Effects of Ultrasonic-Assisted Extraction on the Yield and the Antioxidative Potential of Bergenia emeiensis Triterpenes
Abstract
:1. Introduction
2. Results
2.1. The Effects of Four Single Factors on the Yield of Triterpenes
2.2. Analysis on Response Surface Optimization of Triterpenes
2.3. The Antioxidant Ability In Vitro
2.4. The Protection on CHO against H2O2
2.5. TBE Could Reduce ROS Level and Promote the Antioxidant Ability
2.6. TBE Could Enhance the Survival of C. elegans under Antioxidant Stress
3. Materials and Methods
3.1. Materials and Chemicals
3.2. Determination of Triterpenes
3.3. Ultrasound-Assisted Extraction (UAE)
3.4. Response Surface Methodology (RSM) Design
3.5. Antioxidant Activity Assays In Vitro
3.5.1. DPPH Radicals Scavenging
3.5.2. Reducing Power
3.5.3. Cell Culture
3.5.4. Establishment of an Oxidative Damage Model
3.5.5. The Cytotoxicity of TBE
3.5.6. The Injury Protection of TBE on CHO Cells against H2O2
3.5.7. Determination of ROS Level
3.5.8. The Measurement of T-AOC and Antioxidant Enzymes as well as the Content of MDA
3.6. The Antioxidant Assays In Vivo
3.6.1. The Maintenance of Caenorhabditis elegans
3.6.2. Food Clearance Assay
3.6.3. Oxidative Stress Assay
3.7. Statistical Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shikov, A.N.; Pozharitskaya, O.N.; Makarova, M.N.; Kovaleva, M.A.; Laakso, I.; Dorman, H.J.D.; Hiltunen, R.; Makarov, V.G.; Galambosi, B. Effect of Bergenia crassifolia L. extracts on weight gain and feeding behavior of rats with high-caloric diet-induced obesity. Phytomedicine 2012, 19, 1250–1255. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, M.R.; Jong-Anurakkun, N.; Hong, G.; Kawabata, J. α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.). Food Chem. 2008, 106, 247–252. [Google Scholar] [CrossRef]
- Chernetsova, E.S.; Crawford, E.A.; Shikov, A.N.; Pozharitskaya, O.N.; Makarov, V.G.; Morlock, G.E. ID-CUBE direct analysis in real time high-resolution mass spectrometry and its capabilities in the identification of phenolic components from the green leaves of Bergenia crassifolia L. Rapid Commun. Mass Sp. 2012, 26, 1329–1337. [Google Scholar] [CrossRef]
- Nazir, N.; Koul, S.; Qurishi, M.A.; Najar, M.H.; Zargar, M.I. Evaluation of antioxidant and antimicrobial activities of Bergenin and its derivatives obtained by chemoenzymatic synthesis. Eur. J. Med. Chem. 2011, 46, 2415–2420. [Google Scholar] [CrossRef]
- Yuldashev, M.P.; Batirov, È.K.; Malikov, V.M. Anthraquinones of Bergenia hissarica. Chem. Nat. Compd. 1993, 29, 543–544. [Google Scholar] [CrossRef]
- Pop, C.; Vlase, L.; Tamas, M. Natural resources containing arbutin. Determination of arbutin in the leaves of Bergenia crassifolia (L.) fritsch. acclimated in romania. Not. Bot. Horti Agrobo. 2009, 37, 129–132. [Google Scholar] [CrossRef]
- Zhang, X.; Gu, C.; Ahmad, B.; Huang, L. Optimization of extract method for Cynomorium songaricum Rupr. by response surface methodology. J. Anal. Methods Chem. 2017, 2017, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Japón-Luján, R.; Luque-Rodríguez, J.M.; Luque de Castro, M.D. Dynamic ultrasound-assisted extraction of oleuropein and related biophenols from olive leaves. J. Chromatogr. A 2006, 1108, 76–82. [Google Scholar] [CrossRef]
