Cichorins D–F: Three New Compounds from Cichorium intybus and Their Biological Effects
Abstract
:1. Introduction
2. Results and Discussion
3. Biological Activities
3.1. Cytotoxic Effects
3.2. Anthelmintic Effects
4. Conclusions
5. Material and Methods
5.1. General Experimental Procedures
5.2. Plant Material
5.3. Extraction and Isolation
5.3.1. Cichorin D (1)
5.3.2. Cichorin E (2)
5.3.3. Cichorin F (3)
5.4. Cell Culture
Cytotoxic Activity—In Vitro Cell Viability Assays
5.5. Anthelmintic Activity
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Subhash, C.; Mukesh, K.; Pradeep, D.; Ku, A. Studies on Industrial Importance and Medicinal Value of Chicory Plant (Cichorium intybus L.). Int. J. Adv. Res. 2016, 4, 1060–1071. [Google Scholar]
- Liu, Q.; Chen, Y.; Shen, C.; Xiao, Y.; Wang, Y.; Liu, Z.; Liu, X. Chicoric acid supplementation prevents systemic inflammation-induced memory impairment and amyloidogenesis via inhibition of NF-B. Faseb J. 2017, 31, 1494–1507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Sayed, Y.S.; Lebda, M.A.; Mohammed, H.; Neoman, S.A. Chicory (Cichorium intybus L.) Root Extract Regulates the Oxidative Status and Antioxidant Gene Transcripts in CCl4-Induced Hepatotoxicity. PLoS ONE 2015, 10, e0121549. [Google Scholar] [CrossRef] [PubMed]
- Pushparaj, P.N.; Low, H.K.; Manikandan, J.; Tan, B.K.H.; Tan, C.H. Anti-diabetic effects of Cichorium intybus in streptozotocin-induced diabetic rats. J. Ethnopharmacol. 2007, 111, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Hussain, W.; Badshah, L.; Ullah, M.; Ali, M.; Ali, A.; Hussain, F. Quantitative study of medicinal plants used by the communities residing in Koh-e-Safaid Range, northern Pakistani-Afghan borders. J. Ethnobiol. Ethnomed. 2018, 14, 30. [Google Scholar] [CrossRef]
- Rammal, H.; Younos, C.; Bouayed, J.; Chakou, A.; Bedouhene, S.; Soulimani, R. Aperçu ethnobotanique et phytopharmacologique sur Cichorium intybus L. Phytotherapie 2008, 6, 184–186. [Google Scholar] [CrossRef]
- Wang, Y.; Lin, Z.; Zhang, B.; Jiang, Z.; Guo, F.; Yang, T. Cichorium intybus L. Extract Suppresses Experimental Gout by Inhibiting the NF-κB and NLRP3 Signaling Pathways. Int. J. Mol. Sci. 2019, 20, 4921. [Google Scholar] [CrossRef] [Green Version]
- Migliorini, A.A.; Piroski, C.S.; Daniel, T.G.; Cruz, T.M.; Escher, G.B.; do Carmo, M.A.V.; Azevedo, L.; Marques, M.B.; Granato, D.; Rosso, N.D. Red Chicory (Cichorium intybus) Extract Rich in Anthocyanins: Chemical Stability, Antioxidant Activity, and Antiproliferative Activity In Vitro. J. Food Sci. 2019, 84, 990–1001. [Google Scholar] [CrossRef]
- Chandra, K.; Jain, V.; Jabin, A.; Dwivedi, S.; Joshi, S.; Ahmad, S.; Jain, S.K. Effect of Cichorium intybus seeds supplementation on the markers of glycemic control, oxidative stress, inflammation, and lipid profile in type 2 diabetes mellitus: A randomized, double-blind placebo study. Phytother. Res. 2020, 34, 1609–1618. [Google Scholar] [CrossRef]
- Imam, K.M.S.U.; Xie, Y.; Liu, Y.; Wang, F.; Xin, F. Cytotoxicity of Cichorium intybus L. metabolites (review). Oncol. Rep. 2019, 42, 2196–2212. [Google Scholar] [CrossRef]
