Phytochemical, Antibacterial and Antioxidant Activity Evaluation of Rhodiola crenulata
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of the Essential Oil
2.2. Chemical Compositions of the Crude Extracts
2.3. Antibacterial Activity
2.3.1. Antibacterial Activity of the Essential Oil and the Crude Extracts
2.3.2. Antibacterial Activity of the Compounds
2.4. Antioxidant Activity
2.4.1. Antioxidant Activity the Essential Oil and Extracts
2.4.2. Antioxidant Activity of the Compounds
3. Experimental
3.1. Plant Material
3.2. Preparation of the Essential Oil
3.3. Preparation of the Crude Extractss
3.4. Chemical Analysis
3.4.1. Chemical Analysis of the Essential Oil
3.4.2. Determination of the Total Phenols and Total Flavonoids of the Crude Extracts
3.4.3. Chemical Analysis of the Ether Acetate Extract by HPLC
3.5. Antibacterial Activity Test
3.6. Antioxidant Activity
3.6.1. DPPH Radical Scavenging Assay
3.6.2. Reducing Power Assay
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Booker, A.; Zhai, L.; Gkouva, C.; Li, S.; Frommenwiler, D.; Reich, E.; Slater, A.; Heinrich, M. Comparison of different Rhodiola species using NMR-metabolomics and HPTLC techniques. Planta Med. 2016, 82, S1–S381. [Google Scholar] [CrossRef] [Green Version]
- Kelly, G.S. Rhodiola rosea: A possible plant adaptogen. Altern. Med. Rev. 2001, 6, 293–302. [Google Scholar] [PubMed]
- Elameen, A.; Klemsdal, S.S.; Dragland, S.; Fjellheim, S.; Rognlim, O.A. Genetic diversity in a germplasm collection of roseroot (Rhodiola rosea) in Norway studied by AFLP. Biochem. Syst. Ecol. 2008, 36, 706–715. [Google Scholar] [CrossRef]
- Wiedenfeld, H.; Dumaa, M.; Malinowski, M.; Furmanowa, M.; Narantuya, S. Phytochemical and analytical studies of extracts from Rhodiola rosea and Rhodiola quadrifida. Pharmazie 2007, 62, 308–311. [Google Scholar]
- Nabavi, S.; Braidy, N.; Orhan, I.; Badiee, A.; Daglia, M.; Nabavi, S. Rhodiola rosea L. and Alzheimer’s Disease: From farm to pharmacy. Phytother. Res. 2016, 30, 532–539. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, C.M.; Guo, T.; Zhu, Y.L.; Zhao, P. Preliminary screening of 44 plant extracts for anti-tyrosinase and antioxidant activities. Pak. J. Pharm. Sci. 2015, 28, 1737–1744. [Google Scholar]
- Lewicki, S.; Orłowski, P.; Krzyżowska, M.; Kiepura, A.; Skopińska-Różewska, E.; Zdanowski, R. The effect of feeding mice during gestation and nursing with Rhodiola kirilowii extracts or epigallocatechin on CD4 and CD8 cells number and distribution in the spleen of their progeny. Cent. Eur. J. Immunol. 2017, 42, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Lekomtseva, Y.; Zhukova, I.; Wacker, A. Rhodiola rosea in Subjects with prolonged or chronic fatigue symptoms: Results of an open-label clinical trial. Complement. Med. Res. 2017, 24, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Siwicki, A.; Skopinska-Rozewska, E.; Wasiutynski, A.; Wojcik, R.; Zdanowski, R.; Sommer, E.; Buchwald, W.; Furmanowa, M.; Bakula, T.; Stankiewicz, W. The effect of Rhodiola kirilowii extracts on pigs’ blood leukocytes, metabolic (RBA) and proliferative (LPS) activity, and on the bacterial infection and blood leukocytes number in mice. Cent. Eur. J. Immu. 2012, 37, 145–150. [Google Scholar]