- Garcia, S.P.; Morales-Soto, A.; Segura, C.A.; Fernández, G.A. Phenolic-Compound-Extraction systems for fruit and vegetable samples. Molecules 2010, 15, 8813–8826. [Google Scholar] [CrossRef]
- Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature 2000, 408, 239–247. [Google Scholar] [CrossRef]
- Polefka, T.G.; Meyer, T.A.; Agin, P.P.; Bianchini, R.J. Cutaneous oxidative stress. J. Cosmet. Dermatol-US 2012, 11, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Rani, V.; Deep, G.; Singh, R.K.; Palle, K.; Yadav, U.C.S. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci. 2016, 148, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Burda, S.; Oleszek, W. Antioxidant and antiradical activities of flavonoids. J. Agric. Food Chem. 2001, 49, 2774–2779. [Google Scholar] [CrossRef] [PubMed]
- Matkowski, A. Plant in vitro culture for the production of antioxidants—A review. Biotechnol. Adv. 2008, 26, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, B.; Gupta, R. Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp. RGR-14. Process Biochem. 2004, 39, 2115–2122. [Google Scholar] [CrossRef]
- Bian, Y.Y.; Guo, J.; Zhu, K.X.; Guo, X.N.; Peng, W.; Majeed, H.; Zhou, H.M. Macroporous adsorbent resin-based wheat bran polyphenol extracts inhibition effects on H2O2-induced oxidative damage in HEK293 cells. RSC Adv. 2015, 5, 20931–20938. [Google Scholar] [CrossRef]
- Majeed, M.; Hussain, A.I.; Chatha, S.A.S.; Khosa, M.K.K.; Kamal, G.M.; Kamal, M.A.; Zhang, X.; Liu, M. Optimization protocol for the extraction of antioxidant components from Origanum vulgare leaves using response surface methodology. Saudi J. Biol. Sci. 2016, 23, 389–396. [Google Scholar] [CrossRef] [Green Version]
- Smina, T.P.; De, S.; Devasagayam, T.P.A.; Adhikari, S.; Janardhanan, K.K. Ganoderma lucidum total triterpenes prevent radiation-induced DNA damage and apoptosis in splenic lymphocytes in vitro. Mutat. Res.-Genet. Toxicol. Environ. Mutagen. 2011, 726, 188–194. [Google Scholar] [CrossRef]
- Shen, P.; Yue, Y.; Zheng, J.; Park, Y. Caenorhabditis elegans: A convenient in vivo model for assessing the impact of food bioactive compounds on obesity, aging, and alzheimer’s disease. Annu. Rev. Food Sci. Technol. 2018, 9, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, R.; Zhang, J.; Gao, S.; Gao, W.; Zhang, H.; Wang, H.; Han, B. Study of the extraction process and in vivo inhibitory effect of ganoderma triterpenes in oral mucosa cancer. Molecules 2011, 16, 5315–5332. [Google Scholar] [CrossRef]
- Luo, S.Y.; Jiang, X.L.; Jia, L.P.; Tan, C.Y.; Li, M.; Yang, Q.Y.; Ding, C.B. In vivo and in vitro antioxidant activities of methanol extracts from olive leaves on Caenorhabditis elegans. Molecules 2019, 24, 704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmood, R.M.; Soheila, M.; Saeid, A. Radical scavenging and reducing power of Salvia mirzayanii subfractions. Molecules 2008, 13, 2804–2813. [Google Scholar] [CrossRef] [Green Version]