- Kashani, L.M.T.; Majdzadeh, M.; Khanavi, M.; Taghizadeh, M.; Sadati, N.; Kahkeshani, N.; Vatankhah, M.; Ostadecfbd, S.N. Cytotoxic activity of selected Iranian traditional medicinal plants on colon, colorectal and breast cancer cell lines. Arch. Breast Cancer 2014, 1, 95–98. [Google Scholar]
- Pena-Espinoza, M.; Valente, A.H.; Bornancin, L.; Simonsen, H.T.; Thamsborg, S.M.; Williams, A.R.; Lopez-Munoz, R. Anthelmintic and metabolomic analyses of chicory (Cichorium intybus) identify an industrial by-product with potent in vitro antinematodal activity. Vet. Parasitol. 2020, 280, 109088. [Google Scholar] [CrossRef]
- Sinkovic, L.; Jamnik, P.; Korosec, M.; Vidrih, R.; Meglic, V. In-vitro and in-vivo antioxidant assays of chicory plants (Cichorium intybus L.) as influenced by organic and conventional fertilizers. BMC Plant Biol. 2020, 20, 36. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Afaque, A.; Dwivedi, S.; Jairajpuri, Z.S.; Shamsi, Y.; Khan, M.F.; Khan, M.I.; Ahmed, D. Cichorium intybus attenuates streptozotocin induced diabetic cardiomyopathy via inhibition of oxidative stress and inflammatory response in rats. Interdiscip. Toxicol. 2019, 12, 111–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arshad, A.; Hussain, A.; Pervaiz, S. Evaluation of hepatoprotective effects of silybum marianum and Cichorium intybus extracts. Indo Am. J. Pharm. Sci. 2019, 6, 12176–12186. [Google Scholar]
- Rahimullah, T.G.; Shah, S.T.; Rehman, M.; Hayat, A. Phytochemical and antibacterial screening of Cichorium intybus seeds use in traditional medicine systems in Pakistan. Int. J. Basic Med. Sci. Pharm. 2018, 8, 46–49. [Google Scholar]
- Woolsey, I.D.; Valente, A.H.; Williams, A.R.; Thamsborg, S.M.; Simonsen, H.T.; Enemark, H.L. Anti-protozoal activity of extracts from chicory (Cichorium intybus) against Cryptosporidium parvum in cell culture. Sci. Rep. 2019, 9, 20414. [Google Scholar] [CrossRef] [Green Version]
- Jasim, R.S. Antioxidant, antimicrobial activities and phytochemical constituents of Cichorium intybus L. aerial parts. Int. J. Bot. 2018, 14, 24–29. [Google Scholar] [CrossRef]
- Dahab, R.; Afifi, F. Antiproliferative activity of selected medicinal plants of Jordan against a breast adenocarcinoma cell line (MCF7). Sci. Pharma 2007, 75, 121–136. [Google Scholar] [CrossRef] [Green Version]
- Conforti, F.; Ioele, G.; Statti, G.; Marrelli, M.; Ragno, G.; Menichini, F. Antiproliferative activity against human tumor cell lines and toxicity test on Mediterranean dietary plants. Food Chem. Toxicol. 2008, 46, 3325–3332. [Google Scholar] [CrossRef]
- Saleem, M.; Abbas, K.; Naseer, F.; Ahmad, M.; Syed1, N.H.; Javed, F.; Hussain, K.; Asima, S. Anticancer activity of n-hexane extract of Cichorium intybus on lymphoblastic leukemia cells (Jurkat cells). Afr. J. Plant Sci. 2014, 8, 315–319. [Google Scholar]
- Hazra, B.; Sarkar, R.; Bhattacharyya, S.; Roy, P. Tumour inhibitory activity of chicory root extract against Ehrlich ascites carcinoma in mice. Fitoterapia 2002, 73, 730–733. [Google Scholar] [CrossRef]
- Nawab, A.; Yunus, M.; Mahdi, A.A.; Gupta, S. Evaluation of anti-cancer properties of medicinal plants from the Indiansub-continent. Mol. Cell. Pharmacol. 2011, 3, 21–29. [Google Scholar]
