Mast Cell Regulation and Irritable Bowel Syndrome: Effects of Food Components with Potential Nutraceutical Use
Abstract
:1. Introduction
2. Mast Cells
3. Mast Cells and Irritable Bowel Syndrome
4. Nutraceuticals Affecting Mast Cell Activity
4.1. Lipids
4.1.1. Fatty Acids
4.1.2. Cannabinoids, Cannabinoid-Related Compounds and Other Lipidic Molecules
4.1.3. Fat-Soluble Vitamins
4.2. Amino Acids
4.3. Carotenoids
4.4. Polyphenolic Compounds
4.4.1. Flavonoids
4.4.2. Other Polyphenolic Compounds
4.5. Spices
4.5.1. Curcumin
4.5.2. Cinnamon Extract—Cinnamaldehyde
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
5-ASA | 5-aminosalicylic acid |
5-HT | serotonin |
AA | arachidonic acid |
ALA | α-linolenic acid |
Akt | protein kinase B |
APC | adenomatous polyposis coli |
BMMCs | bone marrow-derived mast cells |
C2 | canine mastocytoma cell line |
CCL | C-C motif chemokine ligand |
CD | Crohn’s disease |
CNS | central nervous system |
COX | cyclooxygenase |
CRF | corticotropin releasing factor |
CXCL | Chemokine (C-X-C motif) ligand |
CXCR2 | chemokine (C-X-C motif) ligand 2 (Interleukin 8 receptor beta) |
DHA | docosahexaenoic acid |
DNFB | dinitrofluorobenzene |
DRG | dorsal root ganglia |
DSCG | disodium cromoglicate |
EGCG | epigallocatechin-3-gallate |
ENS | enteric nervous system |
EPA | eicosapentaenoic acid |
ERK | extracellular signal-regulated kinase |
ET-1 | endothelin 1 |
FcεRI | high-affinity IgE receptor |
FGF | fibroblast growth factor |
FODMAPs | fermentable oligosaccharides, disaccharides, monosaccharides and polyols |
GATA-1 | GATA binding protein-1 |
GATA-2 | GATA binding protein-2 |
GI | gastrointestinal |
GLA | γ-linolenic acid |
GM-CSF | granulocyte macrophage colony-stimulating factor |
IBD | inflammatory bowel disease |
IBS | irritable bowel syndrome |
IBS-C | IBS with predominant constipation |
IBS-D | IBS with predominant diarrhea |
IBS-M | mixed IBS |
IBS-U | unclassified IBS |
IFN | interferon |
Ig | immunoglobulin |
IL | interleukin |
IP3 | inositol-1,4,5-triphosphate |
JAM | junctional adhesion molecule |
JNK | c-Jun NH2–terminal kinase |
LIF | leukemia inhibitory factor |
LPS | lipopolysaccharide |
LT | leukotriene |
MAPK | mitogen-activated protein kinase |
MBP | eosinophil major basic protein |
MC-CPA | carboxypeptidase A3 |
MCP | monocyte chemotactic protein |
MIP | macrophage inflammatory protein |
MMP | matrix metalloproteinase |
MMP9 | matrix metallopeptidase 9 |
MRGPRX2 | MAS-related G-protein-coupled receptor X2 |
MS | maternal separation test |
MyD88 | myeloid differentiation primary response 88 |
NFκβ | nuclear factor κβ |
NGF | nerve growth factor |
NK | natural killer |
NO | nitric oxide |
PAF | platelet activating factor |
PAMP | pathogen-associated molecular pattern |
PDGF | platelet-derived growth factor |
PG | prostaglandin |
PI-IBS | post-infectious IBS |
PI3K-Akt | phosphoinositide 3-OH kinase-protein kinase B |
PKC | protein kinase C |
PKC θ | calcium-insensitive protein kinase C theta |
PLCγ1 | phosphoinositide-specific phospholipase C |
pp125 (FAK) | focal adhesion kinase |
PPARγ | peroxisome proliferator-activated receptor γ |
PUFA | polyunsaturated fatty acid |
RANTES | regulated upon activation, normal T cell expressed and secreted |
RBL | Rat basophilic leukemia |
RBL-2H3 | rat basophilic leukemia mast cell line |
ROS | reactive oxygen species |
S1P1 | sphingosine-1-phosphate (S1P) receptor 1 |
S1P2 | sphingosine-1-phosphate (S1P) receptor 2 |
SCF | stem cell factor |
SCFA | short chain fatty acid |
SOC | store-operated Ca2+ channels |
SP | substance P |
SphK | sphingosine kinase |
SyK | tyrosine-protein kinase SYK or spleen tyrosine kinase |
TGF | transforming growth factor |
TLR | toll-like receptors |
TNF | tumor necrosis factor |
Treg | regulatory T cells |
VCAM-1 | vascular cell adhesion molecule 1 |
VEGF | vascular endothelial growth factor |
VIP | vasoactive intestinal peptide |
VDR | vitamin D receptor |
WRS | wrap restraint stress |
References
- Black, C.J.; Ford, A.C. Global burden of irritable bowel syndrome: Trends, predictions and risk factors. Nat. Rev. Gastro. Hepat. 2020, 17, 473–486. [Google Scholar] [CrossRef] [PubMed]
- Grad, S.; Dumitrascu, D.L. Irritable Bowel Syndrome Subtypes: New Names for Old Medical Conditions. Dig. Dis. 2020, 38, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Creed, F. Review article: The incidence and risk factors for irritable bowel syndrome in population-based studies. Aliment Pharm. Therap. 2019, 50, 507–516. [Google Scholar] [CrossRef] [PubMed]
- Canavan, C.; West, J.; Card, T. Review article: The economic impact of the irritable bowel syndrome. Aliment Pharm. Therap. 2014, 40, 1023–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spiller, R.; Major, G. IBS and IBD-separate entities or on a spectrum? Nat. Rev. Gastro. Hepat. 2016, 13, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Balmus, I.M.; Ciobica, A.; Cojocariu, R.; Luca, A.C.; Gorgan, L. Irritable Bowel Syndrome and Neurological Deficiencies: Is There A Relationship? The Possible Relevance of the Oxidative Stress Status. Medicina 2020, 56, 175. [Google Scholar] [CrossRef] [Green Version]
- Ng, Q.X.; Soh, A.Y.S.; Loke, W.; Lim, D.Y.; Yeo, W.S. The role of inflammation in irritable bowel syndrome (IBS). J. Inflamm. Res. 2018, 11, 345–349. [Google Scholar] [CrossRef] [Green Version]
- Verne, G.N.; Price, D.D. Irritable bowel syndrome as a common precipitant of central sensitization. Curr. Rheumatol. Rep. 2002, 4, 322–328. [Google Scholar] [CrossRef]
- Casado-Bedmar, M.; Keita, Å.V. Potential neuro-immune therapeutic targets in irritable bowel syndrome. Therap. Adv. Gastroenter. 2020, 13, 1756284820910630. [Google Scholar] [CrossRef]
- Labanski, A.; Langhorst, J.; Engler, H.; Elsenbruch, S. Stress and the brain-gut axis in functional and chronic-inflammatory gastrointestinal diseases: A transdisciplinary challenge. Psychoneuroendocrinology 2020, 111, 104501. [Google Scholar] [CrossRef]
- Thangam, E.B.; Jemima, E.A.; Singh, H.; Baig, M.S.; Khan, M.; Mathias, C.B.; Church, M.K.; Saluja, R. The Role of Histamine and Histamine Receptors in Mast Cell-Mediated Allergy and Inflammation: The Hunt for New Therapeutic Targets. Front Immunol. 2018, 9, 1873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva, E.Z.; Jamur, M.C.; Oliver, C. Mast Cell Function: A New Vision of an Old Cell. Journal of Histochem. Cytochem 2014, 62, 698–738. [Google Scholar] [CrossRef] [PubMed]
- Galli, S.J.; Borregaard, N.; Wynn, T.A. Phenotypic and functional plasticity of cells of innate immunity: Macrophages, mast cells and neutrophils. Nat. Immunol. 2011, 12, 1035–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentek, R.; Ghigo, C.; Hoeffel, G.; Bulle, M.J.; Msallam, R.; Gautier, G.; Launay, P.; Chen, J.; Ginhoux, F.; Bajénoff, M. Hemogenic Endothelial Fate Mapping Reveals Dual Developmental Origin of Mast Cells. Immunity 2018, 48, 1160–1171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Liu, S.; Xu, J.; Zhang, X.; Han, D.; Liu, J.; Xia, M.; Yi, L.; Shen, Q.; Xu, S.; et al. Adult Connective Tissue-Resident Mast Cells Originate from Late Erythro-Myeloid Progenitors. Immunity 2018, 49, 640–653. [Google Scholar] [CrossRef] [Green Version]
- Dwyer, D.F.; Barrett, N.A.; Austen, K.F. Expression profiling of constitutive mast cells reveals a unique identity within the immune system. Nat. Immunol. 2016, 17, 878–887. [Google Scholar] [CrossRef]
- Gurish, M.F.; Austen, K.F. Developmental Origin and Functional Specialization of Mast Cell Subsets. Immunity 2012, 37, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Collington, S.J.; Timothy, J.; Williams, T.J.; Weller, C.L. Mechanisms underlying the localisation of mast cells in tissues. Trends Immunol. 2011, 32, 478–485. [Google Scholar] [CrossRef]
- Galli, S.J.; Grimbaldeston, M.; Tsai, M. Immunomodulatory mast cells: Negative, as well as positive, regulators of innate and acquired immunity. Nat. Rev. Immunol. 2008, 8, 478–486. [Google Scholar] [CrossRef] [Green Version]
