A Co-Culturing Approach Enables Discovery and Biosynthesis of a Bioactive Indole Alkaloid Metabolite
Abstract
:1. Introduction
2. Results and Discussion
2.1. HPLC-UV Profiles of Co-Culture- and Monoculture-Derived Extracts from Strain MA37 and Pseudomonas sp.
2.2. Structure Elucidation
2.3. Proposed Biosynthetic Pathway
2.4. Biological Activity Test
2.5. Antimicrobial/Antibiofilm Assays for BE-13793C 1
2.6. Antiproliferative/Cytotoxicity Activities for BE-13793C 1
2.7. Trypanosome Inhibition Assay for BE-13793C 1
3. Materials and Methods
3.1. General Experimental Procedures
3.2. The Autoclavable Co-Culture Experimental Setup
3.3. Strains, Genomic DNA, and Media
3.4. Fermentation and Extraction
3.5. Chromatography and Isolation
3.6. AntiBacterial Assay
3.7. Antibiofilm Assay
3.8. Antiproliferative/Cytotoxicity Assays
3.9. Trypanosome Inhibition Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sivalingam, P.; Hong, K.; Pote, J.; Prabakar, K. Extreme environment Streptomyces: Potential sources for new antibacterial and anticancer drug leads? Int. J. Microbiol. 2019, 2019, 5283948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Lima Procópio, R.E.; da Silva, I.R.; Martins, M.K.; de Azevedo, J.L.; de Araújo, J.M. Antibiotics produced by Streptomyces. Brazil. J. Infect. Dis. 2012, 16, 466–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manteca, Á.; Yagüe, P. Streptomyces as a Source of Antimicrobials: Novel Approaches to Activate Cryptic Secondary Metabolite Pathways. Intech Open 2019, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Zhai, Y.; Cheng, B.; Hu, J.; Kyeremeh, K.; Wang, X.; Jaspars, M.; Deng, H.; Deng, Z.-X.; Hong, K. Draft Genome Sequence of Streptomyces sp. Strain CT34, Isolated from a Ghanaian Soil Sample. Genome Announc. 2015, 3, e01508-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentley, S.D.; Chater, K.F.; Cerdeño-Tárraga, A.M.; Challis, G.L.; Thomson, N.R.; James, K.D.; Harris, D.E.; Quail, M.A.; Kieser, H.; Harper, D.; et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 2002, 417, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.; Studholme, D.J. Recently published Streptomyces genome sequences. Microb. Biotechnol. 2014, 7, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, S.; Bohni, N.; Schnee, S.; Schumpp, O.; Gindro, K.; Wolfender, J.L. Metabolite induction via microorganism co-culture: A potential way to enhance chemical diversity for drug discovery. Biotechnol. Adv. 2014, 32, 1180–1204. [Google Scholar] [CrossRef]
- Choi, S.S.; Kim, H.J.; Lee, H.S.; Kim, P.; Kim, E.S. Genome mining of rare actinomycetes and cryptic pathway awakening. Process Biochem. 2015, 50, 1184–1193. [Google Scholar] [CrossRef]
- Deng, H.; Ma, L.; Bandaranayaka, N.; Qin, Z.; Mann, G.; Kyeremeh, K.; Yu, Y.; Shepherd, T.; Naismith, J.H.; O’Hagan, D. Identification of Fluorinases from Streptomyces sp MA37, Norcardia brasiliensis, and Actinoplanes sp N902-109 by Genome Mining. ChemBioChem 2014, 15, 364–368. [Google Scholar] [CrossRef]
- Marmann, A.; Aly, A.H.; Lin, W.; Wang, B.; Proksch, P. Co-cultivation—A powerful emerging tool for enhancing the chemical diversity of microorganisms. Mar. Drugs 2014, 12, 1043–1065. [Google Scholar] [CrossRef] [Green Version]
- Vartoukian, S.R.; Palmer, R.M.; Wade, W.G. Strategies for culture of “unculturable” bacteria. FEMS Microbiol. Lett. 2010, 309, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onaka, H.; Mori, Y.; Igarashi, Y.; Furumai, T. Mycolic acid-containing bacteria induce natural-product biosynthesis in Streptomyces species. Appl. Environ. Microbiol. 2011, 77, 400–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdelmohsen, U.R.; Grkovic, T.; Balasubramanian, S.; Kamel, M.S.; Quinn, R.J.; Hentschel, U. Elicitation of secondary metabolism in actinomycetes. Biotechnol. Adv. 2015, 33, 798–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Meij, A.; Worsley, S.F.; Hutchings, M.I.; van Wezel, G.P. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol. Rev. 2017, 41, 392–416. [Google Scholar] [CrossRef]