- Chen, L.; Yu, B.; Zhang, Y.F.; Gao, X.; Zhu, L.; Ma, T.H.; Yang, H. Bioactivity-guided fractionation of an antidiarrheal chinese herb Rhodiola kirilowii (Regel) maxim reveals (-)–epicatechin-3-gallate and (-)–epigallocate-chin-3-gallate as inhibitors of cystic fibrosis transmembrane conductance regulator. PLoS ONE 2015, 10, 1–12. [Google Scholar]
- Nakamura, S.; Li, X.; Matsuda, H.; Yoshikawa, M. Bioactive constituents from Chinese natural medicines. XXVIII. Chemical structures of acyclic alcohol glycosides from the roots of Rhodiola crenulata. Chem. Pharm. Bull. 2008, 56, 536–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, H.; Wu, X.; Cao, J.; Peng, Y.; Wang, A.; Pei, J.; Xiao, J.; Wang, S. Rhodiola species: A comprehensive review of traditional use, phytochemistry, pharmacology, toxicity, and clinical study. Med. Res. Rev. 2019, 39, 1779–1850. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Tong, Y.; Zou, J.; Chen, P.; Yu, D. Dietary supplement with a combination of Rhodiola crenulata and Ginkgo bilobaenhances the endurance performance in healthy volunteers. Chin. J. Integr. Med. 2009, 15, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Qin, Y.; Wang, Q.; Zhang, L.; Liu, Y.; Wang, T.; Huang, L.; Wu, L.; Xiong, H. The efficacy and safety of Chinese herbal medicine, Rhodiola formulation in treating ischemic heart disease: A systematic review and meta-analysis of randomized controlled trials. Complement. Ther. Med. 2014, 22, 814–825. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.I.; Jang, H.D.; Shetty, K. Evaluation of Rhodiola crenulata and Rhodiola rosea for management of type II diabetes and hypertension. Asia Pac. J. Clin. Nutr. 2006, 15, 425–432. [Google Scholar]
- Chiu, T.; Chen, L.; Su, D.; Lo, H.; Chen, C.; Wang, S.; Chen, W. Rhodiola Crenulata extract prophylaxis for acute mountain sickness: A randomized, double blind, placebo controlled, crossover trial. Ann. Emerg. Med. 2012, 60, S22. [Google Scholar] [CrossRef]
- Zhou, J.T.; Li, C.Y.; Wang, C.H.; Wang, Y.F.; Wang, X.D.; Wang, H.T.; Zhu, Y.; Jiang, M.M.; Gao, X.M. Phenolic compounds from the roots of Rhodiola crenulata and their antioxidant and inducing IFN-γ production activities. Molecules 2015, 20, 13725–13739. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Jiang, X.; Wang, X.; Zhao, Y.; Jia, L.; Chen, F.; Yin, R.; Han, F. A metabolomic study based on accurate mass and isotopic fine structures by dual mode combined-FT-ICR-MS to explore the effects of Rhodiola crenulata extract on Alzheimer disease in rats. J. Pharm. Biomed. Anal. 2019, 166, 347–356. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Teng, X.; Sheng, J.Z. Anti-inflammatory and anti-apoptotic effect of Rhodiola crenulata extract on spinal cord injury in rats. Trop. J. Pharm. Res. 2017, 16, 605–612. [Google Scholar]