- Iemura, A.; Tsai, M.; Ando, A.; Wershi, B.K.; Galli, S.J. The c-kit Ligand, Stem Cell Factor, Promotes Mast Cell Survival by Suppressing Apoptosis. Am. J. Pathol. 1994, 144, 321–328. [Google Scholar]
- Hogaboam, C.; Kunkel, S.L.; Strieter, R.M.; Taub, D.D.; Lincoln, P.; Standiford, T.J.; Lukacs, N.W. Novel Role of Transmembrane SCF for Mast Cell Activation and Eotaxin Production in Mast Cell-Fibroblast Interactions. J. Immunol. 1998, 160, 6166–6171. [Google Scholar] [PubMed]
- Macey, M.R.; Sturgill, J.L.; Johanna, K.; Morales, J.K.; Falanga, Y.T.; Morales, J.; Sarah, K.; Norton, S.K.; Yerram, N.; Shim, H.; et al. IL-4 and TGF-b1 Counterbalance One Another while Regulating Mast Cell Homeostasis. J. Immunol. 2010, 184, 4688–4695. [Google Scholar] [CrossRef] [PubMed]
- Weller, C.L.; Collington, S.J.; Hartnell, A.; Conroy, D.M.; Kaise, T.; Barker, J.E.; Wilson, M.S.; Taylor, G.W.; Jose, P.J.; Williams, T.J. Chemotactic action of prostaglandin E2 on mouse mast cells acting via the PGE2 receptor 3. Proc. Nat. Acad. Sci. USA 2007, 104, 11712–11717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irani, A.A.; Schechter, N.M.; Craig, S.S.; Deblois, G.; Schwartz, L.B. Two types of human mast cells that have distinct neutral protease compositions. Proc. Nat. Acad. Sci. USA 1986, 83, 4464–4468. [Google Scholar] [CrossRef] [Green Version]
- Pejler, G.; Rönnberg, E.; Waern, I.; Wernersson, S. Mast cell proteases: Multifaceted regulators of inflammatory disease. Blood 2010, 115, 4981–4990. [Google Scholar] [CrossRef] [Green Version]
- Kirshenbaum, A.S.; Swindle, E.; Kulka, M.; Wu, Y.; Metcalfe, D.D. Effect of lipopolysaccharide (LPS) and peptidoglycan (PGN) on human mast cell numbers, cytokine production, and protease composition. BMC Immunol. 2008, 9, 45. [Google Scholar] [CrossRef]
- Gebhardt, T.; Lorentz, A.; Detmer, F.; Trautwein, C.; Bektas, H.; Manns, M.P.; Bischoff, S.C. Growth, phenotype, and function of human intestinal mast cells are tightly regulated by transforming growth factor β1. Gut 2005, 54, 928–934. [Google Scholar] [CrossRef] [Green Version]
- Kanakura, Y.; Thompson, H.; Nakano, T.; Yamamura, T.; Asai, H.; Kitamura, Y.; Metcalfe, D.D.; Galli, S.J. Multiple bidirectional alterations of phenotype and changes in proliferative potential during the in vitro and in vivo passage of clonal mast cell populations derived from mouse peritoneal mast cells. Blood 1988, 72, 877–885. [Google Scholar] [CrossRef] [Green Version]
- Galli, S.J.; Kalesnikoff, J.; Grimbaldeston, M.A.; Piliponsky, A.M.; Williams, C.; Tsai, M. Mast cells as “tunable” effector and immunoregulatory cells: Recent Advances. Annu. Rev. Immunol. 2005, 23, 749–786. [Google Scholar] [CrossRef]
- Subramanian, H.; Gupta, K.; Ali, H. Roles of MAS-related G protein coupled receptor-X2 (MRGPRX2) on mast cell-mediated host defense, pseudoallergic drug reactions and chronic inflammatory diseases. Allergy Clin. Immunol. 2016, 138, 700–710. [Google Scholar] [CrossRef] [Green Version]
- McNeil, B.D.; Pundir, P.; Meeker, S.; Han, L.; Undem, B.J.; Kulka, M.; Dong, X. Identification of a mast cell specific receptor crucial for pseudo-allergic drug reactions. Nature 2015, 519, 237–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, J.S. Mast-cell responses to pathogens. Nat. Rev. Immunol. 2004, 4, 787–799. [Google Scholar] [CrossRef] [PubMed]
- Plum, T.; Xi Wang, W.; Rettel, M.; Krijgsveld, J.; Thorsten, B.; Feyerabend, T.B.; Rodewald, H.R. Human Mast Cell Proteome Reveals Unique Lineage, Putative Functions, and Structural Basis for Cell Ablation. Immunity 2020, 52, 404–416. [Google Scholar] [CrossRef] [PubMed]
- Metz, M.; Siebenhaar, F.; Maurer, M. Mast cell functions in the innate skin immune system. Immunobiology 2008, 213, 251–260. [Google Scholar] [CrossRef]
- Pundir, P.; Liu, R.; Vasavda, C.; Serhan, N.; Limjunyawong, N.; Yee, R.; Zhan, Y.; Dong, X.; Wu, X.; Zhang, Y.; et al. A Connective Tissue Mast Cell-Specific Receptor Detects Bacterial Quorum Sensing Molecules and Mediates Antibacterial Immunity. Cell Host Microbe 2019, 26, 114–122. [Google Scholar] [CrossRef]
- Sibilano, R.; Fross, B.; Pucillo, C.E. Mast cell activation: A complex interplay of positive and negative signaling pathways. Eur. J. Immunol. 2014, 44, 2558–2566. [Google Scholar] [CrossRef]
- MacGlashan, D. IgE receptor and signal transduction in mast cells and basophils. Cur. Op. Immunol. 2008, 20, 717–723. [Google Scholar] [CrossRef]
- Krystel-Whittemore, M.; Dileepan, K.N.; Wood, J.G. Mast Cell: A Multi-Functional Master Cell. Front Immunol. 2016, 6, 620. [Google Scholar] [CrossRef] [Green Version]
- Nakae, S.; Suto, H.; Iikura, M.; Kakurai, M.; Sedgwick, J.D.; Tsai, M.; Galli, S.J. Mast Cells Enhance T Cell Activation: Importance of Mast Cell Costimulatory Molecules and Secreted TNF. J. Immunol. 2006, 176, 2238–2248. [Google Scholar] [CrossRef] [Green Version]
- Wulff, B.C.; Wilgus, T.A. Mast cell activity in the healing wound: More than meets the eye? Exp. Dermatol. 2013, 22, 507–510. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Sukhova, G.K.; Yang, M.; Wolters, P.J.; MacFarlane, L.A.; Libby, P.; Sun, C.; Zhang, Y.; Liu, J.; Ennis, T.L.; et al. Mast cells modulate the pathogenesis of elastase-induced abdominal aortic aneurysms in mice. J. Clin. Investig. 2007, 117, 3359–3368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.Q.; Ma, Y.Y.; Tao, S.F.; Ding, J.; Rao, L.H.; Jiang, H.; Li, J.Y. Mast cell degranulation promotes ischemia reperfusion injury in rat liver. J. Surg. Res. 2014, 186, 170–178. [Google Scholar] [CrossRef] [PubMed]
- Kalesnikoff, J.; Galli, S.J. New developments in mast cell biology. Nat. Immunol. 2008, 9, 1215–1223. [Google Scholar] [CrossRef] [PubMed]
- Gounaris, E.; Erdman, S.E.; Restaino, C.; Gurish, M.F.; Friend, D.S.; Gounari, F.; Lee, D.M.; Zhang, G.; Glickman, J.N.; Shin, K.; et al. Mast cells are an essential hematopoietic component for polyp development. Proc. Natl. Acad. Sci. USA 2007, 104, 19977–19982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uranga, J.A.; Cámara, J.C.; Herradón, E.; Vera, G.; Jagerovic, N.; Quesada, E.; Fernández, J.; Lombó, F.; Abalo, R. New strategies for treatment and prevention of colorectal cancer. In Gastrointestinal Cancers; Tyagi, A., Prasad, S., Eds.; Nova publishers: New York, NY, USA, 2017; pp. 103–170. ISBN 978-1-53610-168-3. [Google Scholar]
- Sinnamon, M.J.; Carter, K.J.; Sims, L.P.; Lafleur, B.; Fingleton, B.; Matrisian, L.M. A protective role of mast cells in intestinal tumorigenesis. Carcinogenesis 2008, 29, 880–886. [Google Scholar] [CrossRef] [Green Version]
- Lovell, R.M.; Ford, A.C. Global prevalence of and risk factors for irritable bowel syndrome: A meta-analysis. Clin. Gastroenterol. Hepatol. 2012, 10, 712–721. [Google Scholar] [CrossRef]
- Schmulson, M.J.; Drossman, D.A. What Is New in Rome IV. J. Neurogastroenterol. 2017, 23, 151–163. [Google Scholar] [CrossRef]
- Fichna, J. A Comprehensive Overview of Irritable Bowel Syndrome-Clinical and Basic Science Aspects; Fichna, J., Ed.; Academic Press-Elsevier: London, UK, 2020; ISBN 978-0-12-821324-7. [Google Scholar]
- Buhner, S.; Schemann, M. Mast cell–nerve axis with a focus on the human gut. BBA-Mol. Basis. Dis. 2012, 1822, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Costa, M.; Brookes, S.J.H.; Hennig, G.W. Anatomy and physiology of the enteric nervous System. Gut 2000, 47, iv15–iv19. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.C.; Perdue, M.H. Role of mast cells in intestinal mucosal function: Studies in models of hypersensitivity and stress. Immunol. Rev. 2001, 179, 61–73. [Google Scholar] [CrossRef]
- Breunig, E.; Michel, K.; Florian Zeller, F.; Stefan Seidl, S.; Weyhern, C.W.H.V.; Schemann, M. Histamine excites neurones in the human submucous plexus through activation of H1, H2, H3 and H4 receptors. J. Physiol. 2007, 583, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Keely, S.J.; Stack, W.A.; O’Donoghue, D.P.; Baird, A.W. Regulation of ion transport by histamine in human colon. Eur. J. Pharmacol. 1995, 279, 203–209. [Google Scholar] [CrossRef]