- Mehrandish, R.; Awsat-Mellati, A.; Rahimipour, A.; Dehghan-Nayeri, N. Anti-cancer activity of methanol extracts of Cichorium intybus on human breast cancer SKBR3 cell line. Razavi. Int. J. Med. 2017, 5, e38369. [Google Scholar]
- Esmaeilbeig, M.; Kouhpayeh, S.A.; Amirghofran, Z. An inves-tigation of the growth inhibitory capacity of several medicinal plants from Iran on tumor cell lines. Iran J. Cancer Prev. 2015, 8, e4032. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.X.; Zou, L.; Zhao, Z.Z.; Zhu, H.; He, Q.J.; Yang, B.; Gan, L.S. Terpenoids from Cichorium intybus. Nat. Prod. Commun. 2012, 7, 971–972. [Google Scholar] [CrossRef] [Green Version]
- Seto, M.; Miyase, T.; Umehara, K.; Ueno, A.; Hirano, Y.; Otani, N. Sesquiterpene lactones from Cichorium endivia L. and C. intybus L. and cytotoxic activity. Chem. Pharm. Bull. 1988, 36, 2423–2429. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.T.; Kim, J.I.; Park, H.J.; Yoo, K.O.; Han, Y.N.; Miyamoto, K. Differentiation-inducing effect of magnolialide, a 1 beta-hydroxyeudesmanolide isolated from Cichorium intybus, on human leukemia cells. Biol. Pharm. Bull. 2000, 23, 1005–1007. [Google Scholar] [CrossRef] [Green Version]
- Foster, J.G.; Cassida, K.A.; Turner, K.E. In vitro analysis of the anthelmintic activity of forage chicory (Cichorium intybus L.) sesquiterpene lactones against a predominantly Haemonchus contortus egg population. Vet. Parasitol. 2011, 180, 298–306. [Google Scholar] [CrossRef]
- Athanasiadou, S.; Gray, D.; Younie, D.; Tzamaloukas, O.; Jackson, F.; Kyriazakis, I. The use of chicory for parasite control in organic ewes and their lambs. Parasitology 2007, 134, 299–307. [Google Scholar] [CrossRef] [Green Version]
- Marley, C.L.; Cook, R.; Keatinge, R.; Barrett, J.; Lampkin, N.H. The effect of birdsfoot trefoil (Lotus corniculatus) and chicory (Cichorium intybus) on parasite intensities and performance of lambs naturally infected with helminth parasites. Vet. Parasitol. 2003, 112, 147–155. [Google Scholar] [CrossRef]
- Tzamaloukas, O.; Athanasiadou, S.; Kyriazakis, I.; Jackson, F.; Coop, R.L. The consequences of short-term grazing of bioactive forages on established adult and incoming larvae populations of Teladorsagia circumcincta in lambs. Int. J. Parasitol. 2005, 35, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Molan, A.L.; Duncan, A.J.; Barry, T.N.; McNabb, W.C. Effects of condensed tannins and crude sesquiterpene lactones extracted from chicory on the motility of larvae of deer lungworm and gastrointestinal nematodes. Parasitol. Int. 2003, 52, 209–218. [Google Scholar] [CrossRef]
- Carazzone, C.; Mascherpa, D.; Gazzani, G.; Papetti, A. Iden-tification of phenolic constituents in red chicory salads (Cichorium intybus) by high-performance liquid chromatographywith diode array detection and electrospray ionisation tandemmass spectrometry. Food Chem. 2013, 138, 1062–1071. [Google Scholar] [CrossRef]
- Kisiel, W.; Zielinska, K. Guaianolides from Cichorium intybus and structure revision of Cichorium sesquiterpene lactones. Phytochemistry 2001, 57, 523–527. [Google Scholar] [CrossRef]
- Krebsky, E.O.; Geuns, J.M.C.; de Proft, M. Polyamines and sterois in Cichorium heads. Phytochemistry 1999, 50, 549–553. [Google Scholar] [CrossRef]
