Isolation and FTIR-ATR and 1H NMR Characterization of Alginates from the Main Alginophyte Species of the Atlantic Coast of Morocco
Abstract
:1. Introduction
2. Results and Discussion
2.1. Alginates’ Yield
2.2. FT-IR Spectroscopy Analysis
2.3. 1H NMR Spectroscopy Analysis
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Stengel, B.D.; Connan, S. Marine Algae: A Source of Biomass for Biotechnological Applications. In Natural Products From Marine Algae: Methods and Protocols; Stengel, B.D., Connan, S., Eds.; Springer Science and Business Media: New York, NY, USA, 2015; pp. 1–38. [Google Scholar]
- Andrade, L.; Salgado, L.T.; Farina, M.; Pereira, M.S.; Mourão, P.A.; Filho, G.M.A. Ultrastructure of acidic polysaccharides from the cell walls of brown algae. J. Struct. Boil. 2004, 145, 216–225. [Google Scholar] [CrossRef]
- Kloareg, B.; Quatrano, R. Structure of the cell walls of marine algae and ecophysiological function of the matrix polysaccharides. Oceanogr. Mar. Biol. 1988, 26, 259–315. [Google Scholar]
- Bourgougnon, N.; Stiger-Pouvreau, V. Chemodiversity and Bioactivity within Red and Brown Macroalgae Along the French coasts, Metropole and Overseas Departements and Territories. In Handbook of Marine Macroalgae; Wiley: Hoboken, NJ, USA, 2011; pp. 58–105. [Google Scholar]
- Hanzhi, L.; Song, Q.; Peng, J. Biotechnology of Seaweeds: Facing the Coming Decade. In Handbook of Marine Macroalgae; Wiley: Hoboken, NJ, USA, 2011; pp. 424–430. [Google Scholar]
- Helgerud, T.; Gaserød, O.; Fjæreide, T.; Andersen, P.O.; Larsen, C.K. Alginates. In Food Stabilizers, Thickeners and Gelling Agents; Imeson, A., Ed.; Willey-Blackwell: Iowa, IA, USA, 2009; pp. 50–56. [Google Scholar]
- Rioux, L.-E.; Turgeon, S.L. Seaweed carbohydrates. In Seaweed Sustainability; Elsevier BV: Amsterdam, The Netherlands, 2015; pp. 141–192. [Google Scholar]
- Smidsrød, O.; Draget, K.I. Alginates: Chemistry and physical properties. Carbohydr. Eur. 1996, 14, 6–13. [Google Scholar]
- Pérez, R. Les extraits des végétaux marins: Les phycocolloïdes. In Ces algues qui nous entourent: Conception actuelle, rôle dans la biosphère, utilisations, culture; Pérez, R., Ed.; IFREMER: Nantes, France, 1997; pp. 102–168. [Google Scholar]
- Rioux, L.-E.; Turgeon, S.L.; Beaulieu, M. Characterization of polysaccharides extracted from brown seaweeds. Carbohydr. Polym. 2007, 69, 530–537. [Google Scholar] [CrossRef]
- Panikkar, R.; Brasch, D.J. Composition and block structure of alginates from New Zealand brown seaweeds. Carbohydr. Res. 1996, 293, 119–132. [Google Scholar] [CrossRef]
- Larsen, B.; Salem, D.M.; Sallam, M.A.; Mishrikey, M.M.; Beltagy, A.I. Characterization of the alginates from algae harvested at the Egyptian Red Sea coast. Carbohydr. Res. 2003, 338, 2325–2336. [Google Scholar] [CrossRef]