- Yang, Y.N.; Liu, Z.Z.; Feng, Z.M.; Jiang, J.S.; Zhang, P.C. Lignans from the root of Rhodiola crenulata. J. Agri. Food Chem. 2012, 60, 964–972. [Google Scholar] [CrossRef]
- Ni, F.; Xie, X.; Liu, L.; Zhao, Y.; Huang, W.; Wang, Z.; Xiao, W. Flavonoids from roots and rhizomes of Rhodiola crenulata. Chin. Tradit. Herb. Drugs 2016, 47, 214–218. [Google Scholar]
- Du, M.; Xie, J. Studies on the chemical-constituents of Rhodiola-crenulata. Acta Chim. Sin. 1994, 52, 927–931. [Google Scholar]
- Cui, J.; Guo, T.; Wang, M. Simultaneous determination of five active compounds in wild and culture materials of Rhodiola crenulata by RP-HPLC. Chin. Pharm. J. 2016, 51, 230–233. [Google Scholar]
- Han, F.; Li, Y.; Mao, X.; Xu, R.; Yin, R. Characterization of chemical constituents in Rhodiola Crenulate by high-performance liquid chromatography coupled with Fourier-transform ion cyclotron resonance mass spectrometer (HPLC-FT-ICR MS). J. Mass Spectrom. 2016, 51, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.S.; Zhou, S.S.; Shen, C.Y.; Jiang, J.G. Isolation and identification of four antioxidants from Rhodiola crenulate and evaluation of their UV photoprotection capacity in vitro. J. Funct. Foods 2020, 66, 103825. [Google Scholar] [CrossRef]
- Li, W.T.; Chuang, Y.H.; Hsieh, J.F. Characterization of maltase and sucrase Inhibitory constituents from Rhodiola crenulata. Foods 2019, 8, 540. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Liu, Y.; Yuan, Y.; Liu, Z.; Huang, L. Molecular interaction studies of acetylcholinesterase with potential acetylcholinesterase inhibitors from the root of Rhodiola crenulata using molecular docking and isothermal titration calorimetry methods. Int. J. Biol. Macromol. 2017, 104, 527–532. [Google Scholar] [CrossRef]
- Li, T.; Zhang, H. Effects of extract methods on chemical constituents of essential oil from Rhodiola crenulata by GC-MS. West. China J. Pharm. Sci. 2010, 25, 389–391. [Google Scholar]
- Bai, Z.; Nan, P.; Zhong, Y. Chemical composition of the essential oil of Rhodiola quadrifida from Xinjiang, China. Chem. Nat. Compd. 2005, 41, 418–419. [Google Scholar] [CrossRef]
- Lei, Y.D.; Nan, P.; Tsering, T.; Wang, L.; Liu, S.P.; Zhong, Y. Interpopulation variability of rhizome essential oils in Rhodiola crenulata from Tibet and Yunnan, China Biochem. Syst. Ecol. 2004, 32, 611–614. [Google Scholar] [CrossRef]
- Lei, Y.D.; Nan, P.; Tsering, T.; Bai, Z.K.; Tian, C.J.; Zhong, Y. Chemical composition of the essential oils of two Rhodiola species from Tibet. Z. Nat. C. 2003, 58, 161–164. [Google Scholar] [CrossRef]