- Bode, H.; Schmitz, H.; Fromm, M.; Scholz, P.; Riecken, E.O.; Schulzke, J.D. IL-1beta and TNF-alpha, but not IFN-alpha, IFN-gamma, IL-6 or IL-8, are secretory mediators in human distal colon. Cytokine 1998, 10, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, L.B.; Lewis, R.A.; Austen, K.F. Tryptase from Human Pulmonary Mast Cells. J. Biol. Chem. 1981, 256, 11939–11943. [Google Scholar]
- van der Kleij, H.P.M.; Bienenstock, J. Significance of conversation between mast cells and nerves. Allergy Asthma Clin. Immunol. 2005, 1, 65–80. [Google Scholar] [CrossRef]
- Stead, R.H.; Dixon, M.F.; Bramwell, N.H.; Riddell, R.H.; Biennenstock, J. Mast cells are closely apposed to nerves in the human gastrointestinal mucosa. Gastroenterology 1989, 97, 575–585. [Google Scholar] [CrossRef]
- Gebhardt, T.; Gerhard, R.; Bedoui, S.; Erpenbeck, V.J.; Hoffmann, M.W.; Manns, M.P.; Bischoff, S.C. β2-Adrenoceptor-mediated suppression of human intestinal mast cell functions is caused by disruption of filamentous actin dynamics. Eur. J. Immunol. 2005, 35, 1124–1132. [Google Scholar] [CrossRef]
- Zhang, L.; Song, J.; Hou, X. Mast Cells and Irritable Bowel Syndrome: From the Bench to the Bedside. J. Neurogastroent. Motil. 2016, 22, 181–192. [Google Scholar] [CrossRef] [Green Version]
- López Gómez, L.; Bagués, A.; Uranga, J.A.; Abalo, R. Preclinical models of irritable bowel syndrome. In A Comprehensive Overview of Irritable Bowel Syndrome-Clinical and Basic Science Aspects; Fichna, J., Ed.; Academic Press-Elsevier: London, UK, 2020; ISBN 978-0-12-821324-7. [Google Scholar]
- Vannucchi, M.G.; Evangelista, S. Experimental Models of Irritable Bowel Syndrome and the Role of the Enteric Neurotransmission. J. Clin. Med. 2018, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Overman, E.L.; Rivier, J.E.; Moeser, A.J. CRF induces intestinal epithelial barrier injury via the release of mast cell proteases and TNF-α. PLoS ONE. 2012, 7, e39935. [Google Scholar] [CrossRef] [Green Version]
- Taché, Y.; Larauche, M.; Yuan, P.Q.; Million, M. Brain and gut CRF signaling: Biological actions and role in the gastrointestinal tract. Curr. Mol. Pharmacol. 2018, 11, 51–71. [Google Scholar] [CrossRef] [PubMed]
- Krammer, L.; Sowa, A.S.; Lorentz, A. Mast cells in irritable bowel syndrome: A systematic review. J. Gastroint. Liver. Dis. 2019, 28, 463–472. [Google Scholar] [CrossRef]
- Buhner, S.; Li, Q.; Vignali, S.; Barbara, G.; De Giorgio, R.; Stanghellini, V.; Cremon, C.; Zeller, F.; Langer, R.; Daniel, H.; et al. Activation of human enteric neurons by supernatants of colonic biopsy specimens from patients with irritable bowel syndrome. Gastroenterology 2009, 137, 1425–1434. [Google Scholar] [CrossRef] [PubMed]
- Guilarte, M.; Santos, J.; de Torres, I.; Alonso, C.; Vicario, M.; Ramos, L.; Martínez, C.; Casellas, F.; Saperas, E.; Malagelada, J.R. Diarrhoea-predominant IBS patients show mast cell activation and hyperplasia in the jejunum. Gut 2007, 56, 203–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balestra, B.; Vicini, R.; Cremon, C.; Zecchi, L.; Dothel, G.; Vasina, V.; De Giorgio, R.; Paccapelo, A.; Pastoris, O.; Stanghellini, V.; et al. Colonic mucosal mediators from patients with irritable bowel syndrome excite enteric cholinergic motor neurons. Neurogastroent. Motil. 2012, 24, 1118-e570. [Google Scholar] [CrossRef]
- Barbara, G.; Stanghellini, V.; De Giorgio, R.; Cremon, C.; Cottrell, G.S.; Santini, D.; Pasquinelli, G.; Morselli-Labate, A.M.; Grady, E.F.; Bunnett, N.W.; et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 2004, 126, 693–702. [Google Scholar] [CrossRef] [Green Version]
- Liang, W.J.; Zhang, G.; Luo, H.S.; Liang, L.X.; Huang, D.; Zhang, F.C. Tryptase and Protease-Activated Receptor 2 Expression Levels in Irritable Bowel Syndrome. Gut Liver 2016, 10, 382–390. [Google Scholar] [CrossRef] [Green Version]
- Nasser, Y.; Boeckxstaens, G.E.; Wouters, M.M.; Schemann, M.; Vanner, S. Using human intestinal biopsies to study the pathogenesis of irritable bowel syndrome. Neurogastroent. Motil. 2014, 26, 455–469. [Google Scholar] [CrossRef]
- Camilleri, M.; Lasch, K.; Zhou, W. Irritable bowel syndrome: Methods, mechanisms, and pathophysiology. The confluence of increased permeability, inflammation, and pain in irritable bowel syndrome. Am. J. Physiol. Gastrointest. Liver. Physiol. 2012, 303, G775–G785. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Rhee, P.L.; Kim, H.S.; Lee, J.H.; Kim, Y.H.; Kim, J.J.; Rhee, J.C. Mucosal mast cell counts correlate with visceral hypersensitivity in patients with diarrhea predominant irritable bowel syndrome. J. Gastroen. Hepatol. 2006, 21, 71–78. [Google Scholar] [CrossRef]
- O’Sullivan, M.; Clayton, N.; Breslin, N.P.; Harman, I.; Bountra, C.; McLaren, A.; O’Morain, C.A. Increased mast cells in the irritable bowel syndrome. Neurogastroent. Motil. 2000, 12, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Cremon, C.; Carini, G.; Wang, B.; Vasina, V.; Cogliandro, R.F.; De Giorgio, R.; Stanghellini, V.; Grundy, D.; Tonini, M.; De Ponti, F.; et al. Intestinal serotonin release, sensory neuron activation, and abdominal pain in irritable bowel syndrome. Am. J. Gastroenterol. 2011, 106, 1290–1298. [Google Scholar] [CrossRef] [PubMed]
- Barbara, G.; Wang, B.; Stanghellini, V.; de Giorgio, R.; Cremon, C.; Di Nardo, G.; Trevisani, M.; Campi, B.; Geppetti, P.; Tonini, M.; et al. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 2007, 132, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Valdez-Morales, E.E.; Overington, J.; Guerrero-Alba, R.; Ochoa-Cortes, F.; Ibeakanma, C.O.; Spreadbury, I.; Bunnett, N.W.; Beyak, M.; Vanner, S.J. Sensitization of peripheral sensory nerves by mediators from colonic biopsies of diarrhea-predominant irritable bowel syndrome patients: A role for PAR2. Am. J. Gastroenterol. 2013, 108, 1634–1643. [Google Scholar] [CrossRef]
- Cenac, N.; Andrews, C.N.; Holzhausen, M.; Chapman, K.; Cottrell, G.; Andrade-Gordon, P.; Steinhoff, M.; Barbara, G.; Beck, P.; Bunnett, N.W.; et al. Role for protease activity in visceral pain in irritable bowel syndrome. J. Clin. Invest. 2007, 117, 636–647. [Google Scholar] [CrossRef] [Green Version]
- Klooker, T.K.; Braak, B.; Koopman, K.; Welting, O.; Wouters, M.M.; van der Heide, S.; Schemann, M.; Bischoff, S.C.; van den Wijngaard, R.N.; Boeckxstaens, G.E. The mast cell stabiliser ketotifen decreases visceral hypersensitivity and improves intestinal symptoms in patients with irritable bowel syndrome. Gut 2010, 59, 1213–1221. [Google Scholar] [CrossRef]
- Stefanini, G.F.; Prati, E.; Albini, M.C.; Piccinini, G.; Capelli, S.; Castelli, E.; Mazzetti, M.; Gasbarrini, G. Oral disodium cromoglycate treatment on irritable bowel syndrome: An open study on 101 subjects with diarrheic type. Am. J. Gastroenterol. 1992, 87, 55–57. [Google Scholar]
- Stefanini, G.F.; Saggioro, A.; Alvisi, V.; Angelini, G.; Capurso, L.; di Lorenzo, G.; Dobrilla, G.; Dodero, M.; Galimberti, M.; Gasbarrini, G.; et al. Oral cromolyn sodium in comparison with elimination diet in the irritable bowel syndrome, diarrheic type. Multicenter study of 428 patients. Scand. J. Gastroenterol. 1995, 30, 535–541. [Google Scholar] [CrossRef]
- Ghadir, M.R.; Poradineh, M.; Sotodeh, M.; Ansari, R.; Kolahdoozan, S.; Hormati, A.; Yousefi, M.H.; Mirzaei, S.; Vahedi, H. Mesalazine Has No Effect on Mucosal Immune Biomarkers in Patients with Diarrhea-Dominant Irritable Bowel Syndrome Referred to Shariati Hospital: A Randomized Double-Blind, Placebo-Controlled Trial. Middle East J. Dig. Dis. 2017, 9, 20–25. [Google Scholar] [CrossRef]
- Camilleri, M. Current and future pharmacological treatments for diarrhea-predominant irritable bowel syndrome. Expert Opin. Pharmaco. 2013, 14, 1151–1160. [Google Scholar] [CrossRef]
- Zhang, F.M.; Li, S.; Ding, L.; Xiang, S.H.; Zhu, H.T.; Yu, J.H.; Xu, G.Q. Effectiveness of mesalazine to treat irritable bowel syndrome: A meta-analysis. Medicine 2019, 98, e16297. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Li, J.; Liu, X. 5-Aminosalicylic acid for treatment of irritable bowel syndrome: A protocol for a systematic review and meta-analysis. Medicine 2020, 99, e19351. [Google Scholar] [CrossRef] [PubMed]
