Effect of Daily Intake of Green Tea Catechins on Cognitive Function in Middle-Aged and Older Subjects: A Randomized, Placebo-Controlled Study
Abstract
:1. Introduction
2. Results
2.1. MMSE-J (Interactive Test)
2.2. Cognitrax Test (PC-Based Cognitive Function Test)
2.2.1. Performance on Memory Tasks
2.2.2. Performance on Attention Tasks
2.2.3. Performance on Facial Expression Recognition Tasks
2.2.4. Performance on Working Memory Tasks
2.2.5. Performance on Visual Information Processing Tasks
2.2.6. Performance on Motor Function Tasks
2.3. Blood Biomarkers
3. Discussion
4. Materials and Methods
4.1. Ethical Considerations
4.2. Subjects
4.3. Study Design
4.4. Test Food
4.5. Patient Evaluations
4.5.1. MMSE-J
4.5.2. Cognitrax Test
4.5.3. Blood Biomarkers
4.6. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Prince, M.; Wimo, A.; Guerchet, M.; Ali, G.C.; Wu, Y.T.; Prina, M. Alzheimer’s Disease International. World Alzheimer Report 2015. Available online: https://www.alz.co.uk/research/world-report (accessed on 3 July 2020).
- Cabinet Office. Annual Report on the Ageing Society Summary FY 2019. Available online: https://www8.cao.go.jp/kourei/english/annualreport/2019/pdf/2019.pdf. (accessed on 3 July 2020).
- Sekita, A.; Ninomiya, T.; Tanizaki, Y.; Doi, Y.; Hata, J.; Yonemoto, K.; Arima, H.; Sasaki, K.; Iida, M.; Iwaki, T.; et al. Trends in prevalence of Alzheimer’s disease and vascular dementia in a Japanese community: The Hisayama Study. Acta Psychiatr. Scand. 2010, 122, 319–325. [Google Scholar] [CrossRef]
- Ninomiya, T. Japanese Legacy Cohort Studies: The Hisayama Study. J. Epidemiol. 2018, 28, 444–451. [Google Scholar] [CrossRef] [Green Version]
- Noguchi-Shinohara, M.; Yuki, S.; Dohmoto, C.; Ikeda, Y.; Samuraki, M.; Iwasa, K.; Yokogawa, M.; Asai, K.; Komai, K.; Nakamura, H.; et al. Consumption of Green Tea, but Not Black Tea or Coffee, Is Associated with Reduced Risk of Cognitive Decline. PLoS ONE 2014, 9, e96013. [Google Scholar] [CrossRef] [Green Version]
- Kuriyama, S.; Hozawa, A.; Ohmori, K.; Shimazu, T.; Matsui, T.; Ebihara, S.; Awata, S.; Nagatomi, R.; Arai, H.; Tsuji, I. Green tea consumption and cognitive function: A cross-sectional study from the Tsurugaya Project. Am. J. Clin. Nutr. 2006, 83, 355–361. [Google Scholar] [CrossRef] [Green Version]
- Kataoka, Y.; Utsunomiya, K.; Kimbara, N.; Fukushima, K.; Mori, T.; Shiba, J.; Utsunomiya, S.; Hasebe, Y.; Nishida, K.; Hamamoto, K.; et al. Preventive effect of green tea containing theanine at a high concentration on dementia in aged volunteers. J. Mibyou Syst. Ass. 2009, 15, 17–23. (In Japanese) [Google Scholar]
- Ide, K.; Yamada, H.; Takuma, N.; Park, M.; Wakamiya, N.; Nakase, J.; Ukawa, Y.; Sagesaka, Y.M. Green Tea Consumption Affects Cognitive Dysfunction in the Elderly: A Pilot Study. Nutrients 2014, 6, 4032–4042. [Google Scholar] [CrossRef]