- Hussain, H.; Hussain, J.; Saleem, M.; Miana, G.A.; Riaz, M.; Krohn, K.; Anwar, S. Cichorin A: A new benzo-isochromene from Cichorium intybus. J. Asian Nat. Prod. Res. 2011, 13, 566–569. [Google Scholar] [CrossRef]
- Hussain, H.; Hussain, J.; Ali, S.; Al-Harrasi, A.; Saleem, M.; Miana, G.A.; Riaz, M.; Anwar, S.; Hussain, S.; Ali, L. Cichorins B and C: Two new benzo-isochromenes from Cichorium intybus. J. Asian Nat. Prod. Res. 2012, 14, 297–300. [Google Scholar] [CrossRef]
- Chou, T.H.; Chien, S.K.; Hwang, T.L.; Wei, D.C.; Chen, I.S.; Sung, P.J.; Cheng, M.J.; Yang, S.Z.; Chang, K.M.; Chen, J.J. Orthoquinone and naphthalenone derivatives from Berrya ammonilla and their anti-inflammatory activity. Planta Med. 2012, 78, 919–925. [Google Scholar] [CrossRef] [Green Version]
- Ng’ang’a, M.M.; Hussain, H.; Chhabra, S.; Langat-Thoruwa, C.; Krohn, K.; Hussain, J.; Al-Harrasi, A.; Green, I. Eucleanal: A newnaphthalene derivative from Euclea divinorum. Nat. Prod. Commun. 2012, 7, 193–194. [Google Scholar]
- Ng’ang’a, M.M.; Hussain, H.; Chhabra, S.; Langat-Thoruwa, C.; Krohn, K.; Hussain, J.; Al-Harrasi, A.; Green, I. Eucleanal A and B: Two newnapthalene derivatives from Euclea divinorum. Chin. Chem. Lett. 2012, 23, 576–578. [Google Scholar] [CrossRef]
- Mahabusarakam, W.; Hemtasin, C.; Chakthong, S.; Voravuthikunchai, S.P.; Olawumi, I.B. Naphthoquinones, Anthraquinones and Naphthalene Derivatives from the Bulbs of Eleutherine americana. Planta Med. 2010, 76, 345–349. [Google Scholar] [CrossRef]
- Lin, C.N.; Lu, C.M.; Lin, H.C.; Ko, F.N.; Teng, C.M. Novel antiplatelet naphthalene from Rhamnus nakaharai. J. Nat. Prod. 1995, 58, 1934–1940. [Google Scholar] [CrossRef] [PubMed]
- Ganapaty, S.; Thomas, P.S.; Karagianis, G.; Waterman, P.G.; Brun, R. Antiprotozoal and cytotoxic naphthalene derivatives from Diospyros assimilis. Phytochemistry 2006, 67, 1950–1956. [Google Scholar] [CrossRef] [PubMed]
- Uno, H. Allylation of 2-Alkanoyl 1,4-Quinones with Allylsilanes and Allylstannanes. Efficient Synthesis of Pyranonaphthoquinone Antibiotics. J. Org. Chem. 1986, 51, 350–358. [Google Scholar] [CrossRef]
- Zhou, X.M.; Zheng, C.J.; Chen, G.Y.; Song, X.P.; Han, C.R.; Li, G.N.; Fu, Y.H.; Chen, W.H.; Niu, Z.G. Bioactive Anthraquinone Derivatives from the Mangrove-Derived Fungus Stemphylium sp. 33231. J. Nat. Prod. 2014, 77, 2021–2028. [Google Scholar] [CrossRef]
- Verma, R.P.; Ambasta, B.K.; Prasad, G.; Sinha, K.S. Isolation and characterization of a new anthraquinone derivative from Cassia grandis Linn. J. Indian Chem. Soc. 1997, 74, 428. [Google Scholar]
- Jin, H.S.; Zhao, L.M. A contribution to the study of the modified Marschalk reaction: Hydroxymethylation of 6,8-O-dimethyl emodin. Chin. Chem. Lett. 2010, 21, 568–571. [Google Scholar] [CrossRef]
- Delgado, G.; Olivares, M.S.; Cha’vez, M.I.; Ramırez-Apan, T.; Linares, E.; Bye, R.; Espinosa-Garcıa, F.J. Antiinflammatory Constituents from Heterotheca inuloides. J. Nat. Prod. 2001, 64, 861–864. [Google Scholar] [CrossRef]