- Fenoradosoa, T.A.; Ali, G.; Delattre, C.; Laroche, C.; Petit, E.; Wadouachi, A.; Michaud, P. Extraction and characterization of an alginate from the brown seaweed Sargassum turbinarioides Grunow. Environ. Boil. Fishes 2009, 22, 131–137. [Google Scholar] [CrossRef]
- Schiener, P.; Black, K.D.; Stanley, M.S.; Green, D.H. The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. Environ. Boil. Fishes 2014, 27, 363–373. [Google Scholar] [CrossRef]
- Martinsen, A.; Skjåk-BraeK, G.; Smidsrød, O. Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads. Biotechnol. Bioeng. 1989, 33, 79–89. [Google Scholar] [CrossRef]
- Donati, I.; Paoletti, S. Material Properties of Alginates; Springer Science and Business Media LLC: Berlin, Germany, 2009; pp. 1–53. [Google Scholar]
- Bertagnolli, C.; Espindola, A.P.D.; Kleinübing, S.J.; Tasic, L.; Da Silva, M.G.C. Sargassum filipendula alginate from Brazil: Seasonal influence and characteristics. Carbohydr. Polym. 2014, 111, 619–623. [Google Scholar] [CrossRef]
- Davis, T.A.; Ramirez, M.; Mucci, A.; Larsen, B. Extraction, isolation and cadmium binding of alginate from Sargassum spp. Environ. Boil. Fishes 2004, 16, 275–284. [Google Scholar] [CrossRef]
- Torres, M.R.; Sousa, A.P.; Filho, E.A.S.; Melo, D.F.; Feitosa, J.P.; De Paula, R.C.; Lima, M.G. Extraction and physicochemical characterization of Sargassum vulgare alginate from Brazil. Carbohydr. Res. 2007, 342, 2067–2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, T.A.; Llanes, F.; Volesky, B.; Mucci, A. Metal Selectivity of Sargassum spp. and Their Alginates in Relation to Their α-l-Guluronic Acid Content and Conformation. Environ. Sci. Technol. 2003, 37, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Haug, A. Composition and Properties of Alginates; Norwegian Institute of Seaweed Research: Trondheim, Norway, 1964. [Google Scholar]
- Hoppe, H.A.; Schmid, O.J. Meeresalgen als moderne Industrie produkte. Bot. Mar. 1962, 3, 16–66. [Google Scholar] [CrossRef]
- Mathlouthi, M.; Koenig, J.L. Vibrational Spectra of Carbohydrates. Adv. Carbohydr. Chem. Biochem. 1987, 44, 7–89. [Google Scholar] [CrossRef]
- Bi, F.; Mahmood, S.J.; Arman, M.; Taj, N.; Iqbal, S. Physicochemical characterization and ionic studies of sodium alginate fromSargassum terrarium(brown algae). Phys. Chem. Liq. 2007, 45, 453–461. [Google Scholar] [CrossRef]
- Papageorgiou, S.K.; Kouvelos, E.P.; Favvas, E.P.; Sapalidis, A.; Romanos, G.E.; Katsaros, F. Metal-carboxylate interactions in metal-alginate complexes studied with FTIR spectroscopy. Carbohydr. Res. 2010, 345, 469–473. [Google Scholar] [CrossRef]
- Leal, D.; Matsuhiro, B.; Rossi, M.; Caruso, F. FT-IR spectra of alginic acid block fractions in three species of brown seaweeds. Carbohydr. Res. 2008, 343, 308–316. [Google Scholar] [CrossRef]