- Baba, Y.; Takihara, T.; Kaneko, T.; Sagesaka, Y. Effects of a daily intake of matcha on cognitive function in middle-aged and older subjects—A placebo-controlled, randomized, double-blind, parallel-group study. Jpn. Pharmacol. Ther. 2019, 47, 1689–1702. [Google Scholar]
- Rezai-Zadeh, K.; Arendash, G.W.; Hou, H.; Fernandez, F.; Jensen, M.; Runfeldt, M.; Shytle, R.D.; Tan, J. Green tea epigallocatechin-3-gallate (EGCG) reduces β-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res. 2008, 1214, 177–187. [Google Scholar] [CrossRef]
- Jia, N.; Han, K.; Kong, J.-J.; Zhang, X.-M.; Sha, S.; Ren, G.-R.; Cao, Y.-P. (−)-Epigallocatechin-3-gallate alleviates spatial memory impairment in APP/PS1 mice by restoring IRS-1 signaling defects in the hippocampus. Mol. Cell. Biochem. 2013, 380, 211–218. [Google Scholar] [CrossRef]
- Chang, X.; Rong, C.; Chen, Y.; Yang, C.; Hu, Q.; Mo, Y.; Zhang, C.; Gu, X.; Zhang, L.; He, W.; et al. (−)-Epigallocatechin-3-gallate attenuates cognitive deterioration in Alzheimer’s disease model mice by upregulating neprilysin expression. Exp. Cell Res. 2015, 334, 136–145. [Google Scholar] [CrossRef]
- Walker, J.M.; Klakotskaia, D.; Ajit, D.; Weisman, G.A.; Wood, W.G.; Sun, G.Y.; Serfozo, P.; Simonyi, A.; Schachtman, T.R. Beneficial Effects of Dietary EGCG and Voluntary Exercise on Behavior in an Alzheimer’s Disease Mouse Model. J. Alzheimer’s Dis. 2015, 44, 561–572. [Google Scholar] [CrossRef]
- Rezai-Zadeh, K.; Shytle, D.; Sun, N.; Mori, T.; Hou, H.; Jeanniton, D.; Ehrhart, J.; Townsend, K.; Zeng, J.; Morgan, D.; et al. Green Tea Epigallocatechin-3-Gallate (EGCG) Modulates Amyloid Precursor Protein Cleavage and Reduces Cerebral Amyloidosis in Alzheimer Transgenic Mice. J. Neurosci. 2005, 25, 8807–8814. [Google Scholar] [CrossRef] [Green Version]
- Haskell, C.F.; Kennedy, D.O.; Milne, A.L.; Wesnes, K.; Scholey, A. The effects of l-theanine, caffeine and their combination on cognition and mood. Biol. Psychol. 2008, 77, 113–122. [Google Scholar] [CrossRef]
- Sugishita, M.; Koshizuka, Y.; Sudou, S.; Sugishita, K.; Hemmi, I.; Karasawa, H.; Ihara, M.; Asada, T.; Mihara, B. The validity and reliability of the Japanese Version of the Mini-Mental State Examination (MMSE-J) with the original procedure of the Attention and Calculation Task. J. Cogn. Neurosci. 2018, 20, 91–110. [Google Scholar] [CrossRef]
- Manly, J.J.; Tang, M.-X.; Schupf, N.; Stern, Y.; Vonsattel, J.-P.G.; Mayeux, R. Frequency and course of mild cognitive impairment in a multiethnic community. Ann. Neurol. 2008, 63, 494–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unno, T.; Kondo, K.; Itakura, H.; Takeo, T. Analysis of (−)-Epigallocatechin Gallate in Human Serum Obtained after Ingesting Green Tea. Biosci. Biotechnol. Biochem. 1996, 60, 2066–2068. [Google Scholar] [CrossRef]
- Nakagawa, K.; Okuda, S.; Miyazawa, T. Dose-dependent incorporation of tea catechins, (-)-epigallocatechin-3-gallate and (-)-epigallocatechin, into human plasma. Biosci. Biotechnol. Biochem. 1997, 61, 1981–1985. [Google Scholar] [CrossRef]