- Tack, J.F.; Jr Miner, P.B.; Fischer, L.; Harris, M.S. Randomised clinical trial: The safety and efficacy of AST-120 in non-constipating irritable bowel syndrome—a double-blind, placebo-controlled study. Aliment Pharmacol. Ther. 2011, 34, 868–877. [Google Scholar] [CrossRef] [PubMed]
- Wouters, M.M.; Balemans, D.; Van Wanrooy, S.; Dooley, J.; Cibert-Goton, V.; Alpizar, Y.A.; Valdez-Morales, E.E.; Nasser, Y.; Van Veldhoven, P.P.; Vanbrabant, W.; et al. Histamine receptor H1-mediated sensitization of TRPV1 mediates visceral hypersensitivity and symptoms in patients with irritable bowel syndrome. Gastroenterology 2016, 150, 875–887. [Google Scholar] [CrossRef] [Green Version]
- Fabisiak, A.; Włodarczyk, J.; Fabisiak, N.; Storr, M.; Fichna, J. Targeting Histamine Receptors in Irritable Bowel Syndrome: A Critical Appraisal. J. Neurogastroent. Motil. 2017, 23, 341–348. [Google Scholar] [CrossRef] [Green Version]
- Vivinus-Nébot, M.; Dainese, R.; Anty, R.; Saint-Paul, M.C.; Nano, J.L.; Gonthie, N.R.; Marjoux, S.; Frin-Mathy, G.; Bernard, G.; Hébuterne, X.; et al. Combination of allergic factors can worsen diarrheic irritable bowel syndrome: Role of barrier defects and mast cells. Am. J. Gastroenterol. 2012, 107, 75–81. [Google Scholar] [CrossRef]
- Piche, T.; Barbara, G.; Aubert, P.; des Varannes, S.B.; Dainese, R.; Nano, J.L.; Cremon, C.; Stanghellini, V.; de Giorgio, R.; Galmiche, J.P.; et al. Impaired intestinal barrier integrity in the colon of patients with irritable bowel syndrome: Involvement of soluble mediators. Gut 2009, 58, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Gecse, K.; Roka, R.; Ferrier, L.; Leveque, M.; Eutamene, H.; Cartier, C.; Ait-Belgnaoui, A.; Rosztoczy, A.; Izbeki, F.; Fioramonti, J.; et al. Increased faecal serine protease activity in diarrhoeic IBS patients: A colonic lumenal factor impairing colonic permeability and sensitivity. Gut 2008, 57, 591–598. [Google Scholar] [CrossRef]
- Barbaro, M.R.; Fuschi, D.; Cremon, C.; Carapelle, M.; Dino, P.; Marcellini, M.M.; Dothel, G.; de Ponti, F.; Stanghellini, V.; Barbara, G. Escherichia coli Nissle 1917 restores epithelial permeability alterations induced by irritable bowel syndrome mediators. Neurogastroent. Motil. 2018, e13388. [Google Scholar] [CrossRef]
- Nébot-Vivinus, M.; Harkat, C.; Bzioueche, H.; Cartier, C.; Plichon-Dainese, R.; Moussa, L.; Eutamene, H.; Pishvaie, D.; Holowacz, S.; Seyrig, C.; et al. Multispecies probiotic protects gut barrier function in experimental models. World J. Gastroenterol. 2014, 20, 6832–6843. [Google Scholar] [CrossRef]
- Annaházi, A.; Ferrier, L.; Bézirard, V.; Levêque, M.; Eutamène, H.; AitBelgnaoui, A.; Coëffier, M.; Ducrotté, P.; Roka, R.; Inczefi, O.; et al. Luminal cysteine-proteases degrade colonic tight junction structure and are responsible for abdominal pain in constipation-predominant IBS. Am. J. Gastroenterol. 2013, 108, 1322–1331. [Google Scholar] [CrossRef] [PubMed]
- Wilcz-Villega, E.M.; McClean, S.; O’Sullivan, M.A. Mast cell tryptase reduces junctional adhesion molecule-A (JAM-A) expression in intestinal epithelial cells: Implications for the mechanisms of barrier dysfunction in irritable bowel syndrome. Am. J. Gastroenterol. 2013, 108, 1140–1151. [Google Scholar] [CrossRef] [PubMed]
- Jacob, C.; Yang, P.C.; Darmoul, D.; Amadesi, S.; Saito, T.; Cottrell, G.S.; Coelho, A.M.; Singh, P.; Grady, E.F.; Perdue, M.; et al. Mast cell tryptase controls paracellular permeability of the intestine. Role of protease-activated receptor 2 and beta-arrestins. J. Biol. Chem. 2005, 280, 31936–31948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spiller, R.; Campbell, E. Post-infectious irritable bowel syndrome. Curr. Opin. Gastroenterol. 2006, 22, 13–17. [Google Scholar] [CrossRef]
- Gwee, K.A.; Collins, S.M.; Read, N.W.; Rajnakova, A.; Deng, Y.; Graham, J.C.; McKendrick, M.W.; Moochhala, S.M. Increased rectal mucosal expression of interleukin 1β in recently acquired post-infectious irritable bowel syndrome. Gut 2003, 52, 523–526. [Google Scholar] [CrossRef]
- Uno, Y. Hypothesis: Mechanism of irritable bowel syndrome in inflammatory bowel disease. Med. Hypotheses 2019, 132, 109324. [Google Scholar] [CrossRef]
- Rej, A.; Sanders, D.S. Gluten-Free Diet and Its ‘Cousins’ in Irritable Bowel Syndrome. Nutrients 2018, 10, 1727. [Google Scholar] [CrossRef] [Green Version]
- Halmos, E.P.; Power, V.A.; Shepherd, S.J.; Gibson, P.R.; Muir, J.G. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterolog. 2014, 146, 67–75. [Google Scholar] [CrossRef]
- Mansueto, P.; Seidita, A.; D’Alcamo, A.; Carroccio, A. Role of FODMAPs in Patients With Irritable Bowel Syndrome. Nutr. Clin. Pract. 2015, 30, 665–682. [Google Scholar] [CrossRef] [Green Version]
- Altobelli, E.; Del Negro, V.; Angeletti, P.M.; Latella, G. Low-FODMAP Diet Improves Irritable Bowel Syndrome Symptoms: A Meta-Analysis. Nutrient. 2017, 9, 940. [Google Scholar] [CrossRef]
- McIntosh, K.; Reed, D.E.; Schneider, T.; Dang, F.; Keshteli, A.H.; De Palma, G.; Madsen, K.; Bercik, P.; Vanner, S. FODMAPs alter symptoms and the metabolome of patients with IBS: A randomised controlled trial. Gut. 2017, 66, 1241–1251. [Google Scholar] [CrossRef] [PubMed]
- Whelan, K.; Martin, L.D.; Staudacher, H.M.; Lomer, M.C.E. The low FODMAP diet in the management of irritable bowel syndrome: An evidence-based review of FODMAP restriction, reintroduction and personalisation in clinical practice. J. Hum. Nutr. Diet. 2018, 31, 239–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamphuis, J.B.; Guiard, B.; Leveque, M.; Olier, M.; Jouanin, I.; Yvon, S.; Tondereau, V.; Rivière, P.; Guéraud, F.; Chevolleau, S.; et al. Lactose and fructo-oligosaccharides increase visceral sensitivity in mice via glycation processes, increasing mast cell density in colonic mucosa. Gastroenterology 2020, 158, 652–663. [Google Scholar] [CrossRef]
- Chen, B.R.; Du, L.J.; He, H.Q.; Kim, J.J.; Zhao, Y.; Zhang, Y.W.; Luo, L.; Dai, N. Fructo-oligosaccharide intensifies visceral hypersensitivity and intestinal inflammation in a stress-induced irritable bowel syndrome mouse model. World J. Gastroenterol. 2017, 23, 8321–8333. [Google Scholar] [CrossRef] [PubMed]
- Rej, A.; Sanders, D.S. The overlap of irritable bowel syndrome and noncoeliac gluten sensitivity. Curr. Opin. Gastroenterol. 2019, 35, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Frossi, B.; De Carli, M.; Calabrò, A. Coeliac Disease and Mast Cells. Int. J. Mol. Sci. 2019, 20, 3400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuck, C.J.; Vanner, S.J. Dietary therapies for functional bowel symptoms: Recent advances, challenges, and future directions. Neurogastroent. Motil. 2017, e13238. [Google Scholar] [CrossRef]
- Bischoff, S.C. Role of mast cells in allergic and non-allergic immune responses: Comparison of human and murine data. Nat. Rev. Immunol. 2007, 7, 93–104. [Google Scholar] [CrossRef]
- Siebenhaar, F.; Redegeld, F.A.; Bischoff, S.C.; Gibbs, B.F.; Maurer, M. Mast cells as drivers of disease and therapeutic targets. Trends Immunol. 2018, 39, 151–162. [Google Scholar] [CrossRef]
- Yu, Y.; Blokhuis, B.R.; Garssen, J.; Redegeld, F.A. Non-IgE mediated mast cell activation. Eur. J. Pharmacol. 2016, 778, 33–43. [Google Scholar] [CrossRef]
- Simren, M.; Månsson, A.; Langkilde, A.M.; Svedlund, J.; Abrahamsson, H.; Bengtsson, U.; Björnsson, E.S. Food-related gastrointestinal symptoms in the irritable bowel syndrome. Digestion 2001, 63, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Choung, R.S.; Talley, N.J. Food allergy and intolerance in IBS. Gastroen Hepatol. 2006, 2, 756–760. [Google Scholar]
- Virta, L.J.; Ashorn, M.; Kolho, K.L. Cow’s milk allergy, asthma, and pediatric IBD. J. Pediatr. Gastroen. Nutr. 2013, 56, 649–651. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.M.; Powell, N.; Talley, N.J. Atopy and the gastrointestinal tract—a review of a common association in unexplained gastrointestinal disease. Expert Rev. Gastroen. Hepatol. 2014, 8, 289–299. [Google Scholar] [CrossRef] [PubMed]
