Evaluation of Clay Hydration and Swelling Inhibition Using Quaternary Ammonium Dicationic Surfactant with Phenyl Linker
Abstract
:1. Introduction
2. Results and Discussion
2.1. Rheological Properties
2.2. Filtration Properties
2.3. Contact Angle Measurements
2.4. Linear Swelling
2.5. Capillary Suction Timer
2.6. Particle Size Distribution
2.7. X-ray Diffraction
3. Materials and Methods
3.1. Materials
3.2. Synthesis of PC and PB
3.3. Preparation of Drilling Muds
3.4. Rheological Measurements
3.5. Filtration Test
3.6. Linear Swelling Test
3.7. Capillary Suction Timer Test
3.8. Wettability Alteration Measurements
3.9. Particle Size Measurements
3.10. X-ray Diffraction
4. Conclusions
- The addition of a surfactant in a base mud reduced its rheological parameters. The PB surfactant showed less impact on the rheology of base mud as compared to the PC.
- The fluid loss increased upon the addition of PC and PB in the base mud, which can be controlled by adding FLC.
- Both PC and PB changed the wettability of hydrated bentonite as indicated by contact angle measurement and made a hydrophobic surface.
- Reduction in CST time and increase in particle size depicted the clay swelling inhibition capacity of PC and PB gemini surfactants.
- The swelling rate of bentonite pellets was significantly reduced in the presence of PC and PB as compared to deionized water. PC formulation provided high inhibition same as sodium silicate in the linear swelling test.
- The gemini surfactants intercalated in the layers of bentonite and increased its basal spacing.
- The PB surfactant containing bromide counterion showed better thermal stability as compared to PC containing chloride counterion.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sahin, A. Unconventional natural gas potential in Saudi Arabia. In Proceedings of the SPE Middle East Oil and Gas Show and Conference, Society of Petroleum Engineers, Manama, Bahrain, 10–13 March 2013; Volume 3, pp. 1673–1681. [Google Scholar]
- Werner, A.K.; Vink, S.; Watt, K.; Jagals, P. Environmental health impacts of unconventional natural gas development: A review of the current strength of evidence. Sci. Total Environ. 2015, 505, 1127–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, H.M.; Kamal, M.S.; Mahmoud, M.; Shakil Hussain, S.M.; Abouelresh, M.; Al-Harthi, M.A. Organophilic Clay-Based Drilling Fluids for Mitigation of Unconventional Shale Reservoirs Instability and Formation Damage. ASME J. Energy Resour. Technol. 2019, 141, 093102. [Google Scholar] [CrossRef]
- Haider, W.H. Estimates of total oil & gas reserves in the world, future of oil and gas companies and smart investments by E & P companies in renewable energy sources for future energy needs. In Proceedings of the International Petroleum Technology Conference 2020, IPTC 2020, Dhahran, Saudi Arabia, 13–15 January 2020. [Google Scholar]
- Bol, G.M. Effect of Various Polymers and Salts on Borehole and Cutting Stability in Water-Base Shale Drilling Fluids. In Proceedings of the IADC/SPE Drilling Conference1986, Society of Petroleum Engineers, Dallas, TX, USA, 9–12 February 1986. [Google Scholar]
- Van Oort, E. On the physical and chemical stability of shales. J. Pet. Sci. Eng. 2003, 38, 213–235. [Google Scholar] [CrossRef]
- Zhao, X.; Qiu, Z.; Sun, B.; Liu, S.; Xing, X.; Wang, M. Formation damage mechanisms associated with drilling and completion fluids for deepwater reservoirs. J. Pet. Sci. Eng. 2019, 173, 112–121. [Google Scholar] [CrossRef]