- Pang, X.; Lin, X.; Tian, Y.; Liang, R.; Wang, J.; Yang, B.; Zhou, X.; Kaliyaperumal, K.; Luo, X.; Tu, Z.; et al. Three new polyketides from the marine sponge-derived fungus Trichoderma sp. SCSIO41004. Nat. Prod. Res. 2018, 32, 105–111. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, H.; Zhang, S.; Yu, Q.; Xuan, L. Sesquiterpenoids fromBombax malabaricum. J. Nat. Prod. 2007, 70, 1526–1528. [Google Scholar] [CrossRef] [PubMed]
- Dias, D.A.; Silva, C.A.; Urban, S. Naphthalene Aglycones and Glycosides from the Australian Medicinal Plant, Dianella callicarpa. Planta Med. 2009, 75, 1442–1447. [Google Scholar] [CrossRef] [PubMed]
- Abdissa, N.; Pan, F.; Gruhonjic, A.; Gräfenstein, J.; Fitzpatrick, P.A.; Landberg, G.; Rissanen, K.; Yenesew, A.; Erdélyi, M. Naphthalene Derivatives from the Roots of Pentas parvifolia and Pentas bussei. J. Nat. Prod. 2016, 79, 2181–2187. [Google Scholar] [CrossRef]
- Thanh, N.V.; Thao, N.P.; Dat, L.D.; Huong, P.T.T.; Lee, S.H.; Jang, H.D.; Cuong, N.X.; Nam, N.H.; Kiem, P.V.; Minh, C.V.; et al. Two new naphthalene glucosides and other bioactive compounds from the carnivorous plant Nepenthes mirabilis. Arch. Pharm. Res. 2015, 38, 1774–1782. [Google Scholar] [CrossRef] [PubMed]
- Periyasamy, K.; Kaliyaperumal, S. Ethnobotanical, Phytochemical and Pharmceutical Studies of Medicinal Plant, Ventilago Maderaspatana Gaertn (Red Creeper): A Review. Int. J. Curr. Pharm. Res. 2016, 8, 16–18. [Google Scholar]
- Ambasta, B.K.; Prasad, G.; Sinha, K.S.; Verma, R.P. An anthraquinone derivative from Cassia grandis Linn. Indian J. Chem. B 1996, 35, 990–991. [Google Scholar]
- Xuea, C.M.; Tianb, L.; Linab, W.H.; Deng, Z.W. Anthraquinone derivatives from Micromonospora rhodorangea. Nat. Prod. Res. 2009, 23, 533–538. [Google Scholar] [CrossRef]
- Habib, M.R.; Nikkon, F.; Rahman, M.; Haque, M.E.; Karim, M.R. Isolation of stigmasterol and beta-sitosterol from methanolic extract of root bark of Calotropis gigantea (Linn). Pak. J. Biol. Sci. 2007, 10, 4174–4176. [Google Scholar]
- Seo, S.; Tomita, Y.; Tori, K.; Yoshimura, Y. Determination of the absolute configuration of a secondary hydroxy group in a chiral secondary alcohol using glycosidation shifts in carbon-13 nuclear magnetic resonance spectroscopy. J. Am. Chem. Soc. 1978, 100, 3331–3339. [Google Scholar] [CrossRef]
- Peña-Espinoza, M.; Valente, A.; Thamsborg, S.M.; Simonsen, H.T.; Boas, U.; Enemark, H.L.; Lopez-Munoz, R.; Williams, A. Antiparasitic activity of chicory (Cichorium intybus) and the role of its natural bioactive compounds: A review. Parasites Vectors 2018, 11, 475. [Google Scholar] [CrossRef]
- Seixas, N.; Ravanello, B.B.; Morgan, I.; Kaluđerović, G.N.; Wessjohann, L.A. Chlorambucil Conjugated Ugi Dendrimers with PAMAM-NH2 Core and Evaluation of Their Anticancer Activity. Pharmaceutics 2019, 11, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smolko, L.; Smolková, R.; Samoľová, E.; Morgan, I.; Saoud, M.; Kaluđerović, G.N. Two isostructural Co (II) flufenamato and niflumato complexes with bathocuproine: Analogues with a different cytotoxic activity. J. Inorg. Biochem. 2020, 210, 111160. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, C.H.C.; de Carvalho, M.G.; Franke, K.; Wessjohann, L. Dammarane-type triterpenoids from the stem of Ziziphus glaziovii Warm. (Rhamnaceae). Phytochemistry 2019, 162, 250–259. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