- Olga, K.; Katarzyna, B.; Przybył, J.L.; Pióro-Jabrucka, E.; Czupa, W.; Synowiec, A.; Gniewosz, M.; Costa, R.; Mondello, L.; Weglarz, Z. Antioxidant and antibacterial activity of roseroot (Rhodiola rosea L.) dry extracts. Molecules 2018, 23, 1767. [Google Scholar]
- Panossian, A.; Wikman, G.; Sarris, J. Rosenroot (Rhodiola rosea): Traditional use, chemical composition, pharmacology and clinical efficacy. Phytomedicine 2010, 17, 481–493. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, A.B.; Li, H.L.; Luo, P.; Zhao, W.J.; Long, X.C.; Brinckmann, J.A. There “ain’t no mountain high enough”?: The drivers, diversity and sustainability of China’s Rhodiola trade. J. Ethnopharmcol. 2020, 252, 112379. [Google Scholar] [CrossRef] [PubMed]
- Su, X.F.; Zhang, H.; Shao, J.X.; Wu, H.Y. Theoretical study on the structure and properties of crenulatin molecule in herb Rhodiola crenulata. J. Mol. Struc-theochem. 2007, 847, 59–67. [Google Scholar] [CrossRef]
- Manuguerra, S.; Caccamo, L.; Mancuso, M.; Arena, R.; Rappazzo, A.C.; Genovese, L.; Santulli, A.; Messina, C.M.; Maricchiolo, G. The antioxidant power of horseradish, Armoracia rusticana, underlies antimicrobial and antiradical effects, exerted in vitro. Nat. Prod. Res. 2020, 34, 1567–1570. [Google Scholar] [CrossRef]
- Song, W.; Yuan, Y.; Yu, N.X.; Gu, H.K.; Zhou, Y.F.; Chen, X.G.; Wang, S.Y.; Fan, K.; Ge, Z.Y.; Jin, L.; et al. Antioxidant capacity of extract from Jiangtang Xiaozhi recipe in vitro. J. Tradit. Chin. Med. 2020, 40, 393–400. [Google Scholar]
- Zhuang, W.; Yue, L.F.; Dang, X.F.; Chen, F.; Gong, Y.W.; Lin, X.L.; Luo, Y.M. Rosenroot (Rhodiola): Potential applications in aging-related diseases. Aging Dis. 2019, 10, 134–146. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.L.; Jiang, L.; Tang, X.; Peng, L.X.; Li, X.; Zhao, G.; Zhong, L.Y. Chemical composition, antimicrobial and antioxidant activities of the flower volatile oil of Fagopyrum esculentum, Fagopyrum tataricum and Fagopyrum Cymosum. Molecules 2018, 23, 182. [Google Scholar] [CrossRef] [Green Version]
- Bujor, O.C.; Bourvellec, C.L.; Volf, I.; Popa, V.I.; Dufour, C. Seasonal variations of the phenolic constituents in bilberry (Vaccinium myrtillus L.) leaves, stems and fruits, and their antioxidant activity. Food Chem. 2016, 213, 58–68. [Google Scholar] [CrossRef]
- Sharma, K.; Ko, Y.E.; Assefa, A.D.; Ha, S.; Nile, S.H.; Lee, E.T.; Park, S. Temperature-dependent studies on the total phenolics, flavonoids, antioxidant activities, and sugar content in six onion varieties. J. Food Drug Anal. 2015, 23, 243–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, P.Y.; Wu, L.; Yao, Y.; Ren, G.X. Changes in phytochemical compositions, antioxidant and α-glucosidase inhibitory activities during the processing of tartary buckwheat tea. Food Res. Int. 2013, 50, 562–567. [Google Scholar] [CrossRef]
- Peng, L.X.; Zou, L.; Wang, J.B.; Zhao, J.L.; Xiang, D.B.; Zhao, G. Flavonoids, antioxidant activity and aroma compounds analysis from different kinds of tartary buckwheat tea. Indian J. Pharm. Sci. 2015, 77, 661–667. [Google Scholar] [PubMed]
