Chromatogr. A 2010, 1217, 4018–4040. [Google Scholar] [CrossRef] [PubMed]
- Majzik, E.S.; Tóth, F.; Benke, L.; Kiss, Z. SPE-LC-MS-MS determination of phenoxy acid herbicides in surface and ground water. Chromatographia 2006, 63, S105–S109. [Google Scholar] [CrossRef]
- McManus, S.-L.; Moloney, M.; Richards, K.; Coxon, C.; Danaher, M. Determination and Occurrence of Phenoxyacetic Acid Herbicides and Their Transformation Products in Groundwater Using Ultra High Performance Liquid Chromatography Coupled to Tandem Mass Spectrometry. Molecules 2014, 19, 20627–20649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, C.; Armstrong, D.W. High-performance liquid chromatography with paired ion electrospray ionization (PIESI) tandem mass spectrometry for the highly sensitive determination of acidic pesticides in water. Anal. Chim. Acta 2013, 792, 1–9. [Google Scholar] [CrossRef]
- Catalina, M.I.; Dallüge, J.; Vreuls, R.J.J.; Brinkman, U.A.T. Determination of chlorophenoxy acid herbicides in water by in situ esterification followed by in-vial liquid-liquid extraction combined with large-volume on-column injection and gas chromatography-mass spectrometry. J. Chromatogr. A 2000, 877, 153–166. [Google Scholar] [CrossRef]
- Rodríguez, I.; Rubí, E.; González, R.; Quintana, J.B.; Cela, R. On-fibre silylation following solid-phase microextraction for the determination of acidic herbicides in water samples by gas chromatography. Anal. Chim. Acta 2005, 537, 259–266. [Google Scholar] [CrossRef]
- Sack, C.; Vonderbrink, J.; Smoker, M.; Smith, R.E. Determination of Acid Herbicides Using Modified QuEChERS with Fast Switching ESI+/ESI- LC-MS/MS. J. Agric. Food Chem. 2015, 63, 9657–9665. [Google Scholar] [CrossRef]
- Steinborn, A.; Alder, L.; Spitzke, M.; Dörk, D.; Anastassiades, M. Development of a QuEChERS-Based Method for the Simultaneous Determination of Acidic Pesticides, Their Esters, and Conjugates Following Alkaline Hydrolysis. J. Agric. Food Chem. 2017, 65, 1296–1305. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.-Y.; Aizawa, T.; Magara, Y. Analysis of pesticides in water with liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Water Res. 1999, 33, 417–425. [Google Scholar] [CrossRef]
- Cundiff, G.T.; Reynolds, D.B.; Mueller, T.C. Evaluation of Dicamba Persistence among Various Agricultural Hose Types and Cleanout Procedures Using Soybean (Glycine max) as a Bio-Indicator. Weed Sci. 2017, 65, 305–316. [Google Scholar] [CrossRef]
- Osborne, P.P.; Xu, Z.; Swanson, K.D.; Walker, T.; Farmer, D.K. Dicamba and 2,4-D residues following applicator cleanout: A potential point source to the environment and worker exposure. J. Air Waste Manag. Assoc. 2015, 65, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- Quintana, J.B.; Rodil, R.; Muniategui-Lorenzo, S.; López-Mahía, P.; Prada-Rodríguez, D. Multiresidue analysis of acidic and polar organic contaminants in water samples by stir-bar sorptive extraction-liquid desorption-gas chromatography-mass spectrometry. J. Chromatogr. A 2007, 1174, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Ouse, D.G.; Gifford, J.M.; Schleier, J.; Simpson, D.D.; Tank, H.H.; Jennings, C.J.; Annangudi, S.P.; Valverde-Garcia, P.; Masters, R.A. A New Approach to Quantify Herbicide Volatility. Weed Technol. 2018, 32, 691–697. [Google Scholar] [CrossRef] [Green Version]