- Matsumura, Y.; Nakagawa, Y.; Mikome, K.; Yamamoto, H.; Osakabe, N. Enhancement of Energy Expenditure following a Single Oral Dose of Flavan-3-Ols Associated with an Increase in Catecholamine Secretion. PLoS ONE 2014, 9, e112180. [Google Scholar] [CrossRef]
- Kamio, N.; Suzuki, T.; Watanabe, Y.; Suhara, Y.; Osakabe, N. A single oral dose of flavan-3-ols enhances energy expenditure by sympathetic nerve stimulation in mice. Free. Radic. Biol. Med. 2016, 91, 256–263. [Google Scholar] [CrossRef]
- Addicott, M.A.; Laurienti, P.J. A comparison of the effects of caffeine following abstinence and normal caffeine use. Psychopharmacology 2009, 207, 423–431. [Google Scholar] [CrossRef] [Green Version]
- Borgwardt, S.; Hammann, F.; Scheffler, K.; Kreuter, M.; Drewe, J.; Beglinger, C. Neural effects of green tea extract on dorsolateral prefrontal cortex. Eur. J. Clin. Nutr. 2012, 66, 1187–1192. [Google Scholar] [CrossRef]
- Scholey, A.; Downey, L.A.; Ciorciari, J.; Pipingas, A.; Nolidin, K.; Finn, M.; Wines, M.; Catchlove, S.J.; Terrens, A.; Barlow, E.; et al. Acute neurocognitive effects of epigallocatechin gallate (EGCG). Appetite 2012, 58, 767–770. [Google Scholar] [CrossRef]
- Ceppa, F.; Mancini, A.; Tuohy, K.M. Current evidence linking diet to gut microbiota and brain development and function. Int. J. Food Sci. Nutr. 2018, 70, 1–19. [Google Scholar] [CrossRef]
- Pervin, M.; Unno, K.; Takagaki, A.; Isemura, M.; Nakamura, Y. Function of Green Tea Catechins in the Brain: Epigallocatechin Gallate and its Metabolites. Int. J. Mol. Sci. 2019, 20, 3630. [Google Scholar] [CrossRef] [Green Version]
- Unno, T.; Sugimoto, A.; Kakuda, T. Scavenging effect of tea catechins and their epimers on superoxide anion radicals generated by a hypoxanthine and xanthine oxidase system. J. Sci. Food Agric. 2000, 80, 601–606. [Google Scholar] [CrossRef]
- Unno, K.; Takabayashi, F.; Kishido, T.; Oku, N. Suppressive effect of green tea catechins on morphologic and functional regression of the brain in aged mice with accelerated senescence (SAMP10). Exp. Gerontol. 2004, 39, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Unno, K.; Takabayashi, F.; Yoshida, H.; Choba, D.; Fukutomi, R.; Kikunaga, N.; Kishido, T.; Oku, N.; Hoshino, M. Daily consumption of green tea catechin delays memory regression in aged mice. Biogerontology 2006, 8, 89–95. [Google Scholar] [CrossRef]
- Ide, K.; Yamada, H.; Takuma, N.; Kawasaki, Y.; Harada, S.; Nakase, J.; Ukawa, Y.; Sagesaka, Y.M. Effects of green tea consumption on cognitive dysfunction in an elderly population: A randomized placebo-controlled study. Nutr. J. 2015, 15, 49. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, K.; Barger, S.W.; Blalock, E.M.; Mattson, M.P. Activation of K+ channels and suppression of neuronal activity by secreted β-amyloid-precursor protein. Nature 1996, 379, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Kitazume, S.; Yoshihisa, A.; Yamaki, T.; Oikawa, M.; Tachida, Y.; Ogawa, K.; Imamaki, R.; Hagiwara, Y.; Kinoshita, N.; Takeishi, Y.; et al. Soluble Amyloid Precursor Protein 770 Is Released from Inflamed Endothelial Cells and Activated Platelets. J. Biol. Chem. 2012, 287, 40817–40825. [Google Scholar] [CrossRef] [Green Version]