- Albooyeh, M.; Kivi, I.R.; Ameri, M. Promoting wellbore stability in active shale formations by water-based muds: A case study in Pabdeh shale, Southwestern Iran. J. Nat. Gas Sci. Eng. 2018, 56, 166–174. [Google Scholar] [CrossRef]
- Ding, Y.; Luo, P.; Liu, X.; Liang, L. Wellbore stability model for horizontal wells in shale formations with multiple planes of weakness. J. Nat. Gas Sci. Eng. 2018, 52, 334–347. [Google Scholar] [CrossRef]
- Barati, P.; Shahbazi, K.; Kamari, M.; Aghajafari, A. Shale hydration inhibition characteristics and mechanism of a new amine-based additive in water-based drilling fluids. Petroleum 2017, 3, 476–482. [Google Scholar] [CrossRef]
- May, P.; Deville, J.; Miller, J.; Burrows, K. Environmentally acceptable shale inhibitors for high performance water-based muds. In Proceedings of the International Petroleum Technology Conference 2020, IPTC 2020, Dhahran, Saudi Arabia, 13–15 January 2020. [Google Scholar]
- Patel, H.; Santra, A.; Thaemlitz, C. Functionalized layered nanomaterials: A next-generation shale inhibitor. In Proceedings of the International Petroleum Technology Conference 2020, IPTC 2020, Dhahran, Saudi Arabia, 13–15 January 2020. [Google Scholar]
- Al-Hameedi, A.T.T.; Alkinani, H.H.; Albazzaz, H.W.; Dunn-Norman, S.; Alkhamis, M.M. Insights into the applications of waste materials in the oil and gas industry: State of the art review, availability, cost analysis, and classification. J. Pet. Explor. Prod. Technol. 2020, 10, 2137–2151. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Elbatran, A.; Labib, A.; Megally, F. High-performance water-based drilling fluid proved an environmentally-friendly alternative for time-sensitive shales in Saudi Arabia. In Proceedings of the International Petroleum Technology Conference 2020, IPTC 2020, Dhahran, Saudi Arabia, 13–15 January 2020. [Google Scholar]
- Hossain, M.E.; Al-Majed, A.A. Fundamentals of Sustainable Drilling Engineering; John Wiley & Sons: Hoboken, NJ, USA, 2015; ISBN 9781119100300. [Google Scholar]
- Okoro, E.E.; Ochonma, C.; Omeje, M.; Sanni, S.E.; Emetere, M.E.; Orodu, K.B.; Igwilo, K.C. Radiological and toxicity risk exposures of oil based mud: Health implication on drilling crew in Niger Delta. Environ. Sci. Pollut. Res. 2020, 27, 5387–5397. [Google Scholar] [CrossRef]
- Singh, Y.; Farooq, A.; Raza, A.; Mahmood, M.A.; Jain, S. Sustainability of a non-edible vegetable oil based bio-lubricant for automotive applications: A review. Process Saf. Environ. Prot. 2017, 111, 701–713. [Google Scholar] [CrossRef]
- Enamul Hossain, M.; Al-Majed, A.; Adebayo, A.R.; Apaleke, A.S.; Rahman, S.M. A critical review of drilling waste management towards sustainable solutions. Environ. Eng. Manag. J. 2017, 16, 1435–1450. [Google Scholar] [CrossRef]
- Hossain, M.E.; Wajheeuddin, M. The use of grass as an environmentally friendly additive in water-based drilling fluids. Pet. Sci. 2016, 13, 292–303. [Google Scholar] [CrossRef] [Green Version]
- An, Y.; Jiang, G.; Ren, Y.; Zhang, L.; Qi, Y.; Ge, Q. An environmental friendly and biodegradable shale inhibitor based on chitosan quaternary ammonium salt. J. Pet. Sci. Eng. 2015, 135, 253–260. [Google Scholar] [CrossRef]
- Patel, A.; Stamatakis, S.; Young, S.; Friedheim, J. Advances in Inhibitive Water-Based Drilling Fluids—Can They Replace Oil-Based Muds? In Proceedings of the International Symposium on Oilfield Chemistry, Society of Petroleum Engineers, Houston, TX, USA, 28 February–2 March 2007.