- Bish, M.D.; Farrell, S.T.; Lerch, R.N.; Bradley, K.W. Dicamba Losses to Air after Applications to Soybean under Stable and Nonstable Atmospheric Conditions. J. Environ. Qual. 2019, 48, 1675–1682. [Google Scholar] [CrossRef] [Green Version]
- Shin, E.H.; Choi, J.H.; Abd El-Aty, A.M.; Khay, S.; Kim, S.J.; Im, M.H.; Kwon, C.H.; Shim, J.H. Simultaneous determination of three acidic herbicide residues in food crops using HPLC and confirmation via LC-MS/MS. Biomed. Chromatogr. 2011, 25, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Bian, Z.; Yang, F.; Li, Z.; Fan, Z.; Zhang, H.; Wang, Y.; Zhang, Y.; Tang, G. Determination of multiresidues of three acid herbicides in tobacco by liquid chromatography/tandem mass spectrometry. J. AOAC Int. 2015, 98, 472–476. [Google Scholar] [CrossRef]
- Díez, C.; Traag, W.A.; Zommer, P.; Marinero, P.; Atienza, J. Comparison of an acetonitrile extraction/partitioning and “dispersive solid-phase extraction” method with classical multi-residue methods for the extraction of herbicide residues in barley samples. J. Chromatogr. A 2006, 1131, 11–23. [Google Scholar] [CrossRef]
- Hua, K.; Xiao-Gang, C.; Yu-Xia, H.; Chuan-Lai, X. Simultaneous determination of 13 phenoxy acid herbicide residues in soybean by GC-ECD. Anal. Lett. 2006, 39, 2617–2627. [Google Scholar] [CrossRef]
- Koesukwiwat, U.; Sanguankaew, K.; Leepipatpiboon, N. Rapid determination of phenoxy acid residues in rice by modified QuEChERS extraction and liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 2008, 626, 10–20. [Google Scholar] [CrossRef]
- Guo, H.; Riter, L.S.; Wujcik, C.E.; Armstrong, D.W. Quantitative analysis of dicamba residues in raw agricultural commodities with the use of ion-pairing reagents in LC-ESI-MS/MS. Talanta 2016, 149, 103–109. [Google Scholar] [CrossRef]
- Mueller, T.C.; Wright, D.R.; Remund, K.M. Effect of Formulation and Application Time of Day on Detecting Dicamba in the Air under Field Conditions. Weed Sci. 2013, 61, 586–593. [Google Scholar] [CrossRef]
- Dunn, W.B. Mass spectrometry in systems biology:An introduction. In Methods in Systems Biology; Jameson, D., Verma, M., Westerhoff, H.V., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2011; Volume 500, ISBN 9781629487373. [Google Scholar]
- Colby, B.N.; McCaman, M.W. A comparison of calculation procedures for isotope dilution determinations using gas chromatography mass spectrometry. Biol. Mass Spectrom. 1979, 6, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Berg, T.; Strand, D.H. 13C labelled internal standards-A solution to minimize ion suppression effects in liquid chromatography-tandem mass spectrometry analyses of drugs in biological samples? J. Chromatogr. A 2011, 1218, 9366–9374. [Google Scholar] [CrossRef]
- Panuwet, P.; Hunter, R.E.; D’Souza, P.E.; Chen, X.; Radford, S.A.; Cohen, J.R.; Marder, M.E.; Kartavenka, K.; Ryan, P.B.; Barr, D.B. Biological Matrix Effects in Quantitative Tandem Mass Spectrometry-Based Analytical Methods: Advancing Biomonitoring. In Critical Reviews in Analytical Chemistry; Taylor & Francis Group: Oxfordshire, UK, 2016; Volume 46, pp. 93–105. [Google Scholar]
- Tan, A.; Lévesque, I.A.; Lévesque, I.M.; Boudreau, N.; Lévesque, A. Analyte and internal standard cross signal contributions and their impact on quantitation in LC-MS based bioanalysis. J. Chromatogr. B 2011, 879, 1954–1960. [Google Scholar] [CrossRef]
- Chakravarthy, V.K.; Babu, G.K.; Dasu, R.L.; Prathyusha, P.; Kiran, G.A. The role of relative response factor in related substances method developement by high performace liquid chromatography (HPLC). Rasayan J. Chem. 2011, 4, 919–943. [Google Scholar]