- Mayeux, R.; Honig, L.S.; Tang, M.-X.; Manly, J.; Stern, Y.; Schupf, N.; Mehta, P.D. Plasma A 40 and A 42 and Alzheimer’s disease: Relation to age, mortality, and risk. Neurology 2003, 61, 1185–1190. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Figurov, A. Role of Neurotrophins in Synapse Development and Plasticity. Rev. Neurosci. 1997, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Pillai, A.; Kale, A.; Joshi, S.R.; Naphade, N.; Raju, M.S.V.K.; Nasrallah, H.; Mahadik, S.P. Decreased BDNF levels in CSF of drug-naive first-episode psychotic subjects: Correlation with plasma BDNF and psychopathology. Int. J. Neuropsychopharmacol. 2009, 13, 535. [Google Scholar] [CrossRef] [Green Version]
- Laske, C.; Stransky, E.; Leyhe, T.; Eschweiler, G.W.; Wittorf, A.; Richartz, E.; Bartels, M.; Buchkremer, G.; Schott, K. Stage-dependent BDNF serum concentrations in Alzheimer’s disease. J. Neural Transm. 2005, 113, 1217–1224. [Google Scholar] [CrossRef]
- Lee, B.; Shim, I.; Lee, H.; Hahm, D.-H. Effects of Epigallocatechin Gallate on Behavioral and Cognitive Impairments, Hypothalamic–Pituitary–Adrenal Axis Dysfunction, and Alternations in Hippocampal BDNF Expression Under Single Prolonged Stress. J. Med. Food 2018, 21, 979–989. [Google Scholar] [CrossRef]
- Han, J.-Y.; Kim, J.-K.; Kim, J.-H.; Oh, B.-S.; Cho, W.-J.; Jung, Y.D.; Lee, S.-G. Neurorestorative effects of epigallocatechin-3-Gallate on cognitive function in a chronic cerebral hypoperfusion rat model. Restor. Neurol. Neurosci. 2016, 34, 367–377. [Google Scholar] [CrossRef]
- Pervin, M.; Unno, K.; Ohishi, T.; Tanabe, H.; Miyoshi, N.; Nakamura, Y. Beneficial Effects of Green Tea Catechins on Neurodegenerative Diseases. Molecules 2018, 23, 1297. [Google Scholar] [CrossRef] [Green Version]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. “Mini-mental state.” A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Sugishita, M.; Hemmi, I.; Takeuchi, T. Reexamination of the validity and reliability of the Japanese version of the Mini-Mental State Examination (MMSE-J). Jpn. J. Cogn. Neurosci. 2016, 18, 168–183. [Google Scholar] [CrossRef]
- Gualtieri, C.T.; Johnson, L.G. Reliability and validity of a computerized neurocognitive test battery, CNS Vital Signs. Arch. Clin. Neuropsychol. 2006, 21, 623–643. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: THEA-FLAN 90S is available only in Japan, as a food additive. In Japan, it is available from the author. |
Characteristic | Placebo | Catechin | p Values |
---|---|---|---|
Number of subjects | 26 | 26 | |
Sex (M/F) | 13/13 | 13/13 | 1.00 |
Age | 58.1 ± 6.0 | 58.1 ± 6.5 | 1.00 |