- Ahmed, H.M.; Kamal, M.S.; Al-Harthi, M. Polymeric and low molecular weight shale inhibitors: A review. Fuel 2019, 251, 187–217. [Google Scholar] [CrossRef]
- Anderson, R.L.; Ratcliffe, I.; Greenwell, H.C.; Williams, P.A.; Cliffe, S.; Coveney, P. V Clay swelling—A challenge in the oilfield. Earth Sci. Rev. 2010, 98, 201–216. [Google Scholar] [CrossRef]
- Boul, P.J.; Reddy, B.R.; Zhang, J.; Thaemlitz, C. Functionalized nanosilicas as shale inhibitors in water-based drilling fluids. SPE Drill. Complet. 2017, 32, 121–130. [Google Scholar] [CrossRef]
- Ahmad, H.M.; Kamal, M.S.; Hussain, S.M.S.; Al-Harthi, M. Synthesis of novel copolymer based on N-Vinyl caprolactam and acrylamide monomers for high temperature drilling applications. In AIP Conference Proceedings; Polymer Processing Society: İzmir, Turkey, 2020; Volume 2205. [Google Scholar]
- Ahmad, H.M.; Kamal, M.S.; Al-Harthi, M.A. High molecular weight copolymers as rheology modifier and fluid loss additive for water-based drilling fluids. J. Mol. Liq. 2018, 252, 133–143. [Google Scholar] [CrossRef]
- Ahmad, H.M.; Kamal, M.S.; Al-Harthi, M.A. Rheological and filtration properties of clay-polymer systems: Impact of polymer structure. Appl. Clay Sci. 2018, 160, 226–237. [Google Scholar] [CrossRef]
- Balaban, R.D.C.; Vidal, E.L.F.; Borges, M.R. Design of experiments to evaluate clay swelling inhibition by different combinations of organic compounds and inorganic salts for application in water base drilling fluids. Appl. Clay Sci. 2015, 105–106, 124–130. [Google Scholar] [CrossRef]
- Mudaser Ahmad, H.; Shahzad Kamal, M.; Al-Harthi, M.A.; Mahmoud Elkatatny, S.; Murtaza, M.M. Synthesis and experimental investigation of novel CNT-polymer nanocomposite to enhance borehole stability at high temperature drilling applications. In Proceedings of the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Society of Petroleum Engineers, Dammam, Saudi Arabia, 23–26 April 2018. [Google Scholar]
- Ahmad, H.M.; Kamal, M.S.; Hussain, S.M.S.; Al-Harthi, M. Synthesis of novel polymer nanocomposite for water-based drilling fluids. In AIP Conference Proceedings; Polymer Processing Society: İzmir, Turkey, 2020; Volume 2205. [Google Scholar]
- Xu, J.G.; Qiu, Z.S.; Zhao, X.; Zhong, H.Y.; Li, G.R.; Huang, W.A. Synthesis and characterization of shale stabilizer based on polyethylene glycol grafted nano-silica composite in water-based drilling fluids. J. Pet. Sci. Eng. 2018, 163, 371–377. [Google Scholar] [CrossRef]
- Işçi, S.; Güngör, N.; Alemdar, A.; Ece, Ö.I. Influence of clay surface modification on morphology and rheology of polyethylene glycol/montmorillonite nanocomposites. J. Compos. Mater. 2007, 41, 1521–1533. [Google Scholar] [CrossRef]
- Bai, X.; Wang, H.; Luo, Y.; Zheng, X.; Zhang, X.; Zhou, S.; Pu, X. The structure and application of amine-terminated hyperbranched polymer shale inhibitor for water-based drilling fluid. J. Appl. Polym. Sci. 2017, 134, 45466. [Google Scholar] [CrossRef]
- Huang, W.; Li, X.; Qiu, Z.; Jia, J.; Wang, Y.; Li, X. Inhibiting the surface hydration of shale formation using preferred surfactant compound of polyamine and twelve alkyl two hydroxyethyl amine oxide for drilling. J. Pet. Sci. Eng. 2017, 159, 791–798. [Google Scholar] [CrossRef]