- Zhong, L.Y.; Zhou, L.G.; Zhou, Y.M.; Chen, Y.Q.; Sui, P.; Wang, J.H.; Wang, M.A. Antimicrobial flavonoids from the twigs of Populus nigra × Populus deltoids. Nat. Prod. Res. 2012, 26, 307–313. [Google Scholar] [CrossRef]
- Wang, J.H.; Liu, H.; Zhao, J.L.; Gao, H.F.; Zhou, L.G.; Liu, Z.Y.; Chen, Y.Q.; Sui, P. Antimicrobial and antioxidant activities of the root bark essential oil of Periploca sepium and its main component 2-hydroxy-4-methoxy-benzaldehyde. Molecules 2010, 15, 5807–5817. [Google Scholar] [CrossRef] [Green Version]
- Demirtas, I.; Erenler, R.; Elmastas, M.; Goktasoglu, A. Studies on the antioxidant potential of flavones of Allium vineale isolated from its water-soluble fraction. Food Chem. 2013, 136, 34–40. [Google Scholar] [CrossRef]
- Fu, R.; Zhang, Y.; Guo, Y.R.; Liu, F.; Chen, F. Determination of phenolic contents and antioxidant activities of extracts of Jatropha curcas L. seed shell, a by-product, a new source of natural antioxidant. Ind. Crop. Prod. 2014, 58, 265–270. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds 1–4 are available from the authors. |
NO. | Compound | Molecular Formula | Retention Time (Rt) | Relative Amount (%) |
---|---|---|---|---|
1 | 3-Methyl-1-buten-3-ol | C5H10O | 2.23 | 2.921 |
2 | Prenol | C5H10O | 4.31 | 4.211 |
3 | Hexanal | C6H12O | 4.67 | 0.042 |
4 | 1-Hexanol | C6H14O | 6.55 | 2.423 |
5 | 6-Methyl-5-hepten-2-one | C8H14O | 9.98 | 0.138 |
6 | 6-Methyl-5-hepten-2-ol | C8H16O | 10.52 | 13.151 |
7 | 2-Phenylethanal | C8H8O | 11.79 | 0.105 |
8 | 1-Octanol | C8H18O | 13.4 | 42.217 |
9 | l-Linalool | C10H18O | 13.88 | 3.886 |
10 | Linalyl propionate | C13H22O2 | 16.37 | 0.334 |
11 | Myrtenol | C10H16O | 16.57 | 0.889 |
12 | n-Octyl acetate | C10H20O2 | 16.83 | 0.274 |
13 | (R)-(+)-beta-Citronellol | C10H20O | 17.39 | 1.416 |
14 | Geraniol | C10H18O | 18.51 | 19.914 |
15 | 1-Decanol | C10H22O | 18.77 | 3.35 |
16 | p-Cymen-7-ol | C10H14O | 19.26 | 0.174 |
17 | Theaspirane B | C13H22O | 19.39 | 0.074 |
18 | Perillol | C10H16O | 19.47 | 0.155 |
19 | trans, trans-2,4-Nonadienal | C9H14O | 19.82 | 0.23 |
20 | p-Mentha-1,4-dien-7-ol | C10H16O | 20.22 | 0.054 |
21 | 2,6,6-Trimethyl-1- cyclohexene-1-ethanol | C11H20O | 20.33 | 0.061 |
22 | Eugenol | C10H12O2 | 20.94 | 0.08 |
23 | Geranyl acetate | C12H20O2 | 21.51 | 0.222 |
24 | Dihydro-beta-ionone | C13H22O | 22.94 | 0.056 |
25 | Dihydro-beta-ionol | C13H24O | 23.23 | 1.407 |
26 | alpha-Cedrol | C15H26O | 27.05 | 0.067 |
27 | Hexadecanoic acid | C16H32O2 | 32.27 | 0.27 |
Extracts | Yields (%) | Total Phenolics (mg/g) | Total Flavonoids (mg/g) |
---|---|---|---|
PE | 6.51 | 12.30 ± 0.09 e | Nd |
EE | 15.59 | 171.89 ± 2.05 a | 162.04 ± 4.21 a |
BE | 53.95 | 129.07 ± 0.24 c | 92.98 ± 0.85 b |
WE | 16.16 | 34.04 ± 3.19 d | Nd |
CE | 7.20 | 134.91 ± 1.69 b | 91.47 ± 1.03 b |
Test Sample | MIC/MBC (mg/mL) | ||||