Hight (cm) | 161.3 ± 7.2 | 163.0 ± 8.0 | 0.49 |
Weight (kg) | 55.8 ± 8.1 | 58.3 ± 7.5 | 0.33 |
BMI | 21.4 ± 2.5 | 21.8 ± 1.5 | 0.25 |
Task | −1 Week (Baseline) | p Values | 0 Week (Single Dose) | p Values | 12 Weeks | p Values | ||
---|---|---|---|---|---|---|---|---|
VBM | Correct hits immediate | Placebo | 11.2 ± 1.7 | 11.5 ± 1.4 | 11.2 ± 2.2 | |||
Catechin | 11.3 ± 1.9 | 0.484 | 11.4 ± 1.7 | 0.839 | 11.6 ± 1.1 | 1.000 | ||
Correct passes immediate | Placebo | 14.8 ± 0.5 | 14.8 ± 0.4 | 14.6 ± 0.7 | ||||
Catechin | 14.5 ± 1.6 | 0.533 | 14.7 ± 0.4 | 0.630 | 14.5 ± 1.7 | 0.428 | ||
Correct hits delay | Placebo | 10.1 ± 2.4 | 10.0 ± 2.2 | 10.0 ± 3.0 | ||||
Catechin | 10.8 ± 2.3 | 0.272 | 10.8 ± 2.0 | 0.158 | 10.4 ± 2.2 | 0.604 | ||
Correct passes delay | Placebo | 14.5 ± 0.7 | 14.0 ± 1.4 | 14.3 ± 1.1 | ||||
Catechin | 14.0 ± 1.2 | 0.162 | 14.1 ± 1.4 | 0.647 | 13.7 ± 1.8 | 0.242 | ||
VIM | Correct hits immediate | Placebo | 10.4 ± 2.1 | 10.1 ± 1.8 | 10.0 ± 2.0 | |||
Catechin | 10.7 ± 1.8 | 0.690 | 10.5 ± 1.9 | 0.488 | 10.7 ± 1.6 | 0.239 | ||
Correct passes immediate | Placebo | 12.5 ± 2.0 | 12.4 ± 2.0 | 12.2 ± 2.2 | ||||
Catechin | 12.2 ± 1.9 | 0.623 | 12.7 ± 1.6 | 0.673 | 12.5 ± 1.3 | 0.914 | ||
Correct hits delay | Placebo | 10.4 ± 2.1 | 10.4 ± 2.0 | 9.0 ± 2.5 | ||||
Catechin | 10.3 ± 2.4 | 0.903 | 10.4 ± 1.9 | 0.932 | 10.3 ± 1.5 | 0.046 | ||
Correct passes delay | Placebo | 11.4 ± 2.4 | 11.4 ± 2.6 | 10.8 ± 2.5 | ||||
Catechin | 11.5 ± 2.0 | 0.955 | 11.0 ± 2.1 | 0.239 | 11.0 ± 2.0 | 0.957 |
Task | −1 Week (Baseline) | p Values | 0 Week (Single Dose) | p Values | 12 Weeks | p Values | ||
---|---|---|---|---|---|---|---|---|
ST (Part 1) | Simple reaction time (ms) [A] | Placebo | 355 ± 74 | 374 ± 174 | 341 ± 52 | |||
Catechin | 357 ± 73 | 0.660 | 348 ± 78 | 0.877 | 360 ± 79 | 0.522 | ||
ST (Part 2) | Complex reaction time correct (ms) [B] | Placebo | 684 ± 107 | 670 ± 108 | 676 ± 81 | |||
Catechin | 671 ± 85 | 0.942 | 655 ± 81 | 0.796 | 661 ± 74 | 0.587 | ||
ST (Part 3) | Stroop reaction time correct [C] | Placebo | 779 ± 111 | 749 ± 117 | 766 ± 117 | |||
Catechin | 770 ± 115 | 0.615 | 737 ± 91 | 0.889 | 748 ± 80 | 0.790 | ||
Stroop commission errors | Placebo | 1.23 ± 1.4 | 1.88 ± 3.7 | 1.24 ± 1.2 | ||||
Catechin | 0.77 ± 0.99 | 0.228 | 0.74 ± 0.96 | 0.072 | 0.77 ± 0.97 | 0.175 | ||
(C/B) × 100 | Placebo | 115 ± 12 | 112 ± 8.2 | 114 ± 12 | ||||
Catechin | 115 ± 11 | 0.906 | 113 ± 8.6 | 0.738 | 114 ± 9.0 | 0.982 | ||
(A/B) × 100 | Placebo | 52.2 ± 8.3 | 56.1 ± 23 | 50.9 ± 7.7 | ||||
Catechin | 53.1 ± 7.1 | 0.656 | 52.8 ± 7.3 | 0.499 | 54.4 ± 9.3 | 0.166 | ||
SAT | Correct responses | Placebo | 43.2 ± 7.4 | 45.4 ± 9.5 | 48.4 ± 5.8 | |||
Catechin | 48.5 ± 5.4 * | 0.005 | 50.6 ± 5.5 | 0.027 | 50.5 ± 7.2 | 0.274 | ||
Errors | Placebo | 6.1 ± 4.1 | 5.0 ± 5.1 | 3.7 ± 3.0 | ||||
Catechin | 3.3 ± 2.5 * | 0.007 | 2.9 ± 1.9 | 0.213 | 3.4 ± 2.9 | 0.812 | ||