- Zhong, H.; Qiu, Z.; Zhang, D.; Tang, Z.; Huang, W.; Wang, W. Inhibiting shale hydration and dispersion with amine-terminated polyamidoamine dendrimers. J. Nat. Gas Sci. Eng. 2016, 28, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Zhong, H.; Qiu, Z.; Huang, W.; Sun, D.; Zhang, D.; Cao, J. Synergistic stabilization of shale by a mixture of polyamidoamine dendrimers modified bentonite with various generations in water-based drilling fluid. Appl. Clay Sci. 2015, 114, 359–369. [Google Scholar] [CrossRef]
- Ahmad, H.M.; Kamal, M.S.; Murtaza, M.; Khan, S.; Al-Harthi, M. Alteration of wettability and hydration properties of shale using ionic liquids in water-based drilling fluids. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Society of Petroleum Enginners, Abu Dhabi, UAE, 11–14 November 2019. [Google Scholar]
- Ahmad, H.M.; Kamal, M.S.; Murtaza, M.; Al-Harthi, M.A. Improving the drilling fluid properties using nanoparticles and water-soluble polymers. In Proceedings of the SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Society of Petroleum Engineers, Dammam, Saudi Arabia, 24–27 April 2017; pp. 106–124. [Google Scholar]
- Wu, Y.; Wang, Z.; Yan, Z.; Zhang, T.; Bai, Y.; Wang, P.; Luo, P.; Gou, S.; Guo, Q. Poly(2-acrylamide-2-methylpropanesulfonic acid)-modified SiO2 nanoparticles for water-based muds. Ind. Eng. Chem. Res. 2017, 56, 168–174. [Google Scholar] [CrossRef]
- Saleh, T.A.; Ibrahim, M.A. Advances in functionalized Nanoparticles based drilling inhibitors for oil production. Energy Rep. 2019, 5, 1293–1304. [Google Scholar] [CrossRef]
- Young, S.; Friedheim, J. Environmentally friendly drilling fluids for unconventional shale. In Proceedings of the Offshore Mediterranean Conference and Exhibition 2013, OMC 2013, Ravenna, Italy, 20–22 March 2013. [Google Scholar]
- Sun, J.; Zhang, F.; Lv, K.; Chang, X. A novel film-forming silicone polymer as shale inhibitor for water-based drilling fluids. e-Polymers 2019, 19, 574–578. [Google Scholar] [CrossRef] [Green Version]
- Mao, H.; Qiu, Z.; Shen, Z.; Huang, W. Hydrophobic associated polymer based silica nanoparticles composite with core-shell structure as a filtrate reducer for drilling fluid at utra-high temperature. J. Pet. Sci. Eng. 2015, 129, 1–14. [Google Scholar] [CrossRef]
- Jia, H.; Huang, P.; Wang, Q.; Han, Y.; Wang, S.; Dai, J.; Song, J.; Zhang, F.; Yan, H.; Lv, K. Study of a gemini surface active ionic liquid 1,2-bis(3-hexylimidazolium-1-yl) ethane bromide as a high performance shale inhibitor and inhibition mechanism. J. Mol. Liq. 2020, 301, 112401. [Google Scholar] [CrossRef]
- Patel, A.D. Design and development of quaternary amine compounds: Shale inhibition with improved environmental profile. In Proceedings of the SPE International Symposium on Oilfield Chemistry, Society of Petroleum Engineers, The Woodlands, TX, USA, 20–22 April 2009; Volume 2, pp. 1007–1015. [Google Scholar]
- Zhong, H.; Qiu, Z.; Huang, W.; Cao, J. Poly (oxypropylene)-amidoamine modified bentonite as potential shale inhibitor in water-based drilling fluids. Appl. Clay Sci. 2012, 67–68, 36–43. [Google Scholar] [CrossRef]
- Kang, Y.; She, J.; Zhang, H.; You, L.; Song, M. Strengthening shale wellbore with silica nanoparticles drilling fluid. Petroleum 2016, 2, 189–195. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, M.; Moslemizadeh, A.; Shahbazi, K.; Mohammadzadeh, O.; Zendehboudi, S.; Jafari, S. Primary evaluation of a natural surfactant for inhibiting clay swelling. J. Pet. Sci. Eng. 2019, 178, 878–891. [Google Scholar] [CrossRef]