No | 1H NMR | 13C NMR |
---|---|---|
1 | - | 205.2 |
2 | - | 76.5 |
3 | 6.27 (d, J = 9.0 Hz, 1H) | 122.9 |
4 | 7.37 (d, J = 9.0 Hz, 1H) | 145.7 |
4a | 129.3 | |
5 | 7.62 (d, J = 8.0 Hz, 1H) | 126.8 |
6 | 6.98 (dd, J = 8.5, 2.6 Hz, 1H) | 115.8 |
7 | - | 159.1 |
8 | 6.82 (d, J = 2.6 Hz, 1H) | 114.6 |
8a | - | 136.9 |
7-OMe | 3.83 (s, 3H) | 55.4 |
2-Me | 1.52 (s, 3H) | 33.0 |
2-OH | 3.61 (s, OH, 1H) |
Compound 2 | Compound 3 | |||
---|---|---|---|---|
No | 1H NMR | 13C NMR | 1H NMR | 13C NMR |
1 | – | 151.3 | 161.7 | |
2 | 7.06 (s, 1H) | 103.2 | 6.76 (d, J = 2.0 Hz, 1H) | 105.0 |
3 | – | 129.0 | 163.8 | |
4 | – | 152.0 | 7.34 (d, J = 2.0 Hz, 1H) | 101.9 |
4a | – | 120.1 | 136.6 | |
5 | – | 156.8 | 7.81 (s, 1H) | 123.7 |
6 | 6.98 (dd, J = 1.5, 8.0 Hz, 1H) | 107.3 | 143.7 | |
7 | 7.51 (t, J = 8.0 Hz, 1H) | 128.0 | 139.6 | |
8 | 7.89 (dd, J = 1.5, 8.0 Hz, 1H) | 114.8 | 158.1 | |
8a | – | 131.1 | 131.5 | |
9 | – | – | 181.8 | |
9a | – | – | 118.1 | |
10 | – | – | 183.8 | |
10a | – | – | 125.6 | |
1-OMe | 3.99 (s, 3H) | 55.7 | 3.97 (s, 3H) | 56.5 |
3-OMe | – | – | 3.95 (s, 3H) | 55.8 |
4-OMe | 3.82 (s, 3H) | 63.8 | ||
5-Ome | 4.04 (s, 3H) | 56.1 | ||
8-OMe | – | – | 3.92 (s, 3H) | 61.5 |
6-Me | – | – | 2.39 (s, 3H) | 20.7 |
7-Me | – | – | 2.31 (s, 3H) | 12.1 |
COMe | 2.78 (s, 3H) | 31.4 | ||
COMe | – | 201.2 |
IC50 Values (after 48 h Treatment) | Assay | Compound 1 | Compound 2 | Compound 3 |
---|---|---|---|---|
MDA-MB-468 (breast cancer) | MTT | >100 µM | 85.9 µM | 41.0 µM |
CV | >100 µM | 80.0 µM | 47.7 µM | |
MDA-MB-231 (breast cancer) | MTT | >100 µM | >100 µM | 45.6 µM |
CV | >100 µM | >100 µM | 49.1 µM | |
SK-N-MC (Ewing’s sarcoma) | MTT | >100 µM | 71.1 µM | 71.9 µM |
CV | >100 µM | 56.4 µM | 52.9 µM | |
PC-3 (prostate cancer) | MTT | >100 µM | >100 µM | >100 µM |
CV | >100 µM | >100 µM | >100 µM |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.F.; Nasr, F.A.; Noman, O.M.; Alyhya, N.A.; Ali, I.; Saoud, M.; Rennert, R.; Dube, M.; Hussain, W.; Green, I.R.; et al. Cichorins D–F: Three New Compounds from Cichorium intybus and Their Biological Effects. Molecules 2020, 25, 4160. https://doi.org/10.3390/molecules25184160
Khan MF, Nasr FA, Noman OM, Alyhya NA, Ali I, Saoud M, Rennert R, Dube M, Hussain W, Green IR, et al. Cichorins D–F: Three New Compounds from Cichorium intybus and Their Biological Effects. Molecules. 2020; 25(18):4160. https://doi.org/10.3390/molecules25184160
Chicago/Turabian StyleKhan, Muhammad Farooq, Fahd A. Nasr, Omar M. Noman, Nouf Abdulaziz Alyhya, Iftikhar Ali, Mohamad Saoud, Robert Rennert, Mthandazo Dube, Wahid Hussain, Ivan R. Green, and et al. 2020. "Cichorins D–F: Three New Compounds from Cichorium intybus and Their Biological Effects" Molecules 25, no. 18: 4160. https://doi.org/10.3390/molecules25184160
APA StyleKhan, M. F., Nasr, F. A., Noman, O. M., Alyhya, N. A., Ali, I., Saoud, M., Rennert, R., Dube, M., Hussain, W., Green, I. R., Basudan, O. A. M., Ullah, R., Anazi, S. H., & Hussain, H. (2020). Cichorins D–F: Three New Compounds from Cichorium intybus and Their Biological Effects. Molecules, 25(18), 4160. https://doi.org/10.3390/molecules25184160