- Mansueto, P.; D’Alcamo, A.; Seidita, A.; Carroccio, A. Food allergy in irritable bowel syndrome: The case of non-celiac wheat sensitivity. World J. Gastroenterol. 2015, 21, 7089–7109. [Google Scholar] [CrossRef] [PubMed]
- Bashashati, M.; Moossavi, S.; Cremon, C.; Barbaro, M.R.; Moraveji, S.; Talmon, G.; Rezaei, N.; Hughes, P.A.; Bian, Z.X.; Choi, C.H.; et al. Colonic immune cells in irritable bowel syndrome: A systematic review and meta-analysis. Neurogastroent. Motil. 2018, 30, e13192. [Google Scholar] [CrossRef]
- Robles, A.; Perez Ingles, D.; Myneedu, K.; Deoker, A.; Sarosiek, I.; Zuckerman, M.J.; Schmulson, M.J.; Bashashati, M. Mast cells are increased in the small intestinal mucosa of patients with irritable bowel syndrome: A systematic review and meta-analysis. Neurogastroent. Motil. 2019, 31, e13718. [Google Scholar] [CrossRef] [Green Version]
- Boeckxstaens, G. Mast cells and inflammatory bowel disease. Curr. Opin. Pharmacol. 2015, 25, 45–49. [Google Scholar] [CrossRef]
- De Zuani, M.; Dal Secco, C.; Frossi, B. Mast cells at the crossroads of microbiota and IBD. Eur. J. Immunol. 2018, 48, 1929–1937. [Google Scholar] [CrossRef] [Green Version]
- de Haan, J.J.; Hadfoune, M.; Lubbers, T.; Hodin, C.; Lenaerts, K.; Ito, A.; Verbaeys, I.; Skynner, M.J.; Cailotto, C.; van der Vliet, J.; et al. Lipid-rich enteral nutrition regulates mucosal mast cell activation via the vagal anti-inflammatory reflex. Am. J. Physiol. Gastrointest. Liver. Physiol. 2013, 305, G383–G391. [Google Scholar] [CrossRef] [Green Version]
- Hagemann, P.M.; Nsiah-Dosu, S.; Hundt, J.E.; Hartmann, K.; Orinska, Z. Modulation of mast cell reactivity by lipids: The neglected side of allergic diseases. Front Immunol. 2019, 10, 1174. [Google Scholar] [CrossRef] [PubMed]
- Schumann, J.; Basiouni, S.; Gück, T.; Fuhrmann, H. Treating canine atopic dermatitis with unsaturated fatty acids: The role of mast cells and potential mechanisms of action. J. Anim. Physiol. Anim. Nutr. 2014, 98, 1013–1020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van den Elsen, L.W.; Nusse, Y.; Balvers, M.; Redegeld, F.A.; Knol, E.F.; Garssen, J.; Willemsen, L.E. n-3 Long-chain PUFA reduce allergy-related mediator release by human mast cells in vitro via inhibition of reactive oxygen species. Br. J. Nutr. 2013, 109, 1821–1831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, B.; Park, S.; Park, J.; Park, M.; Min, T.; Jin, M. Omega-3 fatty acids suppress Th2-associated cytokine gene expressions and GATA transcription factors in mast cells. J. Nut. Biochem. 2013, 24, 868–876. [Google Scholar] [CrossRef]
- Obata, T.; Nagakura, T.; Masaki, T.; Maekawa, K.; Yamashita, K. Eicosapentaenoic acid inhibits prostaglandin D2 generation by inhibiting cyclo-oxygenase-2 in cultured human mast cells. Clin. Exp. Allergy 1999, 29, 1129–1135. [Google Scholar] [CrossRef] [PubMed]
- van Diest, S.A.; van den Elsen, L.W.; Klok, A.J.; Welting, O.; Hilbers, F.W.; van de Heijning, B.J.; Gaemers, I.C.; Boeckxstaens, G.E.; Werner, M.F.; Willemsen, L.E.; et al. Dietary marine n-3 PUFAs do not affect stress-induced visceral hypersensitivity in a rat maternal separation model. J. Nutr. 2015, 145, 915–922. [Google Scholar] [CrossRef] [PubMed]
- Gueck, T.; Seidel, A.; Fuhrmann, H. Effects of essential fatty acids on mediators of mast cells in culture. Prostag. Leukotr. Ess. 2003, 68, 317–322. [Google Scholar] [CrossRef]
- Gueck, T.; Seidel, A.; Baumann, D.; Meister, A.; Fuhrmann, H. Alterations of mast cell mediator production and release by gamma-linolenic and docosahexaenoic acid. Vet. Dermatol. 2004, 15, 309–314. [Google Scholar] [CrossRef]
- Gueck, T.; Seidel, A.; Fuhrmann, H. Consequences of eicosapentaenoic acid (n-3) and arachidonic acid (n-6) supplementation on mast cell mediators. J. Anim. Physiol. Anim. Nutr. 2004, 88, 259–265. [Google Scholar] [CrossRef]
- Ju, H.R.; Wu, H.Y.; Nishizono, S.; Sakono, M.; Ikeda, I.; Sugano, M.; Imaizumi, K. Effects of dietary fats and curcumin on IgE-mediated degranulation of intestinal mast cells in brown Norway rats. Biosci. Biotechnol. Biochem. 1996, 60, 1856–1860. [Google Scholar] [CrossRef] [Green Version]
- Vinolo, M.A.; Rodrigues, H.G.; Nachbar, R.T.; Curi, R. Regulation of inflammation by short chain fatty acids. Nutrients 2011, 3, 858–876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonel, A.J.; Alvarez-Leite, J.I. Butyrate: Implications for intestinal function. Curr. Opin. Clin. Nutr. Metab. Care. 2012, 15, 474–479. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.C.; Wu, H.; Lin, F.H.; Gong, R.; Xie, F.; Peng, Y.; Feng, J.; Hu, C.H. Sodium butyrate enhances intestinal integrity, inhibits mast cell activation, inflammatory mediator production and JNK signaling pathway in weaned pigs. Innate. Immun. 2018, 24, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Martínez, V.; Iriondo De-Hond, A.; Borrelli, F.; Capasso, R.; Del Castillo, M.D.; Abalo, R. Cannabidiol and Other Non-Psychoactive Cannabinoids for Prevention and Treatment of Gastrointestinal Disorders: Useful Nutraceuticals? Int. J. Mol. Sci. 2020, 21, 3067. [Google Scholar] [CrossRef] [PubMed]
- De Filippis, D.; Esposito, G.; Cirillo, C.; Cipriano, M.; de Winter, B.; Scuderi, C.; Sarnelli, G.; Cuomo, R.; Steardo, L.; de Man, J.; et al. Cannabidiol reduces intestinal inflammation through the control of neuroimmune axis. PLoS ONE 2011, 6, 1–8. [Google Scholar] [CrossRef]
- De Filippis, D.; Negro, L.; Vaia, M.; Cinelli, M.P.; Iuvone, T. New insights in mast cell modulation by palmitoylethanolamide. CNS Neurol. Disord. Drug Targets 2013, 12, 78–83. [Google Scholar] [CrossRef]
- Cerrato, S.; Brazis, P.; della Valle, M.F.; Miolo, A.; Puigdemont, A. Effects of palmitoylethanolamide on immunologically induced histamine, PGD2 and TNFalpha release from canine skin mast cells. Vet. Immunol. Immunopathol. 2010, 133, 9–15. [Google Scholar] [CrossRef]
- Cantarella, G.; Scollo, M.; Lempereur, L.; Saccani-Jotti, G.; Basile, F.; Bernardini, R. Endocannabinoids inhibit release of nerve growth factor by inflammation-activated mast cells. Biochem. Pharmacol. 2011, 82, 380–388. [Google Scholar] [CrossRef] [Green Version]
- Mazzari, S.; Canella, R.; Petrelli, L.; Marcolongo, G.; Leon, A. N-(2-hydroxyethyl) hexadecanamide is orally active in reducing edema formation and inflammatory hyperalgesia by down-modulating mast cell activation. Eur. J. Pharmacol. 1996, 300, 227–236. [Google Scholar] [CrossRef]
- De Filippis, D.; D’Amico, A.; Cinelli, M.P.; Esposito, G.; Di Marzo, V.; Iuvone, T. Adelmidrol, a palmitoylethanolamide analogue, reduces chronic inflammation in carrageenin granuloma model in rat. J. Cell Mol. Med. 2009, 13, 1086–1095. [Google Scholar] [CrossRef]
- De Filippis, D.; D’Amico, A.; Cipriano, M.; Petrosino, S.; Orlando, P.; Di Marzo, V.; Iuvone, T. Levels of endocannabinoids and palmitoylethanolamide and their pharmacological manipulation in chronic granulomatous inflammation in rats. Pharmacol. Res. 2010, 61, 321–328. [Google Scholar] [CrossRef] [PubMed]
- De Filippis, D.; Luongo, L.; Cipriano, M.; Palazzo, E.; Cinelli, M.P.; de Novellis, V.; Maione, S.; Iuvone, T. Palmitoylethanolamide reduces granuloma-induced hyperalgesia by modulation of mast cell activation in rats. Mol. Pain. 2011, 7, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, B.; Comelli, F.; Bettoni, I.; Colleoni, M.P.; Giagnoni, G. The endogenous fatty acid amide, palmitoylethanolamide, has anti-allodynic and anti-hyperalgesic effects in a murine model of neuropathic pain: Involvement of CB1, TRPV1 and PPARgamma receptors and neurotrophic factors. Pain 2008, 139, 541–550. [Google Scholar] [CrossRef] [PubMed]
- Esposito, E.; Paterniti, I.; Mazzon, E.; Genovese, T.; Di Paola, R.; Galuppo, M.; Cuzzocrea, S. Effects of palmitoylethanolamide on release of mast cell peptidases and neurotrophic factors after spinal cord injury. Brain. Behav. Immun. 2011, 25, 1099–1112. [Google Scholar] [CrossRef] [PubMed]