- Stewart, E.J. Growing unculturable bacteria. J. Bacteriol. 2012, 194, 4151–4160. [Google Scholar] [CrossRef] [Green Version]
- Boon, E.; Meehan, C.J.; Whidden, C.; Wong, D.H.J.; Langille, M.G.I.; Beiko, R.G. Interactions in the microbiome: Communities of organisms and communities of genes. FEMS Microbiol. Rev. 2014, 38, 90–118. [Google Scholar] [CrossRef] [Green Version]
- Wald, P.; Pitkänen, S.; Boddy, L. Interspecific interactions between the rare tooth fungi Creolophus cirrhatus, Hericium erinaceus and H. coralloides and other wood decay species in agar and wood. Mycol. Res. 2004, 108, 1447–1457. [Google Scholar] [CrossRef]
- Wakefield, J.; Hassan, H.M.; Jaspars, M.; Ebel, R.; Rateb, M.E. Dual induction of new microbial secondary metabolites by fungal bacterial co-cultivation. Front. Microbiol. 2017, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- König, C.C.; Scherlach, K.; Schroeckh, V.; Horn, F.; Nietzsche, S.; Brakhage, A.A.; Hertweck, C. Bacterium Induces Cryptic Meroterpenoid Pathway in the Pathogenic Fungus Aspergillus fumigatus. ChemBioChem 2013, 14, 938–942. [Google Scholar] [CrossRef]
- Nützmann, H.W.; Reyes-Dominguez, Y.; Scherlach, K.; Schroeckh, V.; Horn, F.; Gacek, A.; Schümann, J.; Hertweck, C.; Strauss, J.; Brakhage, A.A. Bacteria-induced natural product formation in the fungus Aspergillus nidulans requires Saga/Ada-mediated histone acetylation. Proc. Natl. Acad. Sci. USA 2011, 108, 14282–14287. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Tabudravu, J.; Elsayed, S.S.; Travert, J.; Peace, D.; Tong, M.H.; Kyeremeh, K.; Kelly, S.M.; Trembleau, L.; Ebel, R.; et al. Discovery of a single monooxygenase that catalyzes carbamate formation and ring contraction in the biosynthesis of the legonmycins. Angew. Chem. Int. Ed. 2015, 54, 12697–12701. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Su, L.; Fang, Q.; Tabudravu, J.; Yang, X.; Rickaby, K.; Trembleau, L.; Kyeremeh, K.; Deng, Z.; Deng, H.; et al. Enzymatic reconstitution and biosynthetic investigation of the bacterial carbazole neocarazostatin A. J. Org. Chem. 2019, 84, 16323–16328. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Lv, M.; Kyeremeh, K.; Deng, Z.; Deng, H.; Yu, Y. A ThDP-dependent enzymatic carboligation reaction involved in Neocarazostatin A tricyclic carbazole formation. Org. Biomol. Chem. 2016, 14, 8679–8684. [Google Scholar] [CrossRef] [Green Version]
- Su, L.; Zhang, R.; Kyeremeh, K.; Deng, Z.; Deng, H.; Yu, Y. Dissection of the neocarazostatin: A C 4 alkyl side chain biosynthesis by in vitro reconstitution. Org. Biomol. Chem. 2017, 15, 3843–3848. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Elsayed, S.S.; Lv, M.; Tabudravu, J.; Rateb, M.E.; Gyampoh, R.; Kyeremeh, K.; Ebel, R.; Jaspars, M.; Deng, Z.; et al. Biosynthesis of Neocarazostatin A Reveals the Sequential Carbazole Prenylation and Hydroxylation in the Tailoring Steps. Chem. Biol. 2015, 22, 1633–1642. [Google Scholar] [CrossRef] [PubMed]
- Maglangit, F.; Fang, Q.; Leman, V.; Soldatou, S.; Ebel, R.; Deng, H. Accramycin A, a New Aromatic Polyketide, from the Soil Bacterium, Streptomyces sp. MA37. Molecules 2019, 24, 3384. [Google Scholar] [CrossRef] [Green Version]
- Maglangit, F.; Tong, M.H.; Jaspars, M.; Kyeremeh, K.; Deng, H. Legonoxamines A-B, two new hydroxamate siderophores from the soil bacterium, Streptomyces sp. MA37. Tetrahedron Lett. 2019, 60, 75–79. [Google Scholar] [CrossRef]