- Nilsson, L.B.; Eklund, G. Direct quantification in bioanalytical LC-MS/MS using internal calibration via analyte/stable isotope ratio. J. Pharm. Biomed. Anal. 2007, 43, 1094–1099. [Google Scholar] [CrossRef]
- Rome, K.; Mcintyre, A. Intelligent use of relative response factors in gas chromatography-flame ionisation detection. Chromatogr. Today 2012, 5, 52–56. [Google Scholar]
- Xiong, W.; Tao, X.; Pang, S.; Yang, X.; Tang, G.L.; Bian, Z. Separation and quantitation of three acidic herbicide residues in tobacco and soil by dispersive solid-phase extraction and UPLC-MS/MS. J. Chromatogr. Sci. 2014, 52, 1326–1331. [Google Scholar] [CrossRef] [Green Version]
- Thompson, M.; Ellison, S.L.R.; Wood, R. Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure Appl. Chem. 2002, 74, 835–855. [Google Scholar] [CrossRef]
- Kelley, K.B.; Riechers, D.E. Gene expression analysis of auxinic herbicide injury in soybeans (Abstract). Weed Sci. Soc. Am. 2003, 43, 105. [Google Scholar]
Sample Availability: Samples of the compounds are available from the authors. |
Time | A (%) | B (%) | Flow µL min−1 |
---|---|---|---|
0 | 80 | 20 | 300 |
2 | 80 | 20 | 300 |
10 | 25 | 75 | 300 |
11 | 25 | 75 | 300 |
12 | 80 | 20 | 300 |
13 | 80 | 20 | 300 |
Concentration of Dicamba Added (ng mL−1) | % Recovery | RSD % | ||
---|---|---|---|---|
Water | Level 1 | 0.1 | 128 | 10.3 |
Level 2 | 1.0 | 108 | 5.6 | |
Level 3 | 10.0 | 110 | 4.9 | |
Air | Level 1 | 1.0 | 124 | 9.2 |
Level 2 | 5.0 | 88 | 5.5 | |
Level 3 | 10.0 | 88 | 3.3 |
Dicamba Application (g ae ha−1) | Total Amount of Dicamba (ng) Per Sample | |||||
---|---|---|---|---|---|---|
Rep 1 | Rep 2 | Rep 3 | Rep 4 | Average | RSD % | |
560 | 729.7 | 763.2 | 549.4 | 741.1 | 668.7 | 14.8 |
2240 | 5172.8 | 4592.6 | 3975.1 | 4480.7 | 4092.2 | 12.0 |
(ng mL−1) | ||||||
---|---|---|---|---|---|---|
Sample | Rep 1 | Rep 2 | Rep 3 | Rep 4 | Average Conc. | RSD % |
Rinse 1 | 296.5 | 278.0 | 293.7 | 274.1 | 285.6 | 4 |
Rinse 2 | 115.1 | 111.9 | 114.1 | 109.5 | 112.7 | 2 |
Rinse 3 | 76.8 | 72.1 | 70.6 | 76.3 | 74.0 | 4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghaste, M.; Hayden, N.C.; Osterholt, M.J.; Young, J.; Young, B.; Widhalm, J.R. Evaluation of a Stable Isotope-Based Direct Quantification Method for Dicamba Analysis from Air and Water Using Single-Quadrupole LC–MS. Molecules 2020, 25, 3649. https://doi.org/10.3390/molecules25163649
Ghaste M, Hayden NC, Osterholt MJ, Young J, Young B, Widhalm JR. Evaluation of a Stable Isotope-Based Direct Quantification Method for Dicamba Analysis from Air and Water Using Single-Quadrupole LC–MS. Molecules. 2020; 25(16):3649. https://doi.org/10.3390/molecules25163649
Chicago/Turabian StyleGhaste, Manoj, Nicholas C. Hayden, Matthew J. Osterholt, Julie Young, Bryan Young, and Joshua R. Widhalm. 2020. "Evaluation of a Stable Isotope-Based Direct Quantification Method for Dicamba Analysis from Air and Water Using Single-Quadrupole LC–MS" Molecules 25, no. 16: 3649. https://doi.org/10.3390/molecules25163649
APA StyleGhaste, M., Hayden, N. C., Osterholt, M. J., Young, J., Young, B., & Widhalm, J. R. (2020). Evaluation of a Stable Isotope-Based Direct Quantification Method for Dicamba Analysis from Air and Water Using Single-Quadrupole LC–MS. Molecules, 25(16), 3649. https://doi.org/10.3390/molecules25163649