- Scarampella, F.; Abramo, F.; Noli, C. Clinical and histological evaluation of an analogue of palmitoylethanolamide, PLR 120 (comicronized Palmidrol INN) in cats with eosinophilic granuloma and eosinophilic plaque: A pilot study. Vet. Dermatol. 2001, 12, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Cremon, C.; Stanghellini, V.; Barbaro, M.; Cogliandro, R.; Bellacosa, L.; Santos, J.; Vicario, M.; Pigrau, M.; Alonso Cotoner, C.; Lobo, B.; et al. Randomised clinical trial: The analgesic properties of dietary supplementation with palmitoylethanolamide and polydatin in irritable bowel syndrome. Alim. Pharmacol. Ther. 2017, 45, 909–922. [Google Scholar] [CrossRef]
- Olivera, A.; Rivera, J. Sphingolipids and the balancing of immune cell function: Lessons from the mast cell. J. Immunol. 2005, 174, 1153–1158. [Google Scholar] [CrossRef] [Green Version]
- Chiba, N.; Masuda, A.; Yoshikai, Y.; Matsuguchi, T. Ceramide inhibits LPS-induced production of IL-5, IL-10, and IL-13 from mast cells. J. Cell. Physiol. 2007, 213, 126–136. [Google Scholar] [CrossRef]
- Jolly, P.S.; Bektas, M.; Olivera, A.; Gonzalez-Espinosa, C.; Proia, R.L.; Rivera, J.; Milstien, S.; Spiegel, S. Transactivation of sphingosine-1-phosphate receptors by FcepsilonRI triggering is required for normal mast cell degranulation and chemotaxis. J. Exp. Med. 2004, 199, 959–970. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.Q.; Li, X.X.; Qiu, S.Q.; Yu, Y.; Li, M.G.; Yang, L.T.; Li, L.J.; Wang, S.; Zheng, P.Y.; Liu, Z.G.; et al. Vitamin D contributes to mast cell stabilization. Allergy 2017, 72, 1184–1192. [Google Scholar] [CrossRef]
- Zingg, J. Vitamin E and mast cells. Vitam. Horm. 2007, 76, 393–418. [Google Scholar] [PubMed]
- Gueck, T.; Aschenbach, J.R.; Fuhrmann, H. Influence of vitamin E on mast cell mediator release. Vet. Dermatol. 2002, 13, 301–305. [Google Scholar] [CrossRef] [PubMed]
- Ranadive, N.S.; Lewis, R. Differential effects of antioxidants and indomethacin on compound 48/80 induced histamine release and Ca2+ uptake in rat mast cells. Immunol. Lett. 1982, 5, 145–150. [Google Scholar] [CrossRef]
- Lecleire, S.; Hassan, A.; Marion-Letellier, R.; Antonietti, M.; Savoye, G.; Bole-Feysot, C.; Lerebours, E.; Ducrotte, P.; Dechelotte, P.; Coeffier, M. Combined glutamine and arginine decrease proinflammatory cytokine production by biopsies from Crohn’s patients in association with changes in nuclear factor-kappa B and p38 mito-gen-activated protein kinase pathways. J. Nutr. 2008, 138, 2481–2486. [Google Scholar] [CrossRef]
- Lechowski, S.; Feilhauer, K.; Staib, L.; Coeffier, M.; Bischoff, S.C.; Lorentz, A. Combined arginine and glutamine decrease release of de novo synthesized leukotrienes and expression of proinflammatory cytokines in activated human intestinal mast cells. Eur. J. Nutr. 2013, 52, 505–512. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Pi, D.; Leng, W.; Wang, X.; Hu, C.A.; Hou, Y.; Xiong, J.; Wang, C.; Qin, Q.; Liu, Y. Asparagine preserves intestinal barrier function from LPS-induced injury and regulates CRF/CRFR signaling pathway. Innate. Immun. 2017, 23, 546–556. [Google Scholar] [CrossRef] [Green Version]
- van Bergenhenegouwen, J.; Braber, S.; Loonstra, R.; Buurman, N.; Rutten, L.; Knipping, K.; Savelkoul, P.; Harthoorn, L.; Jahnsen, F.; Garssen, J.; et al. Oral exposure to the free amino acid glycine inhibits the acute allergic response in a model of cow’s milk allergy in mice. Nut. Res. 2018, 58, 95–105. [Google Scholar] [CrossRef]
- Sakai, S.; Sugawara, T.; Matsubara, K.; Hirata, T. Inhibitory effect of carotenoids on the degranulation of mast cells via suppression of antigen-induced aggregation of high affinity IgE receptors. J. Biol. Chem. 2009, 284, 28172–28179. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Ahn, Y.; Lee, G.; Cho, S.; Kim, J.; Lee, C.; Lim, B.; Ju, S.; An, W. Effects of astaxanthin on dinitrofluorobenzene-induced contact dermatitis in mice. Mol. Med. Rep. 2015, 12, 3632–3638. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y.; Akiyama, H.; Suganuma, H.; Watanabe, T.; Nagaoka, M.H.; Inakuma, T.; Goda, Y.; Maitani, T. The feeding of -carotene down-regulates serum IgE levels and inhibits the type I allergic response in mice. Biol. Pharm. Bull. 2004, 27, 978–984. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, T.; Koike, K.; Mwamtemi, H.H.; Ito, S.; Ishida, S.; Nakazawa, Y.; Kurokawa, Y.; Sakashita, K.; Higuchi, T.; Takeuchi, K.; et al. Retinoic acid is a negative regulator for the differentiation of cord blood-derived human mast cell progenitors. Blood 2000, 95, 2821–2828. [Google Scholar] [CrossRef] [PubMed]
- Hjertson, M.; Kivinen, P.; Dimberg, L.; Nilsson, K.; Harvima, I.; Nilsson, G. Retinoic acid inhibits in vitro development of mast cells but has no marked effect on mature human skin tryptase- and chymase-positive mast cells. J. Investig. Dermatol. 2003, 120, 239–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishida, S.; Kinoshita, T.; Sugawara, N.; Yamashita, T.; Koike, K. Serum inhibitors for human mast cell growth: Possible role of retinol. Eur. J. Allergy. Clin. Immunol. 2003, 58, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Astorquiza, M.I.; Helle, B.; Vergara, R.E. Effect of vitamin A onthe in vitro degranulation of mouse mastcells. Allergol. Immunopathol. 1980, 8, 87–90. [Google Scholar]
- Middleton, E., Jr.; Drzewiecki, G. Flavonoid inhibition of human basophil histamine release stimulated by various agents. Biochem. Pharmacol. 1984, 33, 3333–3338. [Google Scholar] [CrossRef]
- Trnovsky, J.; Letourneau, R.; Haggag, E.; Boucher, W.; Theoharides, T.C. Quercetin-induced expression of rat mast cell protease II and accumulation of secretory granules in rat basophilic leukemia cells. Biochem. Pharmacol. 1993, 46, 2315–2326. [Google Scholar] [CrossRef]
- Alexandrakis, M.; Singh, L.; Boucher, W.; Letourneau, R.; Theofilopoulos, P.; Theoharides, T.C. Differential effect of flavonoids on inhibition of secretion and accumulation of secretory granules in rat basophilic leukemia cells. Int. J. Immunopharmacol. 1999, 21, 379–390. [Google Scholar] [CrossRef]
- Kimata, M.; Inagaki, N.; Nagai, H. Effects of luteolin and other flavonoids on IgE-mediated allergic reactions. Planta. Med. 2000, 66, 25–29. [Google Scholar] [CrossRef]
- Kimata, M.; Shichijo, S.; Miura, T.; Serizawa, I.; Inagaki, N.; Nagai, H. Effects of luteolin, quercetin and baicalein on immunoglobulin E-mediated mediator release from human cultured mast cells. Clin. Exp. Allergy 2000, 30, 501–508. [Google Scholar] [CrossRef]
- Seelinger, G.; Merfort, I.; Schempp, C.M. Anti-oxidant, anti-inflammatory and anti-allergic activities of luteolin. Planta. Med. 2008, 74, 1667–1677. [Google Scholar] [CrossRef]
- Park, H.H.; Lee, S.; Son, K.Y.; Park, S.B.; Kim, M.S.; Choi, E.J.; Singh, T.S.; Ha, J.H.; Lee, M.G.; Kim, J.E.; et al. Flavonoids inhibit histamine release and expression of proinflammatory cytokines in mast cells. Arch. Pharm. Res. 2008, 31, 1303–1311. [Google Scholar] [CrossRef] [PubMed]
- Kempuraj, D.; Madhappan, B.; Chrístodoulou, S.; Boucher, W.; Cao, J.; Papadopoulou, N.; Cetrulo, C.L.; Theoharides, T.C. Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C phosphorylation in human mast cells. Br. J. Pharmacol. 2005, 145, 934–944. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Oh, J.M.; Heo, P.; Shin, J.Y.; Kong, B.; Shin, J.; Lee, J.C.; Oh, J.S.; Park, K.W.; Lee, C.H.; et al. Polyphenols differentially inhibit degranulation of distinct subsets of vesicles in mast cells by specific interaction with granule-type-dependent SNARE complexes. Biochem. J. 2013, 450, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Hagenlocher, Y.; Feilhauer, K.; Schäffer, M.; Bischoff, S.C.; Lorentz, A. Citrus peel polymethoxyflavones nobiletin and tangeretin suppress LPS- and IgE-mediated activation of human intestinal mast cells. Eur. J. Nutr. 2017, 56, 1609–1620. [Google Scholar] [CrossRef]
- Tanaka, T.; Iuchi, A.; Harada, H.; Hashimoto, S. Potential Beneficial Effects of Wine Flavonoids on Allergic Diseases. Diseases 2019, 7, 8. [Google Scholar] [CrossRef] [Green Version]
