BC2L-C N-Terminal Lectin Domain Complexed with Histo Blood Group Oligosaccharides Provides New Structural Information
Abstract
:1. Introduction
2. Results
2.1. New Construct for Recombinant of BC2L-CN
2.2. Physical Analysis of the rBC2L-CN2
2.3. Affinity Analysis and Activity Validation
2.4. Resolution of rBC2L-CN2 Structure in Complex with Oligosaccharide
2.4.1. Overall Structure
2.4.2. Oligosaccharide Binding Interactions
3. Discussion
4. Materials and Methods
4.1. Protein Expression and Purification
4.2. ITC Measurements
4.3. Crystallization, Data Collection, and Structure Determination
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fazli, M.; Almblad, H.; Rybtke, M.L.; Givskov, M.; Eberl, L.; Tolker-Nielsen, T. Regulation of biofilm formation in Pseudomonas and Burkholderia species. Environ. Microbiol. 2014, 16, 1961–1981. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, K.A.; Schweizer, H.P. Antibiotic resistance in Burkholderia species. Drug Resist Updat. 2016, 28, 82–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parajuli, N.P.; Acharya, S.P.; Mishra, S.K.; Parajuli, K.; Rijal, B.P.; Pokhrel, B.M. High burden of antimicrobial resistance among gram negative bacteria causing healthcare associated infections in a critical care unit of Nepal. Antimicrob. Resist. Infect. Control 2017, 6, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scoffone, V.C.; Chiarelli, L.R.; Trespidi, G.; Mentasti, M.; Riccardi, G.; Buroni, S. Burkholderia cenocepacia Infections in Cystic Fibrosis Patients: Drug Resistance and Therapeutic Approaches. Front. Microbiol. 2017, 8, 1592. [Google Scholar] [CrossRef] [Green Version]
- Mahenthiralingam, E.; Urban, T.A.; Goldberg, J.B. The multifarious, multireplicon Burkholderia cepacia complex. Nat. Rev. Microbiol. 2005, 3, 144–156. [Google Scholar] [CrossRef]
- Sousa, S.A.; Ramos, C.G.; Leitão, J.H. Burkholderia cepacia Complex: Emerging Multihost Pathogens Equipped with a Wide Range of Virulence Factors and Determinants. Int. J. Microbiol. 2011, 2011, 607575. [Google Scholar] [CrossRef] [Green Version]
- Imberty, A.; Varrot, A. Microbial recognition of human cell surface glycoconjugates. Curr. Opin. Struct. Biol. 2008, 18, 567–576. [Google Scholar] [CrossRef]
- Lameignere, E.; Malinovska, L.; Slavikova, M.; Duchaud, E.; Mitchell, E.P.; Varrot, A.; Sedo, O.; Imberty, A.; Wimmerova, M. Structural basis for mannose recognition by a lectin from opportunistic bacteria Burkholderia cenocepacia. Biochem. J. 2008, 411, 307–318. [Google Scholar] [CrossRef] [Green Version]
- Heggelund, J.E.; Varrot, A.; Imberty, A.; Krengel, U. Histo-blood group antigens as mediators of infections. Curr. Opin. Struct. Biol. 2017, 44, 190–200. [Google Scholar] [CrossRef] [Green Version]