- Aggrey, W.N.; Asiedu, N.Y.; Adenutsi, C.D.; Anumah, P. A novel non-ionic surfactant extract derived from Chromolaena odarata as shale inhibitor in water based drilling mud. Heliyon 2019, 5, e01697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murtaza, M.; Kamal, M.S.; Hussain, S.M.S.; Mahmoud, M.; Syed, N.A. Quaternary ammonium gemini surfactants having different spacer length as clay swelling inhibitors: Mechanism and performance evaluation. J. Mol. Liq. 2020, 308, 113054. [Google Scholar] [CrossRef]
- Murtaza, M.; Kamal, M.S.; Hussain, S.M.S.; Mahmoud, M. Clay Swelling Inhibition Using Novel Cationic Gemini Surfactants with Different Spacers. J. Surfactants Deterg. 2020, 23, 936–972. [Google Scholar] [CrossRef]
- Majchrzycka, K.; Okrasa, M.; Szulc, J.; Brycki, B.; Gutarowska, B. Time-dependent antimicrobial activity of filtering nonwovens with gemini Surfactant-based biocides. Molecules 2017, 22, 1620. [Google Scholar] [CrossRef]
- Chen, H.; Wang, C.; Ye, J.; Zhou, H.; Lu, L.; Yang, Z. Synthesis and properties of a lacquer wax-based quarternary ammonium gemini surfactant. Molecules 2014, 19, 3596–3606. [Google Scholar] [CrossRef]
- Pisárčik, M.; Jampílek, J.; Lukáč, M.; Horáková, R.; Devínsky, F.; Bukovský, M.; Kalina, M.; Tkacz, J.; Opravil, T. Silver nanoparticles stabilised by cationic gemini surfactants with variable spacer length. Molecules 2017, 22, 1794. [Google Scholar] [CrossRef] [Green Version]
- Pisárčik, M.; Polakovičová, M.; Markuliak, M.; Lukáč, M.; Devínsky, F. Self-assembly properties of cationic gemini surfactants with biodegradable groups in the spacer. Molecules 2019, 24, 1481. [Google Scholar] [CrossRef] [Green Version]
- Labena, A.; Hegazy, M.A.; Sami, R.M.; Hozzein, W.N. Multiple applications of a novel cationic gemini surfactant: Anti-microbial, anti-biofilm, biocide, salinity corrosion inhibitor, and biofilm dispersion (Part II). Molecules 2020, 25, 1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shakil Hussain, S.M.; Kamal, M.S.; Murtaza, M. Synthesis of novel ethoxylated quaternary ammonium gemini surfactants for enhanced oil recovery application. Energies 2019, 12, 1731. [Google Scholar] [CrossRef] [Green Version]
- Tang, S.; Zheng, Y.; Yang, W.; Wang, J.; Fan, Y.; Lu, J. Experimental study of sulfonate gemini surfactants as thickeners for clean fracturing fluids. Energies 2018, 11, 3182. [Google Scholar] [CrossRef] [Green Version]
- Kalam, S.; Kamal, M.S.; Patil, S.; Hussain, S.M.S. Impact of Spacer Nature and Counter Ions on Rheological Behavior of Novel Polymer-Cationic Gemini Surfactant Systems at High Temperature. Polymers 2020, 12, 1027. [Google Scholar] [CrossRef]
- Kamal, M.S. A Review of Gemini Surfactants: Potential Application in Enhanced Oil Recovery. J. Surfactants Deterg. 2016, 19, 223–236. [Google Scholar] [CrossRef]
- Patel, U.; Parekh, P.; Sastry, N.V.; Aswal, V.K.; Bahadur, P. Surface activity, micellization and solubilization of cationic gemini surfactant-conventional surfactants mixed systems. J. Mol. Liq. 2017, 225, 888–896. [Google Scholar] [CrossRef]
- Qi, L.; Liao, W.; Bi, Z. Adsorption of conventional and gemini cationic surfactants in nonswelling and swelling layer silicate. Colloids Surf. A Physicochem. Eng. Asp. 2007, 302, 568–572. [Google Scholar] [CrossRef]
- Garcia, M.T.; Kaczerewska, O.; Ribosa, I.; Brycki, B.; Materna, P.; Drgas, M. Biodegradability and aquatic toxicity of quaternary ammonium-based gemini surfactants: Effect of the spacer on their ecological properties. Chemosphere 2016, 154, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Kamal, A.; Abdinejad, M.; Mahajan, R.K.; Kraatz, H.B. Advances in the synthesis, molecular architectures and potential applications of gemini surfactants. Adv. Colloid Interface Sci. 2017, 248, 35–68. [Google Scholar] [CrossRef]