- Ma, L.; Bartholome, A.; Tong, M.H.; Qin, Z.; Yu, Y.; Shepherd, T.; Kyeremeh, K.; Deng, H.; O’Hagan, D.; Su, L.; et al. Identification of a fluorometabolite from Streptomyces sp. MA37: (2R3S4S)-5-fluoro-2,3,4-trihydroxypentanoic acid. Chem. Sci. 2017, 14, 8679–8684. [Google Scholar] [CrossRef] [Green Version]
- Piotrowski, J.S.; Rajski, S.R.; Adibhatla, S.N.; Myers, C.L.; Currie, C.R.; Zhang, F.; Li, L.; Adnani, N.; Bugni, T.S.; McDonald, B.R.; et al. Coculture of Marine Invertebrate-Associated Bacteria and Interdisciplinary Technologies Enable Biosynthesis and Discovery of a New Antibiotic, Keyicin. ACS Chem. Biol. 2017, 12, 3093–3102. [Google Scholar]
- Milshteyn, A.; Schneider, J.S.; Brady, S.F. Mining the metabiome: Identifying novel natural products from microbial communities. Chem. Biol. 2014, 21, 1211–1223. [Google Scholar] [CrossRef] [Green Version]
- Kojiri, K.; Kondo, H.; Yoshinari, T.; Arakawa, H.; Nakajima, S.; Satoh, F.; Kawamura, K.; Okura, A.; Suda, H.; Okanishi, M. A new antitumor substance, BE-13793C, produced by a Streptomycete: Taxonomy, fermentation, isolation, structure determination and biological activity. J. Antibiot. 1991, 44, 723–728. [Google Scholar] [CrossRef]
- Sánchez, C.; Butovich, I.A.; Braña, A.F.; Rohr, J.; Méndez, C.; Salas, J.A. The Biosynthetic Gene Cluster for the Antitumor Rebeccamycin. Chem. Biol. 2002, 9, 519–531. [Google Scholar] [CrossRef] [Green Version]
- Meragelman, K.M.; McKee, T.C.; Boyd, M.R. Siamenol, a new carbazole alkaloid from Murraya siamensis. J. Nat. Prod. 2000, 63, 427–428. [Google Scholar] [CrossRef] [PubMed]
- Horton, P.A.; Longley, R.E.; McConnell, O.J.; Ballas, L.M. Staurosporine aglycone (K252-c) and arcyriaflavin A from the marine ascidian, Eudistoma sp. Experientia 1994, 50, 843–845. [Google Scholar] [CrossRef]
- Tanaka, S.; Ohkubo, M.; Kojiri, K.; Suda, H.; Yamada, A.; Uemura, D. A new indolopyrrolocarbazole antitumor substance, ED-110, a derivative of BE-13793C. J. Antibiot. 1992, 45, 1797–1798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoshino, S.; Zhang, L.; Awakawa, T.; Wakimoto, T.; Onaka, H.; Abe, I. Arcyriaflavin E, a new cytotoxic indolocarbazole alkaloid isolated by combined-culture of mycolic acid-containing bacteria and Streptomyces cinnamoneus NBRC 13823. J. Antibiot. 2015, 68, 342–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, T.; Blin, K.; Duddela, S.; Krug, D.; Kim, H.U.; Bruccoleri, R.; Lee, S.Y.; Fischbach, M.A.; Müller, R.; Wohlleben, W.; et al. AntiSMASH 3.0-A comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 2015, 43, W237–W243. [Google Scholar] [CrossRef] [Green Version]
- Onaka, H.; Taniguchi, S.I.; Igarashi, Y.; Furumai, T. Characterization of the Biosynthetic Gene Cluster of Rebeccamycin from Lechevalieria aerocolonigenes ATCC 39243. Biosci. Biotechnol. Biochem. 2003, 67, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Nakano, H.; Omura, S. Chemical biology of natural indolocarbazole products: 30 Years since the discovery of staurosporine. J. Antibiot. 2009, 62, 17–26. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, C.; Zhu, L.; Braña, A.F.; Salas, A.P.; Rohr, J.; Méndez, C.; Salas, J.A. Combinatorial biosynthesis of antitumor indolocarbazole compounds. Proc. Natl. Acad. Sci. USA 2005, 102, 461–466. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Du, Y.; Cui, Q.; Zhang, J.; Zhu, W.; Hong, K.; Li, W. Cloning, characterization and heterologous expression of the indolocarbazole biosynthetic gene cluster from marine-derived Streptomyces sanyensis FMA. Mar. Drugs 2013, 11, 466–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onaka, H.; Taniguchi, S.I.; Igarashi, Y.; Furumai, T. Cloning of the staurosporine biosynthetic gene cluster from Streptomyces sp. TP-A0274 and its heterologous expression in Streptomyces lividans. J. Antibiot. 