Correct reaction time (ms) | Placebo | 1183 ± 162 | 1141 ± 172 | 1094 ± 134 | ||||
Catechin | 1118 ± 110 | 0.097 | 1064 ± 125 | 0.086 | 1059 ± 146 | 0.401 | ||
CPT | Correct responses | Placebo | 39.8 ± 0.6 | 39.7 ± 0.6 | 38.8 ± 3.4 | |||
Catechin | 40.0 ± 0.0 | 0.161 | 39.8 ± 0.4 | 0.738 | 39.9 ± 0.3 | 0.249 | ||
Omission errors | Placebo | 0.15 ± 0.61 | 0.28 ± 0.61 | 1.16 ± 3.4 | ||||
Catechin | 0.00 ± 0.0 | 0.161 | 0.17 ± 0.39 | 0.738 | 0.09 ± 0.29 | 0.249 | ||
Commission errors | Placebo | 0.77 ± 1.6 | 0.68 ± 1.2 | 0.44 ± 0.87 | ||||
Catechin | 0.19 ± 0.40 | 0.218 | 0.04 ± 0.21 * | 0.004 | 0.18 ± 0.39 | 0.483 | ||
Choice reaction time correct (ms) | Placebo | 488 ± 49 | 499 ± 54 | 498 ± 51 | ||||
Catechin | 484 ± 59 | 0.615 | 481 ± 61 | 0.085 | 489 ± 59 | 0.359 | ||
FPCPT (Part 1) | Average correct response time (ms) | Placebo | 397 ± 110 | 397 ± 125 | 371 ± 50 | |||
Catechin | 385 ± 96 | 0.756 | 389 ± 115 | 0.765 | 422 ± 134 | 0.670 | ||
FPCPT (Part 2) | Correct responses | Placebo | 6.0 ± 0.2 | 6.0 ± 0.0 | 6.0 ± 0.2 | |||
Catechin | 6.0 ± 0.0 | 0.336 | 6.0 ± 0.0 | 1.000 | 6.0 ± 0.0 | 0.371 | ||
Average correct response time (ms) | Placebo | 451 ± 56 | 445 ± 47 | 450 ± 46 | ||||
Catechin | 443 ± 63 | 0.459 | 450 ± 67 | 0.893 | 452 ± 53 | 1.000 | ||
Incorrect responses | Placebo | 0.19 ± 0.57 | 0.12 ± 0.33 | 0.32 ± 1.2 | ||||
Catechin | 0.08 ± 0.27 | 0.604 | 0.09 ± 0.29 | 0.726 | 0.14 ± 0.47 | 0.765 | ||
Average incorrect response time (ms) | Placebo | 56.0 ± 165 | 47.5 ± 132 | 51.4 ± 143 | ||||
Catechin | 46.4 ± 173 | 0.681 | 41.1 ± 136 | 0.815 | 43.0 ± 141 | 0.796 | ||
Omission errors | Placebo | 0.04 ± 0.20 | 0.00 ± 0.00 | 0.04 ± 0.20 | ||||
Catechin | 0.00 ± 0.00 | 0.336 | 0.00 ± 0.00 | 1.000 | 0.00 ± 0.00 | 0.371 |
Task | −1 Week (Baseline) | p Values | 0 Week (Single Dose) | p Values | 12 Weeks | p Values | ||
---|---|---|---|---|---|---|---|---|
POET | Correct responses | Placebo | 10.6 ± 1.6 | 11.3 ± 0.8 | 10.4 ± 1.7 | |||
Catechin | 10.5 ± 1.3 | 0.564 | 11.0 ± 1.4 | 0.402 | 10.7 ± 1.0 | 0.904 | ||
Average correct reaction time (ms) | Placebo | 1190 ± 187 | 1176 ± 173 | 1163 ± 169 | ||||
Catechin | 1131 ± 195 | 0.276 | 1113 ± 160 | 0.198 | 1151 ± 195 | 0.827 | ||
Omission errors | Placebo | 1.4 ± 1.6 | 0.7 ± 0.8 | 1.6 ± 1.7 | ||||
Catechin | 1.5 ± 1.3 | 0.564 | 1.0 ± 1.4 | 0.402 | 1.3 ± 1.0 | 0.904 | ||
Commission errors | Placebo | 3.9 ± 2.1 | 3.4 ± 2.5 | 3.0 ± 1.9 | ||||
Catechin | 4.7 ± 2.9 | 0.275 | 4.0 ± 2.8 | 0.472 | 3.3 ± 2.5 | 0.622 | ||
Positive Emotions | Correct hits | Placebo | 5.5 ± 0.9 | 5.8 ± 0.4 | 5.4 ± 1.0 | |||
Catechin | 5.2 ± 0.9 | 0.134 | 5.7 ± 0.7 | 0.838 | 5.5 ± 0.7 | 0.865 | ||
Reaction time | Placebo | 1175 ± 212 | 1167 ± 198 | 1128 ± 188 | ||||
Catechin | 1125 ± 186 | 0.493 | 1116 ± 139 | 0.757 | 1158 ± 178 | 0.502 | ||
Negative Emotions | Correct hits | Placebo | 5.1 ± 0.8 | 5.5 ± 0.7 | 5.1 ± 1.0 | |||
Catechin | 5.2 ± 1.0 | 0.383 | 5.3 ± 0.9 | 0.240 | 5.2 ± 0.9 | 0.891 | ||