- Sulák, O.; Cioci, G.; Delia, M.; Lahmann, M.; Varrot, A.; Imberty, A.; Wimmerová, M. A TNF-like Trimeric Lectin Domain from Burkholderia cenocepacia with Specificity for Fucosylated Human Histo-Blood Group Antigens. Structure 2010, 18, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Sulák, O.; Cioci, G.; Lameignère, E.; Balloy, V.; Round, A.; Gutsche, I.; Malinovská, L.; Chignard, M.; Kosma, P.; Aubert, D.F.; et al. Burkholderia cenocepacia BC2L-C is a super lectin with dual specificity and proinflammatory activity. PLoS Pathog. 2011, 7, e1002238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meiers, J.; Siebs, E.; Zahorska, E.; Titz, A. Lectin antagonists in infection, immunity, and inflammation. Curr. Opin. Chem. Biol. 2019, 53, 51–67. [Google Scholar] [CrossRef] [PubMed]
- Tamburrini, A.; Colombo, C.; Bernardi, A. Design and synthesis of glycomimetics: Recent advances. Med. Res. Rev. 2019. [Google Scholar] [CrossRef] [PubMed]
- Houben, K.; Marion, D.; Tarbouriech, N.; Ruigrok, R.W.; Blanchard, L. Interaction of the C-terminal domains of sendai virus N and P proteins: Comparison of polymerase-nucleocapsid interactions within the paramyxovirus family. J. Virol. 2007, 81, 6807–6816. [Google Scholar] [CrossRef] [Green Version]
- Kapust, R.B.; Tözsér, J.; Fox, J.D.; Anderson, D.E.; Cherry, S.; Copeland, T.D.; Waugh, D.S. Tobacco etch virus protease: Mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Eng. Des. Sel. 2001, 14, 993–1000. [Google Scholar] [CrossRef] [Green Version]
- Qing, G.; Ma, L.-C.; Khorchid, A.; Swapna, G.V.T.; Mal, T.K.; Takayama, M.M.; Xia, B.; Phadtare, S.; Ke, H.; Acton, T.; et al. Cold-shock induced high-yield protein production in Escherichia coli. Nat. Biotechnol. 2004, 22, 877–882. [Google Scholar] [CrossRef]
- Bleuler-Martinez, S.; Stutz, K.; Sieber, R.; Collot, M.; Mallet, J.M.; Hengartner, M.; Schubert, M.; Varrot, A.; Kunzler, M. Dimerization of the fungal defense lectin CCL2 is essential for its toxicity against nematodes. Glycobiology 2017, 27, 486–500. [Google Scholar] [CrossRef] [Green Version]
- Tateno, H.; Matsushima, A.; Hiemori, K.; Onuma, Y.; Ito, Y.; Hasehira, K.; Nishimura, K.; Ohtaka, M.; Takayasu, S.; Nakanishi, M.; et al. Podocalyxin is a glycoprotein ligand of the human pluripotent stem cell-specific probe rBC2LCN. Stem Cells Transl. Med. 2013, 2, 265–273. [Google Scholar] [CrossRef]
- Krissinel, E.; Henrick, K. Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. D Biol. Crystallogr. 2004, 60, 2256–2268. [Google Scholar] [CrossRef]
- Agirre, J.; Iglesias-Fernandez, J.; Rovira, C.; Davies, G.J.; Wilson, K.S.; Cowtan, K.D. Privateer: Software for the conformational validation of carbohydrate structures. Nat. Struct. Mol. Biol. 2015, 22, 833–834. [Google Scholar] [CrossRef] [Green Version]