- Hagenlocher, Y.; Gommeringer, S.; Held, A.; Feilhauer, K.; Köninger, J.; Bischoff, S.C.; Lorentz, A. Nobiletin acts anti-inflammatory on murine IL-10-/- colitis and human intestinal fibroblasts. Eur. J. Nutr. 2019, 58, 1391–1401. [Google Scholar] [CrossRef]
- Hubert, J.; Berger, M.; Nepveu, F.; Paul, F.; Daydé, J. Effects of fermentation on the phytochemical composition and antioxidant properties of soy germ. Food Chem. 2008, 109, 709–721. [Google Scholar] [CrossRef]
- Moussa, L.; Bézirard, V.; Salvador-Cartier, C.; Bacquié, V.; Houdeau, E.; Théodorou, V. A new soy germ fermented ingredient displays estrogenic and protease inhibitor activities able to prevent irritable bowel syndrome-like symptoms in stressed female rats. Clin. Nutr. 2013, 32, 51–58. [Google Scholar] [CrossRef]
- Inoue, T.; Suzuki, Y.; Ra, C. Epigallocatechin-3-gallate inhibits mast cell degranulation, leukotriene C4 secretion, and calcium influx via mitochondrial calcium dysfunction. Free Radic. Biol. Med. 2010, 49, 632–640. [Google Scholar] [CrossRef]
- Inoue, T.; Suzuki, Y.; Ra, C. Epigallocatechin-3-gallate induces cytokine production in mast cells by stimulating an extracellular superoxide-mediated calcium influx. Biochem. Pharmacol. 2011, 82, 1930–1939. [Google Scholar] [CrossRef]
- Khan, N.; Mukhtar, H. Tea Polyphenols in promotion of human health. Nutrients 2018, 11, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuo, N.; Yamada, K.; Shoji, K.; Mori, M.; Sugano, M. Effect of tea polyphenols on histamine release from rat basophilic leukemia (RBL-2H3) cells: The structure-inhibitory activity relationship. Allergy 1997, 52, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K.; Suzuki, Y.; Matsui, T.; Yoshimaru, T.; Yamaki, M.; Suzuki-Karasaki, M.; Hayakawa, S.; Shimizu, K. Epigallocatechin gallate inhibits histamine release from rat basophilic leukemia (RBL-2H3) cells: Role of tyrosine phosphorylation. Biochem. Biophys. Res. Commun. 2000, 274, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Murata, K.; Takano, S.; Masuda, M.; Iinuma, M.; Matsuda, H. Anti-degranulating activity in rat basophilic leukemia RBL-2H3 cells of flavanone glycosides and their aglycones in citrus fruits. J. Nat. Med. 2013, 67, 643–646. [Google Scholar] [CrossRef]
- Fiorani, M.; Accorsi, A.; Blasa, M.; Diamantini, G.; Piatti, E. Flavonoids from Italian multi-floral honeys reduce the extracellular ferricyanide in human red blood cells. J. Agric. Food Chem. 2006, 54, 8328–8334. [Google Scholar] [CrossRef]
- Guendouz, M.; Haddi, A.; Grar, H.; Kheroua, O.; Saidi, D.; Kaddouri, H. Preventive effects of royal jelly against anaphylactic response in a murine model of cow’s milk allergy. Pharm. Biol. 2017, 55, 2145–2152. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.C.; Kismali, G.; Aggarwal, B.B. Curcumin, a component of turmeric: From farm to pharmacy. Biofactors 2013, 39, 2–13. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, J.W.; Ko, N.Y.; Mun, S.H.; Her, E.; Kim, B.K.; Han, J.W.; Lee, H.Y.; Beaven, M.A.; Kim, Y.M.; et al. Curcumin, a constituent of curry, suppresses IgE-mediated allergic response and mast cell activation at the level of Syk. J. Allergy Clin. Immunol. 2008, 121, 1225–1231. [Google Scholar] [CrossRef]
- Hanai, H.; Iida, T.; Takeuchi, K.; Watanabe, F.; Maruyama, Y.; Andoh, A.; Tsujikawa, T.; Fujiyama, Y.; Mitsuyama, K.; Sata, M.; et al. Curcumin maintenance therapy for ulcerative colitis: Randomized, multicenter, double-blind, placebo-controlled trial. Clin. Gastroen. Hepatol. 2006, 4, 1502–1506. [Google Scholar] [CrossRef]
- Lang, A.; Salomon, N.; Wu, J.C.; Kopylov, U.; Lahat, A.; Har-Noy, O.; Ching, J.Y.; Cheong, P.K.; Avidan, B.; Gamus, D.; et al. Curcumin in combination with mesalamine induces remission in patients with mild-to-moderate ulcerative colitis in a randomized controlled trial. Clin. Gastroen. Hepatol. 2015, 13, 1444–1449. [Google Scholar] [CrossRef]
- Bundy, R.; Walker, A.F.; Middleton, R.W.; Booth, J. Turmeric extract may improve irritable bowel syndrome symptomology in otherwise healthy adults: A pilot study. J. Altern. Complement. Med. 2004, 10, 1015–1018. [Google Scholar] [CrossRef] [PubMed]
- Portincasa, P.; Bonfrate, L.; Scribano, M.L.; Kohn, A.; Caporaso, N.; Festi, D.; Campanale, M.C.; Di Rienzo, T.; Guarino, M.; Taddia, M.; et al. Curcumin and Fennel Essential Oil Improve Symptoms and Quality of Life in Patients with Irritable Bowel Syndrome. J. Gastrointestin. Liver. Dis. 2016, 25, 151–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagenlocher, Y.; Bergheim, I.; Zacheja, S.; Schäffer, M.; Bischoff, S.C.; Lorentz, A. Cinnamon extract inhibits degranulation and de novo synthesis of inflammatory mediators in mast cells. Allergy 2013, 68, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Hagenlocher, Y.; Hösel, A.; Bischoff, S.; Lorentz, A. Cinnamon extract reduces symptoms, inflammatory mediators and mast cell markers in murine IL-10−/− colitis. J. Nut. Biochem. 2016, 30, 85–92. [Google Scholar] [CrossRef]
- Hagenlocher, Y.; Kiessling, K.; Schäffer, M.; Bischoff, S.C.; Lorentz, A. Cinnamaldehyde is the main mediator of cinnamon extract in mast cell inhibition. Eur. J. Nutr. 2015, 54, 1297–1309. [Google Scholar] [CrossRef]
Category | Specific Molecules |
---|---|
Biogenic amines | Histamine, 5-HT, Dopamine, Polyamines |
Lysosomal Enzymes | β-hexosaminidase, β-glucuronidase, β-d-galactosidase, Arylsulphatase A, Cathepsins |
Proteases | Chymase, Tryptase, Carboxypeptidase A, Granzyme B, MMPs, Renin |
Other Enzymes | Kinogenases, Heparanase, Angiogenin, Caspase-3, COX 1 and 2 |
Proteoglycans/Glycosaminoglycans | Serglycin, Heparin |
Cytokines | TNF, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13IL-15, IL-16 IL-17, IL-18, IL-25, IL-33, IFN, MIP-1α and 2β |
Chemokines | RANTES (CCL5), eotaxin (CCL11), MCP-1 (CCL2), MCP-3 (CCL7), MCP-4 |
Growth Factors | TGF-β, VEGF, NGF, SCF, GM-CSF, FGF, NGF, PDGF, LIF |
Peptides | CRF, Endorphin, ET-1, Cathelicidin (LL37), Defensins, SP, VIP |
Phospolipid Metabolites | PGD2, PGE2, LTB4, LTC4, PAF |
Reactive Oxygen Species | NO |
Others | MBP, Complement Factors C3 and C5 |
Compound | System | Effect a | Mechanism of Action | Reference |
---|---|---|---|---|
In Vitro Studies | ||||
AA (20:4n-6) | LAD2 HMC-1 | ↑ PGD2 ↑ TNF-α | ROS generation and MAPK signaling | [126] |
AA (20:4n-6) | C2 | ↑ Tryptase activity ↑ PGE2 production ↑ Histamine release | Changes in cellular redox state and lipid peroxidation (suggested) | [132] |
ALA (18:3n-3) | MC/9, BMMCs | ↓ IL-4, IL-5 and IL-13 production | Modulation of nuclear expression of GATA-1 and GATA-2 | [127] |
ALA (18:3n-3) | C2 | ↓ Tryptase activity ↓ PGE2 production ↓ Histamine release | [130,131] | |
DHA (226n-3) | LAD2 HMC-1 | ↓ Il-4 ↓ IL-13 ↓ ROS generation | MAPK signaling | [126] |
DHA (22:6n-3) | HMC-1 | ↓ TNF-α release | PPARγ-dependent activation | [129] |
EPA (20:5n-3) | LAD2 HMC-1 | ↓ Il-4 ↓ IL-13 ↓ ROS generation | MAPK signaling | [126] |
EPA (20:5n-3) | Mast cells cultured from human umbilical cord mononuclear cells | ↓ PGD2 generation | Inhibition of COX-1 and COX-2 activities | [128] |
EPA (20:5n-3) | MC/9, BMMCs | ↓ IL-4, Il-5 and IL-13 production | Modulation of nuclear expression of GATA-1 and GATA-2 | [127] |
EPA (20:5n-3) | HMC-1 | ↓ TNF-α release | PPARγ-dependent activation | [129] |
EPA (20:5n-3) | MC/9, BMMCs | ↓ IL-4, Il-5 and IL-13 production | Modulation of nuclear expression of GATA-1 and GATA-2 | [127] |
EPA (20:5n-3) | C2 | ↑ PGE2 production ↑ Histamine release | Changes in cellular redox state and lipid peroxidation (suggested) | [132] |
GLA (18:3n-6) | C2 | ↑ Tryptase activity ↑ Histamine release | [130,131] | |
In Vivo Studies | ||||
Diet rich in n-6 linoleic acid, saturated fatty acids (safflower oil) | Intestinal mast cell-IgE-mediated inflammatory reaction model in rats | ↓ Rat chymase II | [133] | |
Fish oil containing high level of omega-3 fatty acids | NC/Nga murine atopic model. | ↓ Severity of dermatitis ↓ Thickening of epidermis/dermis | [127] | |