- Gómez-Ordóñez, E.; Jiménez-Escrig, A.; Rupérez, P. Dietary fibre and physicochemical properties of several edible seaweeds from the northwestern Spanish coast. Food Res. Int. 2010, 43, 2289–2294. [Google Scholar] [CrossRef]
- Grasdalen, H.; Larsen, B.; Smidsrød, O. A p.m.r. study of the composition and sequence of uronate residues in alginates. Carbohydr. Res. 1979, 68, 23–31. [Google Scholar] [CrossRef]
- Murillo-Alvarez, J.I.; Hernández-Carmona, G. Monomer composition and sequence of sodium alginate extracted at pilot plant scale from three commercially important seaweeds from Mexico. Environ. Boil. Fishes 2007, 19, 545–548. [Google Scholar] [CrossRef]
- Calumpong, H.P.; Maypa, A.P.; Magbanua, M. Population and alginate yield and quality assessment of four Sargassum species in Negros Island, central Philippines. Hydrobiologia 1999, 398, 211–215. [Google Scholar] [CrossRef]
Sample Availability: Algal species samples and the studied sodium alginates are available from the authors. |
Algal Species | Alginates’ Yield (% dw) | References |
---|---|---|
Sargassum muticum | 25.6 | This study |
Laminaria ochroleuca | 27.5 | |
Saccorhiza polyschides | 25.0 | |
Cystoseira humilis | 19.1 | |
Carpodesmia tamariscifolia | 17.22 | |
Fucus vesiculosus f. volubilis | 18.3 | |
Fucus guiryi | 13.6 | |
Ascophyllum nodosum | 24 | [10] |
Durvillaea antarctica | 37–52 | [11] |
Ecklonia maxima | 35 | [8] |
Laminaria japonica | 20–26 | [8] |
Laminaria digitata | 22–34 | [8] |
Laminaria hyperborea | 21–33 | [15] |
Lessonia nigrescens | 34–41 | [16] |
Macrocystis pyrifera | 29–38 | [11] |
Saccharina longicruris | 20 | [10] |
Sargassum asperifolium | 12 | [12] |
Sargassum filipendula | 17 | [17] |
Sargassum fluitans | 21 | [18] |
Sargassum vulgare | 17 | [19] |
Sargassum muticum | 18 | [20] |
Sargassum oligocystum | 19 | [18] |
Sargassum thunbergii | 13 | [20] |
Sargassum polycystum | 17–28 | [20] |
Sargassum turbinarioides | 10 | [13] |
Fucus vesiculosus | 16.2 | [10] |
Fucus serratus | 20–29 | [21] |
Fucus ceranoides | 21–29 | [22] |
Species | M/G | FM | FG | FMM | FGG | FGM | FMG | η | References |
---|---|---|---|---|---|---|---|---|---|
Sargassum muticum | 1.04 | 0.51 | 0.49 | 0.17 | 0.15 | 0.34 | 0.34 | 1.35 | |
Laminaria ochroleuca | 2.52 | 0.72 | 0.28 | 0.50 | 0.06 | 0.22 | 0.22 | 1.09 | |
Fucus guiryi | 4.41 | 0.82 | 0.18 | 0.78 | 0.15 | 0.04 | 0.04 | 0.27 | |
Cystoseira humilis | 1.46 | 0.59 | 0.41 | 0.40 | 0.21 | 0.20 | 0.20 | 0.83 | |
Carpodesmia tamariscifolia | 1.31 | 0.57 | 0.43 | 0.42 | 0.28 | 0.15 | 0.15 | 0.61 | This study |
Saccorhiza polyschides | 1.73 | 0.63 | 0.37 | 0.38 | 0.11 | 0.25 | 0.25 | 1.09 | |
Bifurcaria bifurcata | 1.88 | 0.65 | 0.35 | 0.33 | 0.02 | 0.32 | 0.32 | 1.43 | |
Fucus vesiculosus f. volubilis | 1.84 | 0.65 | 0.35 | 0.39 | 0.09 | 0.26 | 0.26 | 1.13 | |
Sigma-Aldrich Na-Alginate | 3.42 | 0.77 | 0.23 | 0.68 | 0.14 | 0.09 | 0.09 | 0.51 | |