Reaction time (ms) | Placebo | 1172 ± 291 | 1186 ± 190 | 1205 ± 195 | ||||
Catechin | 1131 ± 245 | 0.188 | 1109 ± 200 | 0.167 | 1133 ± 229 | 0.197 |
Task | −1 Week (Baseline) | p Values | 0 Week (Single Dose) | p Values | 12 Weeks | p Values | Change from Baseline (%) | |||
---|---|---|---|---|---|---|---|---|---|---|
0 Week | 12 Weeks | |||||||||
FPCPT (Part 3) | Correct responses | Placebo | 14.6 ± 2.3 | 15.4 ± 1.4 | 14.9 ± 3.1 | |||||
Catechin | 15.1 ± 1.5 | 0.804 | 15.5 ± 0.9 | 0.930 | 15.4 ± 1.5 | 0.707 | ||||
Average correct response time (ms) | Placebo | 557 ± 122 | 570 ± 90 | 600 ± 128 | ||||||
Catechin | 513 ± 98 | 0.224 | 538 ± 92 | 0.270 | 534 ± 83 | 0.052 | ||||
Incorrect responses | Placebo | 0.12 ± 0.33 | 0.08 ± 0.28 | 0.60 ± 2.1 | ||||||
Catechin | 0.04 ± 0.20 | 0.312 | 0.00 ± 0.00 | 0.180 | 0.09 ± 0.29 | 0.451 | ||||
Average incorrect response time (ms) | Placebo | 94.0 ± 280 | 50.5 ± 176 | 113 ± 284 | ||||||
Catechin | 29.3 ± 149 | 0.322 | 0.0 ± 0.0 | 0.180 | 59.0 ± 210 | 0.473 | ||||
Omission errors | Placebo | 1.42 ± 2.3 | 0.64 ± 1.4 | 1.08 ± 3.1 | ||||||
Catechin | 0.92 ± 1.5 | 0.804 | 0.52 ± 0.95 | 0.930 | 0.64 ± 1.5 | 0.707 | ||||
FPCPT (Part 4) | Correct responses | Placebo | 12.0 ± 3.3 | 11.8 ± 3.3 | 11.6 ± 3.6 | |||||
Catechin | 12.7 ± 3.1 | 0.454 | 12.9 ± 3.4 | 0.121 | 13.4 ± 3.0 | 0.030 | ||||
Average correct response time (ms) | Placebo | 675 ± 108 | 687 ± 123 | 739 ± 180 | ||||||
Catechin | 656 ± 169 | 0.328 | 629 ± 135 | 0.161 | 614 ± 109 * | 0.012 | −37.2 ± 148 (p = 0.322) | −52.0 ± 116 ** (p = 0.001) | ||
Incorrect responses | Placebo | 1.8 ± 1.8 | 1.0 ± 1.3 | 1.6 ± 1.5 | ||||||
Catechin | 1.2 ± 1.2 | 0.220 | 1.0 ± 1.0 | 0.671 | 1.2 ± 1.1 | 0.398 | ||||
Average incorrect response time (ms) | Placebo | 684 ± 458 | 514 ± 547 | 720 ± 487 | ||||||
Catechin | 525 ± 462 | 0.358 | 541 ± 452 | 0.949 | 585 ± 411 | 0.250 | ||||
Omission errors | Placebo | 4.0 ± 3.3 | 4.2 ± 3.3 | 4.4 ± 3.6 | ||||||
Catechin | 3.3 ± 3.1 | 0.454 | 3.1 ± 3.4 | 0.121 | 2.6 ± 3.0 | 0.030 |
Task | −1 Week (Baseline) | p Values | 0 Week (Single Dose) | p Values | 12 Weeks | p Values | ||
---|---|---|---|---|---|---|---|---|
SDC | Correct responses | Placebo | 55.7 ± 8.8 | 59.6 ± 9.2 | 61.5 ± 8.2 | |||
Catechin | 57.0 ± 11 | 0.642 | 62.2 ± 9.7 | 0.333 | 61.9 ± 11 | 0.879 | ||
Errors | Placebo | 0.50 ± 1.1 | 1.04 ± 1.6 | 0.72 ± 0.98 | ||||
Catechin | 0.77 ± 1.2 | 0.249 | 0.70 ± 0.76 | 0.982 | 0.73 ± 1.1 | 0.800 | ||
NVRT | Correct responses | Placebo | 9.6 ± 2.2 | 9.6 ± 1.9 | 10.1 ± 2.0 | |||
Catechin | 9.5 ± 2.4 | 0.905 | 10.2 ± 1.9 | 0.289 | 10.0 ± 1.7 | 0.885 | ||
Average correct reaction time (ms) | Placebo | 4384 ± 862 | 4131 ± 885 | 4123 ± 1077 | ||||
Catechin | 4047 ± 865 | 0.166 | 4102 ± 694 | 0.901 | 3874 ± 827 | 0.384 | ||
Commission errors | Placebo | 5.0 ± 2.4 | 4.9 ± 1.9 | 4.5 ± 2.2 | ||||
Catechin | 5.3 ± 2.5 | 0.736 | 4.6 ± 2.1 | 0.586 | 4.7 ± 1.9 | 0.681 | ||