- Pérez, S.; Sarkar, A.; Rivet, A.; Breton, C.; Imberty, A. Glyco3D: A Portal for Structural Glycosciences. In Glycoinformatics; Lütteke, T., Frank, M., Eds.; Springer: New York, NY, USA, 2015; pp. 241–258. [Google Scholar] [CrossRef]
- Tateno, H.; Toyota, M.; Saito, S.; Onuma, Y.; Ito, Y.; Hiemori, K.; Fukumura, M.; Matsushima, A.; Nakanishi, M.; Ohnuma, K.; et al. Glycome Diagnosis of Human Induced Pluripotent Stem Cells Using Lectin Microarray. J. Biol. Chem. 2011, 286, 20345–20353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navarra, G.; Zihlmann, P.; Jakob, R.P.; Stangier, K.; Preston, R.C.; Rabbani, S.; Smiesko, M.; Wagner, B.; Maier, T.; Ernst, B. Carbohydrate–Lectin Interactions: An Unexpected Contribution to Affinity. ChemBioChem 2017, 18, 539–544. [Google Scholar] [CrossRef] [PubMed]
- Breimer, M.E.; Säljö, K.; Barone, A.; Teneberg, S. Glycosphingolipids of human embryonic stem cells. Glycoconj. J. 2017, 34, 713–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, T.-Y.; Chen, I.J.; Lin, R.-J.; Liao, G.-S.; Yeo, H.-L.; Ho, C.-L.; Wu, J.-C.; Chang, N.-C.; Lee, A.C.-L.; Yu, A.L. Fucosyltransferase 1 and 2 play pivotal roles in breast cancer cells. Cell Death Discov. 2019, 5, 74. [Google Scholar] [CrossRef] [PubMed]
- Onuma, Y.; Tateno, H.; Hirabayashi, J.; Ito, Y.; Asashima, M. rBC2LCN, a new probe for live cell imaging of human pluripotent stem cells. Biochem. Biophys. Res. Commun. 2013, 431, 524–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poole, J.; Day, C.J.; von Itzstein, M.; Paton, J.C.; Jennings, M.P. Glycointeractions in bacterial pathogenesis. Nat. Rev. Microbiol. 2018, 16, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Cecioni, S.; Imberty, A.; Vidal, S. Glycomimetics versus multivalent glycoconjugates for the design of high affinity lectin ligands. Chem. Rev. 2015, 115, 525–561. [Google Scholar] [CrossRef]
- Sattin, S.; Bernardi, A. Glycoconjugates and Glycomimetics as Microbial Anti-Adhesives. Trends Biotechnol. 2016, 34, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Johansson, E.M.V.; Crusz, S.A.; Kolomiets, E.; Buts, L.; Kadam, R.U.; Cacciarini, M.; Bartels, K.-M.; Diggle, S.P.; Cámara, M.; Williams, P.; et al. Inhibition and Dispersion of Pseudomonas aeruginosa Biofilms by Glycopeptide Dendrimers Targeting the Fucose-Specific Lectin LecB. Chem. Biol. 2008, 15, 1249–1257. [Google Scholar] [CrossRef]
- Wagner, S.; Hauck, D.; Hoffmann, M.; Sommer, R.; Joachim, I.; Müller, R.; Imberty, A.; Varrot, A.; Titz, A. Covalent Lectin Inhibition and Application in Bacterial Biofilm Imaging. Angew Chem. Int. Ed. 2017, 56, 16559–16564. [Google Scholar] [CrossRef] [Green Version]
- Marchetti, R.; Malinovska, L.; Lameignère, E.; Adamova, L.; de Castro, C.; Cioci, G.; Stanetty, C.; Kosma, P.; Molinaro, A.; Wimmerova, M.; et al. Burkholderia cenocepacia lectin A binding to heptoses from the bacterial lipopolysaccharide. Glycobiology 2012, 22, 1387–1398. [Google Scholar] [CrossRef] [Green Version]