2002, 55, 1063–1071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, H.T.; Chen, Y.L.; Chen, C.Y.; Jin, C.; Lee, M.N.; Lin, Y.C. Molecular cloning, sequence analysis and functional characterization of the gene cluster for biosynthesis of K-252a and its analogs. Mol. Biosyst. 2009, 5, 1180–1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Q.; Zhang, C.; Blanchard, S.; Thorson, J.S. Deciphering Indolocarbazole and Enediyne Aminodideoxypentose Biosynthesis through Comparative Genomics: Insights from the AT2433 Biosynthetic Locus. Chem. Biol. 2006, 13, 733–743. [Google Scholar] [CrossRef] [Green Version]
- Asamizu, S.; Kato, Y.; Igarashi, Y.; Furumai, T.; Onaka, H. Direct formation of chromopyrrolic acid from indole-3-pyruvic acid by StaD, a novel hemoprotein in indolocarbazole biosynthesis. Tetrahedron Lett. 2006, 47, 473–475. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, W.; Zhu, Y.; Zhang, G.; Zhang, H.; Zhang, Q.; Zhang, L.; Yuan, C.; Zhang, C. Identification and characterization of a biosynthetic gene cluster for tryptophan dimers in deep sea-derived Streptomyces sp. SCSIO 03032. Appl. Microbiol. Biotechnol. 2017, 101, 6123–6136. [Google Scholar] [CrossRef]
- Pearce, C.J.; Doyle, T.W.; Forenza, S.; Lam, K.S.; Schroeder, D.R. The biosynthetic origins of rebeccamycin. J. Nat. Prod. 1988, 51, 937–940. [Google Scholar] [CrossRef]
- Lam, K.S.; Schroeder, D.R.; Veitch, J.M.; Colson, K.L.; Matson, J.A.; Rose, W.C.; Doyle, T.W.; Forenza, S. Production, isolation and structure determination of novel fluoroindolocarbazoles from Saccharothrix aerocolonigenes ATCC 39243. J. Antibiot. 2001, 54, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Howard-Jones, A.R.; Walsh, C.T. Enzymatic generation of the chromopyrrolic acid scaffold of rebeccamycin by the tandem action of RebO and RebD. Biochemistry 2005, 44, 15652–15663. [Google Scholar] [CrossRef]
- Ōmura, S.; Asami, Y.; Crump, A. Staurosporine: New lease of life for parent compound of today’s novel and highly successful anti-cancer drugs. J. Antibiot. 2018, 71, 688–701. [Google Scholar] [CrossRef]
- Cai, Y.; Fredenhagen, A.; Hugf, P.; Peter, H.H. The Staurosporine Producing Strain Streptomyces longisporoflavus Produces Metabolites Related to K252a. J. Antibiot. 1996, 49, 1060–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pimentel-Elardo, S.M.; Kozytska, S.; Bugni, T.S.; Ireland, C.M.; Moll, H.; Hentschel, U. Anti-parasitic compounds from Streptomyces sp. strains isolated from Mediterranean sponges. Mar. Drugs 2010, 8, 373–380. [Google Scholar] [CrossRef] [PubMed]
- ŌMura, S.; Sasaki, Y.; Iwai, Y.; Takeshima, H. Staurosporine, a Potentially Important Gift from a Microorganism. J. Antibiot. 1995, 48, 535–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakatani, S.; Naoe, A.; Yamamoto, Y.; Yamauchi, T.; Yamaguchi, N.; Ishibashi, M. Isolation of bisindole alkaloids that inhibit the cell cycle from Myxomycetes Arcyria ferruginea and Tubifera casparyi. Bioorg. Med. Chem. Lett. 2003, 13, 2879–2881. [Google Scholar] [CrossRef]
- Animati, F.; Berettoni, M.; Bigioni, M.; Binaschi, M.; Cipollone, A.; Irrissuto, C.; Nardelli, F.; Olivieri, L. Synthesis and biological evaluation of rebeccamycin analogues modified at the imide moiety. Bioorg. Med. Chem. Lett. 2012, 22, 5013–5017. [Google Scholar] [CrossRef]
- Zhang, F.F.; Gan, L.L.; Zhou, C.H. Synthesis, antibacterial and antifungal activities of some carbazole derivatives. Bioorg. Med. Chem. Lett. 2010, 20, 1881–1884. [Google Scholar] [CrossRef]