- Fogang, L.T.; Kamal, M.S.; Hussain, S.M.S.; Kalam, S.; Patil, S. Oil/Water Interfacial Tension in Presence of Novel Polyoxyethylene Cationic Gemini Surfactants: Impact of Spacer Length, Unsaturation, and Aromaticity. Energy Fuels 2020, 34, 5545–5552. [Google Scholar] [CrossRef]
- Mpelwa, M.; Tang, S.; Jin, L.; Hu, R.; Wang, C.; Hu, Y. The study on the properties of the newly extended Gemini surfactants and their application potentials in the petroleum industry. J. Pet. Sci. Eng. 2020, 186, 106799. [Google Scholar] [CrossRef]
- Shakil Hussain, S.M.; Kamal, M.S.; Sultan, A.S. Amido-Amine-Based Cationic Gemini Surfactants: Thermal and Interfacial Properties and Interactions with Cationic Polyacrylamide. J. Surfactants Deterg. 2017, 20, 47–55. [Google Scholar] [CrossRef]
- Ding, F.; Gao, M.; Shen, T.; Zeng, H.; Xiang, Y. Comparative study of organo-vermiculite, organo-montmorillonite and organo-silica nanosheets functionalized by an ether-spacer-containing Gemini surfactant: Congo red adsorption and wettability. Chem. Eng. J. 2018, 349, 388–396. [Google Scholar] [CrossRef]
- Ren, H.-P.; Tian, S.-P.; Zhu, M.; Zhao, Y.-Z.; Li, K.-X.; Ma, Q.; Ding, S.-Y.; Gao, J.; Miao, Z. Modification of montmorillonite by Gemini surfactants with different chain lengths and its adsorption behavior for methyl orange. Appl. Clay Sci. 2018, 151, 29–36. [Google Scholar] [CrossRef]
- Yue, Y.; Chen, S.; Wang, Z.; Yang, X.; Peng, Y.; Cai, J.; Nasr-El-Din, H.A. Improving wellbore stability of shale by adjusting its wettability. J. Pet. Sci. Eng. 2018, 161, 692–702. [Google Scholar] [CrossRef]
- Negin, C.; Ali, S.; Xie, Q. Most common surfactants employed in chemical enhanced oil recovery. Petroleum 2017, 3, 197–211. [Google Scholar] [CrossRef]
- Goh, R.; Leong, Y.K.; Lehane, B. Bentonite slurries-zeta potential, yield stress, adsorbed additive and time-dependent behaviour. Rheol. Acta 2011, 50, 29–38. [Google Scholar] [CrossRef]
- Du, W.; Pu, X.; Sun, J.; Luo, X.; Zhang, Y.; Li, L. Synthesis and evaluation of a novel monomeric amine as sodium montmorillonite swelling inhibitor. Adsorpt. Sci. Technol. 2018, 36, 655–668. [Google Scholar] [CrossRef] [Green Version]
- Du, W.-C.; Wang, X.-Y.; Liu, M.; Bi, T.-F.; Song, S.-X.; Zhang, J.; Chen, G. Synthesis and performance of AM/SSS/THDAB as clay hydration dispersion inhibitor. Polímeros 2019, 29, 1–7. [Google Scholar] [CrossRef]
- Guo, J.; Yan, J.; Fan, W.; Zhang, H. Applications of strongly inhibitive silicate-based drilling fluids in troublesome shale formations in Sudan. J. Pet. Sci. Eng. 2006, 50, 195–203. [Google Scholar] [CrossRef]
- Murtaza, M.; Kamal, M.S.; Mahmoud, M. Application of a Novel and Sustainable Silicate Solution as an Alternative to Sodium Silicate for Clay Swelling Inhibition. ACS Omega 2020, 5, 17405–17415. [Google Scholar] [CrossRef] [PubMed]
- Zhong, H.Y.; Qiu, Z.S.; Huang, W.A.; Cao, J.; Wang, F.W.; Zhang, X.B. An inhibition properties comparison of potassium chloride and polyoxypropylene diamine in water-based drilling fluid. Pet. Sci. Technol. 2013, 31, 2127–2133. [Google Scholar] [CrossRef]
- Amanullah, M.; Ramasamy, J.; Al-Arfaj, M.K. Application of an indigenous eco-friendly raw material as fluid loss additive. J. Pet. Sci. Eng. 2016, 139, 191–197. [Google Scholar] [CrossRef]