Ascophyllum nodosum | 0.85 | 0.46 | 0.54 | 0.28 | 0.36 | 0.18 | 0.18 | 0.72 | [10] |
Durvillaea antarctica | 4.00 | 0.8 | 0.2 | 0.64 | 0.04 | 0.16 | 0.16 | 1.00 | [11] |
Ecklonia maxima | 1.22 | 0.55 | 0.45 | 0.32 | 0.22 | 0.23 | 0.23 | 0.93 | [8] |
Laminaria japonica | 1.86 | 0.65 | 0.35 | 0.48 | 0.18 | 0.17 | 0.17 | 0.75 | [8] |
Laminaria digitata | 1.44 | 0.59 | 0.41 | 0.43 | 0.25 | 0.16 | 0.16 | 0.66 | [8] |
Laminaria hyperborea | 0.82 | 0.45 | 0.55 | 0.28 | 0.38 | 0.17 | 0.17 | 0.69 | [15] |
Lessonia nigrescens | 1.44 | 0.59 | 0.41 | 0.4 | 0.22 | 0.19 | 0.19 | 0.79 | [12] |
Macrocystis pyrifera | 1.7 | 0.63 | 0.37 | 0.42 | 0.16 | 0.21 | 0.21 | 0.90 | [11] |
Saccharina longicruris | 0.69 | 0.41 | 0.59 | 0.07 | 0.25 | 0.34 | 0.34 | 1.41 | [10] |
Sargassum asperifolium | 0.69 | 0.41 | 0.59 | 0.3 | 0.48 | 0.22 | 0.22 | 0.91 | [12] |
Sargassum filipendula | 0.78 | 0.44 | 0.56 | 0.33 | 0.45 | 0.11 | 0.11 | 0.45 | [17] |
Sargassum muticum | 0.31 | 0.24 | 0.76 | 0.07 | 0.59 | 0.17 | 0.17 | 0.93 | [20] |
Sargassum oligocystum | 0.62 | 0.38 | 0.62 | 0.31 | 0.55 | 0.14 | 0.14 | 0.59 | [18] |
Sargassum thunbergii | 0.53 | 0.34 | 0.66 | 0.17 | 0.48 | 0.34 | 0.34 | 1.52 | [20] |
Sargassum polycystum | 0.21 | 0.18 | 0.82 | 0.12 | 0.77 | 0.1 | 0.1 | 0.68 | [20] |
Sargassum vulgare | 1.27 | 0.56 | 0.44 | 0.02 | 0.55 | 0.43 | 0.43 | 1.75 | [19] |
Fucus vesiculosus | 1.44 | 0.59 | 0.41 | 0.39 | 0.22 | 0.19 | 0.19 | 0.78 | [10] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belattmania, Z.; Kaidi, S.; El Atouani, S.; Katif, C.; Bentiss, F.; Jama, C.; Reani, A.; Sabour, B.; Vasconcelos, V. Isolation and FTIR-ATR and 1H NMR Characterization of Alginates from the Main Alginophyte Species of the Atlantic Coast of Morocco. Molecules 2020, 25, 4335. https://doi.org/10.3390/molecules25184335
Belattmania Z, Kaidi S, El Atouani S, Katif C, Bentiss F, Jama C, Reani A, Sabour B, Vasconcelos V. Isolation and FTIR-ATR and 1H NMR Characterization of Alginates from the Main Alginophyte Species of the Atlantic Coast of Morocco. Molecules. 2020; 25(18):4335. https://doi.org/10.3390/molecules25184335
Chicago/Turabian StyleBelattmania, Zahira, Soukaina Kaidi, Samir El Atouani, Chaimaa Katif, Fouad Bentiss, Charafeddine Jama, Abdeltif Reani, Brahim Sabour, and Vitor Vasconcelos. 2020. "Isolation and FTIR-ATR and 1H NMR Characterization of Alginates from the Main Alginophyte Species of the Atlantic Coast of Morocco" Molecules 25, no. 18: 4335. https://doi.org/10.3390/molecules25184335
APA StyleBelattmania, Z., Kaidi, S., El Atouani, S., Katif, C., Bentiss, F., Jama, C., Reani, A., Sabour, B., & Vasconcelos, V. (2020). Isolation and FTIR-ATR and 1H NMR Characterization of Alginates from the Main Alginophyte Species of the Atlantic Coast of Morocco. Molecules, 25(18), 4335. https://doi.org/10.3390/molecules25184335