---|---|---|---|---|---|
S. dysenteriae | S. typhimurium | E. coli | S. aureus | S. albus | |
PE | >5.0/>10.0 | >5.0/>10.0 | >5.0/>10.0 | >5.0/>10.0 | >5.0/>10.0 |
EE | 1.25/2.5 | 2.5/>5.0 | 2.5/10.0 | 1.25/2.5 | 1.25/2.5 |
BE | 5.0/>10.0 | >5.0/>10.0 | 2.5/>10.0 | 2.5/>10.0 | 2.5/>10.0 |
WE | >5.0/>10.0 | >5.0/>10.0 | >5.0/>10.0 | >5.0/>10.0 | >5.0/>10.0 |
CE | 2.5/10.0 | 5.0/>10.0 | 2.5/>10.0 | 2.5/10.0 | 2.5/10.0 |
EO | 5.0/10.0 | >5.0/>10.0 | 5.0/10.0 | >5.0/>10.0 | >5.0/>10.0 |
Streptomycin sulfate (CK+) | 0.013/0.025 | 0.013/0.025 | 0.013/0.025 | 0.025/0.05 | 0.025/0.05 |
Test Sample | MIC/MBC (mg/mL) | ||||
---|---|---|---|---|---|
S. dysenteriae | S. typhimurium | E. coli | S. aureus | S. albus | |
Gallic acid | 0.48/>0.48 | 0.48/>0.48 | 0.48/>0.48 | 0.48/0.48 | 0.48/0.48 |
Ethyl gallate | 0.24/0.48 | 0.24/0.48 | 0.24/0.48 | 0.24/0.48 | 0.24/0.48 |
Rosavin | >0.48/>0.48 | >0.48/>0.48 | >0.48/>0.48 | >0.48/>0.48 | >0.48/>0.48 |
Herbacetin | 0.24/0.48 | 0.24/0.48 | 0.48/>0.48 | 0.48/>0.48 | 0.48/>0.48 |
Streptomycin sulfate (CK+) | 0.013/0.025 | 0.013/0.025 | 0.013/0.025 | 0.025/0.05 | 0.025/0.05 |
Test Sample | Liner Equation | Correlation Coefficient (R) | IC50 (µg/mL) |
---|---|---|---|
PE | Y = 1.3309X + 1.6760 | 0.990 | 314.45 ± 5.15 a |
EE | Y = 2.0043X + 2.2291 | 0.990 | 24.13 ± 0.50 d |
BE | Y = 2.2404X + 1.5111 | 0.988 | 36.08 ±0.85 c |
WE | Y = 1.3430X + 2.1450 | 0.997 | 133.61 ± 3.37 b |
CE | Y = 1.7917X + 2.6556 | 0.986 | 20.34 ± 0.45 e |
EO | Nd | Nd | Nd |
BHT(CK+) | Y = 1.6905X+2.8796 | 0.998 | 17.96 ± 0.82 f |
Test Sample | Liner Equation | Correlation Coefficient (R) | IC50 (µg/mL) |
---|---|---|---|
Gallic acid | Y = 2.2023X + 2.2338 | 0.985 | 18.03 ± 0.43 b |
Ethyl gallate | Y = 1.9158X + 3.6082 | 0.994 | 5.33 ± 0.29 c |
Rosavin | Y = 2.106X + 3.3835 | 0.995 | 5.86 ± 0.27 c |
Herbacetin | Y = 2.4227X + 1.7794 | 0.999 | 21.35 ± 0.42 a |
BHT(CK+) | Y = 1.6905X + 2.8796 | 0.998 | 17.96 ± 0.82 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, L.; Peng, L.; Fu, J.; Zou, L.; Zhao, G.; Zhao, J. Phytochemical, Antibacterial and Antioxidant Activity Evaluation of Rhodiola crenulata. Molecules 2020, 25, 3664. https://doi.org/10.3390/molecules25163664
Zhong L, Peng L, Fu J, Zou L, Zhao G, Zhao J. Phytochemical, Antibacterial and Antioxidant Activity Evaluation of Rhodiola crenulata. Molecules. 2020; 25(16):3664. https://doi.org/10.3390/molecules25163664
Chicago/Turabian StyleZhong, Lingyun, Lianxin Peng, Jia Fu, Liang Zou, Gang Zhao, and Jianglin Zhao. 2020. "Phytochemical, Antibacterial and Antioxidant Activity Evaluation of Rhodiola crenulata" Molecules 25, no. 16: 3664. https://doi.org/10.3390/molecules25163664
APA StyleZhong, L., Peng, L., Fu, J., Zou, L., Zhao, G., & Zhao, J. (2020). Phytochemical, Antibacterial and Antioxidant Activity Evaluation of Rhodiola crenulata. Molecules, 25(16), 3664. https://doi.org/10.3390/molecules25163664