- Terashvili, M.; Pratt, P.F.; Gebremedhin, D.; Narayanan, J.; Harder, D.R. Reactive oxygen species cerebral autoregulation in health and disease. Pediatr. Clin. N. Am. 2006, 53, 1029–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porta, R.M.; Fontrodona, L.; Villanueva, A.; Cerón, J. Basic Caenorhabditis elegans methods: Synchronization and observation. JoVE (J. Vis. Exp.) 2012, 64, e4019. [Google Scholar] [CrossRef] [Green Version]
- Vaghela, M.; Iyer, K.; Pandita, N. In vitro inhibitory effect of Gymnema sylvestre extracts and total gymnemic acids fraction on select cytochrome P450 activities in rat liver microsomes. Eur. J. Drug Metab. Pharmacokinet. 2017, 43, 227–237. [Google Scholar] [CrossRef]
- Garcia-Castello, E.M.; Rodriguez-Lopez, A.D.; Mayor, L.; Ballesteros, R.X.C.; Cassano, A. Optimization of conventional and ultrasound assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. LWT-Food Sci. Technol. 2015, 64, 1114–1122. [Google Scholar] [CrossRef]
- Sablania, V.; Bosco, S.J.D. Optimization of spray drying parameters for Murraya koenigii (Linn) leaves extract using response surface methodology. Powder Technol. 2018, 335, 35–41. [Google Scholar] [CrossRef]
- Lehbili, M.; Alabdul, M.A.; Kabouche, A.; Voutquenne, N.L.; Abedini, A.; Morjani, H.; Ganglof, S.C.; Kabouche, Z. Antibacterial, antioxidant and cytotoxic activities of triterpenes and flavonoids from the aerial parts of Salvia barrelieri Etl. Nat. Prod. Res. 2017, 32, 2683–2691. [Google Scholar] [CrossRef]
- Leichert, L.I.; Gehrke, F.; Gudiseva, H.V.; Blackwell, T.; Ilbert, M.; Walker, A.K.; Strahler, J.R.; Andrews, P.C.; Jakob, U. Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc. Natl. Acad. Sci. USA 2008, 105, 8197–8202. [Google Scholar] [CrossRef] [Green Version]
- Daniel, B.R.C.A.; José, C.C.; Amparo, A.T. Evaluation of the antioxidant capacity, furan compounds and cytoprotective/cytotoxic effects upon caco-2 cells of commercial colombian coffee. Food Chem. 2017, 219, 364–372. [Google Scholar] [CrossRef]
- Zhang, Y.; Mi, D.Y.; Wang, J.; Luo, Y.P.; Yang, X.; Dong, S.; Ma, X.M.; Dong, K.Z. Constituent and effects of polysaccharides isolated from Sophora moorcroftiana seeds on lifespan, reproduction, stress resistance, and antimicrobial capacity in Caenorhabditis elegans. Chin. J. Nat. Med. 2018, 16, 252–260. [Google Scholar] [CrossRef]
Sample Availability: Samples of the B. emeiensis are available from the authors. |
Run | A-Ultrasonic Power (W) | B-Concentration of Ethanol (%) | C-Extraction Time (min) | D-Solvent to Sample Ratio (mL/g) | Yield of Triterpenes (mg UAE/g) |
---|---|---|---|---|---|
1 | 180 | 70 | 30 | 30 | 223.73 |
2 | 210 | 80 | 30 | 30 | 227.19 |
3 | 210 | 90 | 30 | 20 | 171.88 |
4 | 180 | 80 | 15 | 30 | 208.80 |
5 | 210 | 80 | 15 | 40 | 201.34 |
6 | 240 | 70 | 30 | 30 | 220.68 |
7 | 240 | 80 | 30 | 20 | 220.98 |
8 | 240 | 90 | 30 | 30 | 176.82 |
9 | 240 | 80 | 45 | 30 | 208.13 |
10 | 210 | 90 | 15 | 30 | 146.69 |
11 | 210 | 80 | 15 | 20 | 186.76 |
12 | 240 | 80 | 15 | 30 | 181.84 |
13 | 180 | 80 | 30 | 20 | 195.72 |
14 | 210 | 70 | 15 | 30 | 197.70 |