- Kašáková, M.; Malinovská, L.; Klejch, T.; Hlaváčková, M.; Dvořáková, H.; Fujdiarová, E.; Rottnerová, Z.; Maťátková, O.; Lhoták, P.; Wimmerová, M.; et al. Selectivity of original C-hexopyranosyl calix[4]arene conjugates towards lectins of different origin. Carbohydr. Res. 2018, 469, 60–72. [Google Scholar] [CrossRef]
- Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 2010, 66, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Legrand, P. XDSME: XDS Made Easier. GitHub Repos. 2017. [Google Scholar] [CrossRef]
- Winn, M.D.; Ballard, C.C.; Cowtan, K.D.; Dodson, E.J.; Emsley, P.; Evans, P.R.; Keegan, R.M.; Krissinel, E.B.; Leslie, A.G.; McCoy, A.; et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 2011, 67, 235–242. [Google Scholar] [CrossRef] [Green Version]
- McCoy, A.J. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr. D Biol. Crystallogr. 2007, 63, 32–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murshudov, G.N.; Skubak, P.; Lebedev, A.A.; Pannu, N.S.; Steiner, R.A.; Nicholls, R.A.; Winn, M.D.; Long, F.; Vagin, A.A. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 2011, 67, 355–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. Sect. D 2010, 66, 486–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Availability: Samples of rBC2L-CN2 in pCold-TEV are available from the authors. |
Ligand | n | Kd (μM) | −ΔG (kJ/mol) | −ΔH (kJ/mol) | −TΔS (kJ/mol) | Ref |
---|---|---|---|---|---|---|
Lewis Y | 0.99 a | 52.6 | 24.4 | 43.3 | 18.8 | This study |
0.98 ± 0.03 | 53.9 ± 2.9 | 24.4 ± 0.2 | 34.9 ± 0.3 | 10.5 | [10] | |
H-type 1 | 1.01 a | 56.6 | 24.3 | 37.5 | 13.2 | This study |
0.93 ± 0.02 | 77.2 ± 1.5 | 23.5 ± 0.2 | 23.0 ± 0.3 | −0.5 | [10] | |
l-galactose | 1 b | 2000 | NA | NA | NA | This study |
GloboH (H-type 3) | 0.83 ± 0.06 | 26.05± 1.7 | 26.1 ± 0.2 | 46.1 ± 3.9 | 20.1 | This study |
H Type 1 | H Type 3 (Globo H) | |||
---|---|---|---|---|
Data Collection | ||||
Beamline | FIP-BM30A (ESRF) | Proxima 1 (Soleil) | ||
Wavelength | 0.98096 | 0.97857 | ||
Space group | H32/R32 (H) | C2 | ||
Unit cell dimensions (Å,°) | a = b = 42.7, c = 308.6 | a = 74.4, b = 42.9, c = 102.6, β = 96.0 | ||
Resolution (Å) | 36.71–1.61 (1.64–1.61) | 37.10–1.90 (1.94–1.90) | ||
Nb/nb unique reflections | 113,880/14,606 | 87,318/25,081 | ||
Rmerge | 0.049 (0.588) | 0.077 (0.363) | ||
Rmeas | 0.056 (0.643) | 0.105 (0.486) | ||
Mean I/σI | 23.9 (3.7) | 8.7 (2.9) | ||
Completeness (%) | 99.7 (97.5) | 97.9 (97.0) | ||
Redundancy | 7.8 (7.7) | 3.5 (3.5) | ||
CC 1/2 | 0.999 (0.874) | 0.995 (0.861) | ||
Refinement | ||||
Resolution (Å) | 36.71–1.61 | 37.10–1.90 | ||
Nb/nb free. reflections | 14,605/751 | 25,080/1552 | ||
Rwork/Rfree | 15.8/20.3 | 16.5/22.7 | ||
Rmsd Bond lengths (Å) | 0.014 | 0.015 | ||
Rmsd Bond angles (°) | 1.78 | 2.0 | ||