- Taleb, K.; Pillin, I.; Grohens, Y.; Saidi-Besbes, S. Gemini surfactant modified clays: Effect of surfactant loading and spacer length. Appl. Clay Sci. 2018, 161, 48–56. [Google Scholar] [CrossRef]
- Hu, Z.; He, G.; Liu, Y.; Dong, C.; Wu, X.; Zhao, W. Effects of surfactant concentration on alkyl chain arrangements in dry and swollen organic montmorillonite. Appl. Clay Sci. 2013, 75–76, 134–140. [Google Scholar] [CrossRef]
- Moslemizadeh, A.; Shadizadeh, S.R.; Moomenie, M. Experimental investigation of the effect of henna extract on the swelling of sodium bentonite in aqueous solution. Appl. Clay Sci. 2015, 105–106, 78–88. [Google Scholar] [CrossRef]
- Chen, T.; Yuan, Y.; Zhao, Y.; Rao, F.; Song, S. Effect of layer charges on exfoliation of montmorillonite in aqueous solutions. Colloids Surf. A Physicochem. Eng. Asp. 2018, 548, 92. [Google Scholar] [CrossRef]
- Williams-Daryn, S.; Thomas, R.K. The intercalation of a vermiculite by cationic surfactants and its subsequent swelling with organic solvents. J. Colloid Interface Sci. 2002, 255, 303–311. [Google Scholar] [CrossRef]
- Shakil Hussain, S.M.; Kamal, M.S.; Murtaza, M. Effect of aromatic spacer groups and counterions on aqueous micellar and thermal properties of the synthesized quaternary ammonium gemini surfactants. J. Mol. Liq. 2019, 296, 111837. [Google Scholar] [CrossRef]
- Wilcox, R.D.; Fisk, J.V.; Corbett, G.E. Filtration Method Characterizes Dispersive Properties of Shales. SPE Drill. Eng. 1987, 2, 149–158. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds PC and PB are available from the authors. |
Inhibitors | AV(cP) | PV(cP) | YP (l bf/100 ft2) |
---|---|---|---|
BM | 11.1 | 8.2 | 5.7 |
SS | 7.0 | 6.2 | 1.6 |
PC | 7.4 | 5.6 | 3.7 |
PB | 8.3 | 6 | 4.7 |
Name | Supplier | Purity (%) |
---|---|---|
Glycolic acid ethoxylate lauryl ether (690) | Sigma Aldrich | 98.5 |
3-(dimethylamino)-1-propylamine | Sigma Aldrich | 99 |
α,α’-dibromo-p-xylene | Sigma Aldrich | 97 |
α,α’-dichloro-p-xylene | Sigma Aldrich | 98 |
Aluminum oxide | Sigma Aldrich | 99.99 |
Sodium fluoride | Sigma Aldrich | 99 |
Sodium hydroxide | Sigma Aldrich | 98 |
Sodium Bentonite | Halliburton | - |
Sodium silicate | Sigma Aldrich | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murtaza, M.; Ahmad, H.M.; Kamal, M.S.; Hussain, S.M.S.; Mahmoud, M.; Patil, S. Evaluation of Clay Hydration and Swelling Inhibition Using Quaternary Ammonium Dicationic Surfactant with Phenyl Linker. Molecules 2020, 25, 4333. https://doi.org/10.3390/molecules25184333
Murtaza M, Ahmad HM, Kamal MS, Hussain SMS, Mahmoud M, Patil S. Evaluation of Clay Hydration and Swelling Inhibition Using Quaternary Ammonium Dicationic Surfactant with Phenyl Linker. Molecules. 2020; 25(18):4333. https://doi.org/10.3390/molecules25184333
Chicago/Turabian StyleMurtaza, Mobeen, Hafiz Mudaser Ahmad, Muhammad Shahzad Kamal, Syed Muhammad Shakil Hussain, Mohamed Mahmoud, and Shirish Patil. 2020. "Evaluation of Clay Hydration and Swelling Inhibition Using Quaternary Ammonium Dicationic Surfactant with Phenyl Linker" Molecules 25, no. 18: 4333. https://doi.org/10.3390/molecules25184333
APA StyleMurtaza, M., Ahmad, H. M., Kamal, M. S., Hussain, S. M. S., Mahmoud, M., & Patil, S. (2020). Evaluation of Clay Hydration and Swelling Inhibition Using Quaternary Ammonium Dicationic Surfactant with Phenyl Linker. Molecules, 25(18), 4333. https://doi.org/10.3390/molecules25184333