15 | 210 | 80 | 30 | 30 | 200.20 |
16 | 240 | 80 | 30 | 40 | 185.27 |
17 | 210 | 90 | 30 | 40 | 141.10 |
18 | 210 | 70 | 30 | 40 | 209.50 |
19 | 180 | 80 | 30 | 40 | 201.15 |
20 | 210 | 70 | 30 | 20 | 218.47 |
21 | 210 | 80 | 30 | 30 | 224.45 |
22 | 210 | 70 | 45 | 30 | 219.19 |
23 | 210 | 80 | 30 | 30 | 224.44 |
24 | 210 | 80 | 45 | 20 | 218.04 |
25 | 180 | 80 | 45 | 30 | 225.76 |
26 | 180 | 90 | 30 | 30 | 156.42 |
27 | 210 | 90 | 45 | 30 | 172.03 |
28 | 210 | 80 | 30 | 30 | 228.06 |
29 | 210 | 80 | 45 | 40 | 200.44 |
pred | 217.61 | 75.39 | 40.72 | 25.01 | 232.01 |
exp | 210 | 75 | 40 | 25 | 229.37 ± 7.16 |
Source | Sum of Squares | Mean Square | F Value | p-Value |
---|---|---|---|---|
Model | 15651.6 | 1117.97 | 10.43 | <0.0001 *** |
A | 26.62 | 26.62 | 0.25 | 0.626 |
B | 8765.46 | 8765.46 | 81.74 | <0.0001 *** |
C | 1209.16 | 1209.16 | 11.28 | 0.0047 ** |
D | 444.57 | 444.57 | 4.15 | 0.0611 |
AB | 137.38 | 137.38 | 1.28 | 0.2767 |
AC | 21.76 | 21.76 | 0.2 | 0.6592 |
AD | 423.28 | 423.28 | 3.95 | 0.0669 |
BC | 3.7 | 3.7 | 0.035 | 0.8553 |
BD | 118.88 | 118.88 | 1.11 | 0.3102 |
CD | 258.84 | 258.84 | 2.41 | 0.1426 |
A2 | 170.29 | 170.29 | 1.59 | 0.2282 |
B2 | 3739.29 | 3739.29 | 34.87 | <0.0001 *** |
C2 | 641.6 | 641.6 | 5.98 | 0.0283 * |
D2 | 927.26 | 927.26 | 8.65 | 0.0107 * |
Residual | 1501.22 | 107.23 | ||
Lack of fit | 956.54 | 95.65 | 0.7 | 0.7044 |
Pure error | 544.67 | 136.17 | ||
Cor total | 17152.82 |
0 | 25 μg/mL + H2O2 | 50 μg/mL + H2O2 | H2O2 | |
---|---|---|---|---|
CAT (U/mgprot) | 41.11 ± 1.72 | 68.55 ± 5.87 *** | 76.47 ± 10.01 *** | 47.43 ± 2.35 |
SOD (U/mgprot) | 86.77 ± 5.18 | 160.88 ± 4.23 *** | 157.89 ± 7.16 *** | 132.33 ± 6.05 |
T-AOC (U/mgprot) | 4.57 ± 0.84 | 7.40 ± 1.46 ** | 9.81 ± 0.81 *** | 3.11 ± 1.89 |
MDA (nmol/mgprot) | 145.69 ± 16.39 | 237.02 ± 15.52 *** | 213.44 ± 19.43 *** | 300.88 ± 16.60 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, S.; Zeng, C.; Li, J.; Feng, S.; Zhou, L.; Chen, T.; Yuan, M.; Huang, Y.; Yang, H.; Ding, C. Effects of Ultrasonic-Assisted Extraction on the Yield and the Antioxidative Potential of Bergenia emeiensis Triterpenes. Molecules 2020, 25, 4159. https://doi.org/10.3390/molecules25184159
Luo S, Zeng C, Li J, Feng S, Zhou L, Chen T, Yuan M, Huang Y, Yang H, Ding C. Effects of Ultrasonic-Assisted Extraction on the Yield and the Antioxidative Potential of Bergenia emeiensis Triterpenes. Molecules. 2020; 25(18):4159. https://doi.org/10.3390/molecules25184159
Chicago/Turabian StyleLuo, Siyuan, Chen Zeng, Jiajia Li, Shiling Feng, Lijun Zhou, Tao Chen, Ming Yuan, Yan Huang, Hongyu Yang, and Chunbang Ding. 2020. "Effects of Ultrasonic-Assisted Extraction on the Yield and the Antioxidative Potential of Bergenia emeiensis Triterpenes" Molecules 25, no. 18: 4159. https://doi.org/10.3390/molecules25184159
APA StyleLuo, S., Zeng, C., Li, J., Feng, S., Zhou, L., Chen, T., Yuan, M., Huang, Y., Yang, H., & Ding, C. (2020). Effects of Ultrasonic-Assisted Extraction on the Yield and the Antioxidative Potential of Bergenia emeiensis Triterpenes. Molecules, 25(18), 4159. https://doi.org/10.3390/molecules25184159