Omission errors | Placebo | 0.35 ± 0.56 | 0.44 ± 0.82 | 0.44 ± 0.71 | ||||
Catechin | 0.19 ± 0.40 | 0.319 | 0.17 ± 0.39 | 0.311 | 0.27 ± 0.46 | 0.486 |
Task | −1 Week (Baseline) | p Values | 0 Week (Single Dose) | p Values | 12 Weeks | p Values | ||
---|---|---|---|---|---|---|---|---|
FTT | Right taps average | Placebo | 58.7 ± 6.5 | 59.7 ± 5.9 | 57.7 ± 6.8 | |||
Catechin | 59.5 ± 7.9 | 0.689 | 58.9 ± 7.9 | 0.689 | 57.7 ± 8.0 | 0.983 | ||
Left taps average | Placebo | 55.8 ± 7.1 | 55.4 ± 6.6 | 54.6 ± 7.9 | ||||
Catechin | 55.2 ± 8.2 | 0.787 | 54.8 ± 8.1 | 0.788 | 53.9 ± 7.8 | 0.762 |
n | −1 Week (Baseline) | p Values | 12 Weeks | p Values | Change from Baseline | p Values | ||
---|---|---|---|---|---|---|---|---|
Plasma Aβ (1–40) (pg/mL) | Placebo | 24 | 201 ± 43 | 184 ± 32 | −17.8 ± 32 | |||
Catechin | 21 | 210 ± 51 | 0.446 | 195 ± 46 | 0.439 | −15.0 ± 38 | 0.982 | |
Plasma Aβ (1–42) (pg/mL) | Placebo | 10 | 10.5 ± 3.3 | 9.94 ± 4.2 | −0.52 ± 4.8 | |||
Catechin | 13 | 14.6 ± 7.5 | 0.148 | 15.0 ± 9.0 | 0.088 | 0.46 ± 5.3 | 0.92 | |
Aβ (1-42)/Aβ (1–40) | Placebo | 10 | 0.054 ± 0.03 | 0.053 ± 0.02 | −0.002 ± 0.02 | |||
Catechin | 12 | 0.071 ± 0.04 | 0.418 | 0.075 ± 0.04 | 0.254 | 0.004 ± 0.03 | 0.923 | |
Plasma sAPPα (ng/mL) | Placebo | 24 | 8.5 ± 2.5 | 10.4 ± 2.7 | 1.89 ± 3.2 | |||
Catechin | 22 | 9.6 ± 3.8 | 0.441 | 11.0 ± 2.7 | 0.660 | 1.41 ± 2.7 | 0.733 | |
Plasma APP770 (ng/mL) | Placebo | 23 | 30.9 ± 9.9 | 27.4 ± 8.7 | −3.51 ± 10 | |||
Catechin | 21 | 35.0 ± 12 | 0.200 | 29.8 ± 8.2 | 0.269 | −5.12 ± 10 | 0.372 | |
Serum BDNF (ng/mL) | Placebo | 23 | 20.0 ± 17 | 20.9 ± 13 | 0.90 ± 21 | |||
Catechin | 20 | 17.7 ± 10 | 0.846 | 25.7 ± 11 | 0.158 | 7.97 ± 13 | 0.165 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baba, Y.; Inagaki, S.; Nakagawa, S.; Kaneko, T.; Kobayashi, M.; Takihara, T. Effect of Daily Intake of Green Tea Catechins on Cognitive Function in Middle-Aged and Older Subjects: A Randomized, Placebo-Controlled Study. Molecules 2020, 25, 4265. https://doi.org/10.3390/molecules25184265
Baba Y, Inagaki S, Nakagawa S, Kaneko T, Kobayashi M, Takihara T. Effect of Daily Intake of Green Tea Catechins on Cognitive Function in Middle-Aged and Older Subjects: A Randomized, Placebo-Controlled Study. Molecules. 2020; 25(18):4265. https://doi.org/10.3390/molecules25184265
Chicago/Turabian StyleBaba, Yoshitake, Shun Inagaki, Sae Nakagawa, Toshiyuki Kaneko, Makoto Kobayashi, and Takanobu Takihara. 2020. "Effect of Daily Intake of Green Tea Catechins on Cognitive Function in Middle-Aged and Older Subjects: A Randomized, Placebo-Controlled Study" Molecules 25, no. 18: 4265. https://doi.org/10.3390/molecules25184265
APA StyleBaba, Y., Inagaki, S., Nakagawa, S., Kaneko, T., Kobayashi, M., & Takihara, T. (2020). Effect of Daily Intake of Green Tea Catechins on Cognitive Function in Middle-Aged and Older Subjects: A Randomized, Placebo-Controlled Study. Molecules, 25(18), 4265. https://doi.org/10.3390/molecules25184265