Sodium butyrate (SCFA) | Pig | ↓ Histamine content ↓ Tryptase content/expression ↓ TNF-α content/expression ↓ IL-6 content/expression | JNK signaling pathways | [136] |
Compound | System | Effect a | Mechanism of Action | Reference |
---|---|---|---|---|
Cannabinoids and Cannabinoid-Related Compounds | ||||
Cannabidiol | LPS-induced intestinal inflammation in mice | ↓ Chymase up-regulation ↓ MMP9 up-regulation | Involvement of astroglial signaling neurotrophin S100B and PPARγ-dependent mechanisms | [138] |
Palmithoylethanolamide | Canine skin mast cells | ↓ Histamine release ↓ PGD2 release ↓ TNF-α release | [140] | |
Palmithoylethanolamide | HMC-1 | ↓ NGF release | GPR55-mediated | [141] |
Palmithoylethanolamide | Neuropathic pain (chronic constriction injury of sciatic nerve in mice) | ↓ TNF-α release ↓ NGF release | [146] | |
Palmithoylethanolamide | Spinal cord injury (mice) | ↓ Proteases (tryptase and chymase) release | [147] | |
Palmithoylethanolamide/Polydatin | Clinical trial in IBS patients (NCT01370720) | Without changes in mast cell counts | [149] | |
Other Lipidic Molecules | ||||
Ceramide/sphingosine | Mouse BMMCs | ↓ IL-5, IL-10 and IL-13 production | Inhibition of PI3K-Akt pathway | [151] |
Sphingosine-1-phosphate | Mouse BMMCs RBL-2H3 cells (rat) | ↑ LT synthesis ↑ TNF-production ↑ Chemokines production ↑ β-hexosaminidase release | FcεRI-mediated activation of SphK-S1P1/S1P2 pathway | [150,152] |
Compound | System | Effect a | Mechanism of Action | Reference |
---|---|---|---|---|
Vitamin D3 (calcitriol) | HMC-1 cells (human) RBL-2H3 cells (rat) p815 cells (mouse) Mouse BMMCs | ↓ TNF-α expression ↓ TNF-α production ↓ Histamine release | Inhibition of FcεRI and MyD88, associated to decreased Syk phosphorylation and MAPK and NFκB levels. VDR binding to the TNF-α promoter leading to decreased acetylation of histone H3/H4, RNA polymerase II and OCT1 (a transcription factor of TNF-α) at the promoter locus, repressing TNF-α expression | [153] |
Vitamin D3 (calcitriol) | Ovalbumin –sensitized mice with vitamin D-supplemented diet | ↓ Serum TNF-α ↓ Serum histamine | [153] | |
Vitamin E (tocopherols) | C2 (canine) | ↓ Histamine release ↓ PGD2 release ↓ Chymase activity | [155] | |
Vitamin E (tocopherols) | Rat peritoneal mast cells | ↓ Histamine release | Changes in lipid peroxidation through the lipoxygenase pathway | [156] |
Compound | System | Effect a | Mechanism of Action | Reference |
---|---|---|---|---|
Arginine + Glutamine | Human intestinal mast cells | ↓ LT C4 secretion ↓ CCL2 expression ↓ CCL4 expression ↓ IL-8 expression | Decreased activation levels of signaling molecules of the MAPK family (extracellular signal-regulated kinase, JNK and p38) and the Akt | [158] |
Glycine | Murine model of allergy to cow’s milk | ↓ Plasma levels of mouse mast cell protease-1 | [160] |
Compound | System | Effect a | Mechanism of Action | Reference |
---|---|---|---|---|
Carotenoids (fucoxanthin, astaxanthin, zeaxanthin and β-carotene) | Rat RBL-2H3 cells Mouse BMMCs | ↓ β-hexosaminidase release | Inhibition of FcεRI-mediated intracellular signaling: phosphorylation of Lyn kinase and Fyn kinase | [161] |
α- and β-carotene | Ovalbumin–sensitized mice | ↓ Histamine release | [163] | |
Astaxanthin | DNFB-induced contact dermatitis in mice | ↓TNF-α levels ↓ IFN-γ levels | [162] | |
Astaxanthin | Rat RBL-2H3 cells | ↓ Histamine release ↓ β-hexosaminidase | [162] |
Compound | System | Effect a | Mechanism of Action | Reference |
---|---|---|---|---|
Quercitin | RBL-2H3 cells | ↑ Rat mast cell protease II synthesis ↑ Accumulation of secretory granules ↓ Histamine release ↓ β-hexosaminidase release | [168,170] | |
Flavone | RBL-2H3 cells | ↑ Accumulation of secretory granules ↓ β-hexosaminidase release | [168] | |
Kaempferol | RBL-2H3 cells | ↓ β-hexosaminidase release | [168] | |
Myricetin | RBL-2H3 cells | ↓ β-hexosaminidase release | [168] | |
Luteolin, baicalein, quercetin | BMMCs Rat peritoneal mast cells | ↓ Histamine release ↓ Il-6 production ↓ TNF-α production | [171] | |
Luteolin, baicalein, quercetin | Human cultured mast cells | ↓ Histamine release ↓ LTs release ↓ PGD2 release | Inhibition of Ca2+ influx and PKC, ERKs and JNK signaling pathways | [172] |
Kaempferol, myrecitin, quercetin, rutin, fisetin | RBL-2H3 cells HMC-1 cells | ↓ Histamine release ↓ TNF-α expression and release ↓ IL-1β expression and release ↓ IL-6 expression and release ↓ Il-8 expression and release | Suppression of NFκB activation (fisetin, myricetin and rutin) | [174] |
Quercetin, kaempferol, 14yricetin, morin | Human umbilical cord BMMCs | ↓ Histamine release ↓ TNF-α release ↓ IL-6 release ↓ IL-8 release | Suppression of intracellular Ca2+, inhibition of PKC θ phosphorylation | [175] |
Nobiletin, tangeretin | Human intestinal mast cells | ↓ CXCL8 expression ↓ CCL3 expression ↓ CCL4 expression ↓ IL-1β expression (tangeretin) ↓ TNF-α expression ↓ β–hexosaminidase release (nobiletin) ↓ cysteinyl LTC4 (nobiletin) | Reduced phosphorylation of ERK1/2 | [177] |
Nobiletin | Murine IL-10 knockout model of colitis | ↓ Mast cell density (colon) ↓ Mast cell degranulation (colon) | [177] | |
Daidzein, glycitein and genistein | Restraint stress-induced IBS-like alterations in rats | ↓ Colonic mast cell density | Estrogen receptor-mediated | [181] |
Green tea polyphenols | RBL-2H3 cells | ↓ Histamine release | Metabolic events associated to the elevation of intracellular Ca2+, inhibition of tyrosine phosphorylation of cellular proteins including pp125(FAK) | [185,186] |
Green tea polyphenols | RBL-2H3 cells BMMCs | ↓ β-hexosaminidase release ↓ LTC4 secretion | Changes in ROS production and mitochondrial membrane potential | [182] |
Green tea polyphenols (EGCG) | RBL-2H3 cells BMMCs | ↑ IL-13 production ↑ TNF-α production | SOC-dependent Ca2+ influx and ROS generation | [183] |
Compound | System | Effect a | Mechanism of Action | Reference |
---|---|---|---|---|
Curcumin | Intestinal mast cell-IgE-mediated inflammatory reaction model in rats | ↓ Rat chymase II | [133] | |
Curcumin | RBL-2H3 cells BMMCs | ↓ TNF-α expression and release ↓ IL-4 expression and release ↓ β –hexosaminidase release | Inhibition of Syk activity, inhibition of phosphorylation of Akt and MAPKs p38, p44/42 and JNK | [191] |
Curcumin | Passive cutaneous anaphylaxis model in mice | ↓ Mast cell-dependent passive cutaneous anaphylaxis responses (Evans blue extravasation) | [191] | |
Cinnamon extract/Cinnamaldehyde | Human intestinal mast cells RBL-2H3 cells | ↓ Tryptase expression ↓ β–hexosaminidase release ↓ cysLt release ↓ CXCL8 release ↓ CXCL8 expression ↓ CCL2 expression ↓ CCL3 expression ↓ CCL4 expression ↓ TNF-α expression | Inhibition of Akt and the MAPKs ERK, JNK, and p38; inhibition of PLCγ1 phosphorilation | [196,198] |
Cinnamon extract/Cinnamaldehyde | Mouse duodenal tissue | ↓ MCP6 and MC-CPA expression | [196] | |
Cinnamon extract/Cinnamaldehyde | Murine IL-10 knockout model of colitis | ↓ Proteases expression (MC-CPA, MCP-1 and MCP-4) ↓ Expression of pro-inflammatory mediators (CXCL8, CCL2, CCL3 and CCL4, IL-1β, TNF, INFγ) | Inhibition of NFκB signaling | [197] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uranga, J.A.; Martínez, V.; Abalo, R. Mast Cell Regulation and Irritable Bowel Syndrome: Effects of Food Components with Potential Nutraceutical Use. Molecules 2020, 25, 4314. https://doi.org/10.3390/molecules25184314
Uranga JA, Martínez V, Abalo R. Mast Cell Regulation and Irritable Bowel Syndrome: Effects of Food Components with Potential Nutraceutical Use. Molecules. 2020; 25(18):4314. https://doi.org/10.3390/molecules25184314
Chicago/Turabian StyleUranga, José Antonio, Vicente Martínez, and Raquel Abalo. 2020. "Mast Cell Regulation and Irritable Bowel Syndrome: Effects of Food Components with Potential Nutraceutical Use" Molecules 25, no. 18: 4314. https://doi.org/10.3390/molecules25184314
APA StyleUranga, J. A., Martínez, V., & Abalo, R. (2020). Mast Cell Regulation and Irritable Bowel Syndrome: Effects of Food Components with Potential Nutraceutical Use. Molecules, 25(18), 4314. https://doi.org/10.3390/molecules25184314