Rmsd Chiral (Å3) | 0.099 | 0.102 | ||
No. atoms/Bfac (Å2) | Chain A | Chain A | Chain B | Chain C |
Protein | 993/19.6 | 994/26.0 | 1027/25.9 | 1002/26.2 |
Ligand | 36/23.2 | 47/33.6 | 58/41.6 | 58/38.8 |
Waters | 135/28.3 | 109/32.2 | 106/31.7 | 82/32.5 |
Ramachandran Allowed (%) | 100 | 100 | ||
Favored (%) | 97.8 | 96.9 | ||
Outliers (%) | 0 | 0 | ||
PDB Code | 6TID | 6TIG |
Ligand Atom | Protein Atom or Water | Distance (Å) H-Type 1 | Distance (Å) H-Type 3 |
---|---|---|---|
Fuc1 | |||
O2 | Arg111 * NH2 | 3.06 | 3.04 ± 0.07 |
Arg111 * NH1 | 2.88 | 3.03 ± 0.08 | |
HOH1 → Tyr 58 * OH | 2.72 → 2.80 | 2.62 ± 0.08 → 3.01 ± 0.01 | |
O3 | Arg111 * NH2 * | 3.18 | 3.15 ± 0.04 |
Thr74 * OG1 | 2.54 | 2.62 ± 0.06 | |
HOH2 → Ser82 OG | 2.59 → 2.66 | 2.60 ± 0.05 → 2.43 ± 0.03 | |
HOH2 → Tyr75 * O | 2.59 → 2.64 | 2.60 ± 0.05 → 2.78 ± 0.01 | |
O4 | Arg85 NE | 2.89 | 2.93 ± 0.02 |
Thr83 O | 2.69 | 2.71 ± 0.02 | |
O5 | Arg85 NH2 | 2.97 | 3.03 ± 0.08 |
C6 | Tyr48 | hydrophobic | hydrophobic |
GlcNAc3 | |||
O7 | Ser82 OG | 2.57 | 2.78 ± 0.07 |
HOH3 → Thr83 N | 3.01 → 3.02 | 3.00 ± 0.33→ 3.03 ± 0.13 (not in chain C) | |
N-acetyl | Tyr54 * | hydrophobic | hydrophobic |
Gal4 | |||
O4 | HOH4 → Glu81 O | 3.17 → 2.67 (chain C) | |
O6 | HOH4 → Glu81 O | 2.90 → 2.67 (chain C) | |
C1-C2 | Phe54 * | hydrophobic | hydrophobic |
Gal5 | |||
O6 | Lys78 * NZ | 2.90 (chain C) |
H-Type 1 | Globo H | |||
---|---|---|---|---|
Chain | A | B | C | |
Fucα1-2Gal | Fucα1-2Gal | |||
Φ * | −78.9 | −76.9 | −78.8 | −80.9 |
Ψ * | −101.5 | −99.3 | −100.5 | −98.5 |
Galβ1-3GlcNAc | Galβ1-3GalNAc | |||
Φ * | −73.3 | −79.1 | −66.9 | −76.7 |
Ψ * | 124.3 | 120.1 | 117.7 | 113.5 |
GalNAcβ1-3Gal | ||||
Φ * | NA | −78.8 | −104.7 | −92.6 |
Ψ * | NA | 101.3 | 155.7 | 147.1 |
Galα1-4Gal | ||||
Φ * | NA | NA | 72.2 | 79.1 |
Ψ * | NA | NA | 98.1 | 100.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bermeo, R.; Bernardi, A.; Varrot, A. BC2L-C N-Terminal Lectin Domain Complexed with Histo Blood Group Oligosaccharides Provides New Structural Information. Molecules 2020, 25, 248. https://doi.org/10.3390/molecules25020248
Bermeo R, Bernardi A, Varrot A. BC2L-C N-Terminal Lectin Domain Complexed with Histo Blood Group Oligosaccharides Provides New Structural Information. Molecules. 2020; 25(2):248. https://doi.org/10.3390/molecules25020248
Chicago/Turabian StyleBermeo, Rafael, Anna Bernardi, and Annabelle Varrot. 2020. "BC2L-C N-Terminal Lectin Domain Complexed with Histo Blood Group Oligosaccharides Provides New Structural Information" Molecules 25, no. 2: 248. https://doi.org/10.3390/molecules25020248
APA StyleBermeo, R., Bernardi, A., & Varrot, A. (2020). BC2L-C N-Terminal Lectin Domain Complexed with Histo Blood Group Oligosaccharides Provides New Structural Information. Molecules, 25(2), 248. https://doi.org/10.3390/molecules25020248