- Sellamuthu, S.; Gutti, G.; Kumar, D.; Kumar Singh, S. Carbazole: A Potent Scaffold for Antitubercular Drugs. Mini. Rev. Org. Chem. 2018, 15, 498–507. [Google Scholar] [CrossRef]
- Schwandt, A.; Mekhail, T.; Halmos, B.; O’Brien, T.; Ma, P.C.; Fu, P.; Ivy, P.; Dowlati, A. Phase-II trial of rebeccamycin analog, a dual topoisomerase-I and -II inhibitor, in relapsed “sensitive” small cell lung cancer. J. Thorac. Oncol. 2012, 7, 751–754. [Google Scholar] [CrossRef] [Green Version]
- Goel, S.; Wadler, S.; Hoffman, A.; Volterra, F.; Baker, C.; Nazario, E.; Ivy, P.; Silverman, A.; Mani, S. A phase II study of rebeccamycin analog NSC 655649 in patients with metastatic colorectal cancer. Invest. New Drugs 2003, 21, 103–107. [Google Scholar] [CrossRef]
- Surineni, G.; Yogeeswari, P.; Sriram, D.; Kantevari, S. Rational design, synthesis and evaluation of novel-substituted 1,2,3-triazolylmethyl carbazoles as potent inhibitors of Mycobacterium tuberculosis. Med. Chem. Res. 2015, 24, 1298–1309. [Google Scholar] [CrossRef]
- Thomas, S.M.; Purmal, A.; Pollastri, M.; Mensa-Wilmot, K. Discovery of a Carbazole-Derived Lead Drug for Human African Trypanosomiasis. Sci. Rep. 2016, 6, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, K.; Noda, K.; Ueda, Y.; Hanaki, H.; Saido, T.C.; Ikuta, T.; Kuroki, T.; Tamaoki, T.; Hirai, S.; Osada, S.; et al. UCN-01, an anti-tumor drug, is a selective inhibitor of the conventional PKC subfamily. FEBS Lett. 1995, 359, 259–261. [Google Scholar] [CrossRef] [Green Version]
- Robey, R.W.; Obrzut, T.; Shukla, S.; Polgar, O.; Macalou, S.; Bahr, J.C.; Di Pietro, A.; Ambudkar, S.V.; Bates, S.E. Becatecarin (rebeccamycin analog, NSC 655649) is a transport substrate and induces expression of the ATP-binding cassette transporter, ABCG2, in lung carcinoma cells. Cancer Chemother. Pharmacol. 2009, 64, 575–583. [Google Scholar] [CrossRef] [Green Version]
- Borthakur, G.; Alvarado, Y.; Ravandi-Kashani, F.; Cortes, J.; Estrov, Z.; Faderl, S.; Ivy, P.; Bueso-Ramos, C.; Bekele, B.N.; Giles, F. Phase 1 study of XL119, a rebeccamycin analog, in patients with refractory hematologic malignancies. Cancer 2008, 113, 360–366. [Google Scholar] [CrossRef] [PubMed]
- Börger, C.; Brütting, C.; Julich-Gruner, K.K.; Hesse, R.; Kumar, V.P.; Kutz, S.K.; Rönnefahrt, M.; Thomas, C.; Wan, B.; Franzblau, S.G.; et al. Anti-tuberculosis activity and structure–activity relationships of oxygenated tricyclic carbazole alkaloids and synthetic derivatives. Bioorg. Med. Chem. 2017, 25, 6167–6174. [Google Scholar] [CrossRef] [PubMed]
- Gescher, A. Analogs of staurosporine: Potential anticancer drugs? Gen. Pharmacol. 1998, 31, 721–728. [Google Scholar] [CrossRef]
- Sternberg, J.M. Human African trypanosomiasis: Clinical presentation and immune response. Parasite Immunol. 2004, 26, 469–476. [Google Scholar] [CrossRef]
- Räz, B.; Iten, M.; Grether-Bühler, Y.; Kaminsky, R.; Brun, R. The Alamar Blue® assay to determine drug sensitivity of African trypanosomes (T.b. rhodesiense and T.b. gambiense) in vitro. Acta Trop. 1997, 68, 139–147. [Google Scholar] [CrossRef]
- Barth, T.; Bruges, G.; Meiwes, A.; Mogk, S.; Mudogo, C.N.; Duszenko, M. Staurosporine-Induced Cell Death in Trypanosoma brucei and the Role of Endonuclease G during Apoptosis. Open J. Apoptosis 2014, 03, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Naula, C.; Parsons, M.; Mottram, J.C. Protein kinases as drug targets in trypanosomes and Leishmania. Biochim. Biophys. Acta 2005, 1754, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Salas, A.P.; Zhu, L.; Sánchez, C.; Braña, A.F.; Rohr, J.; Méndez, C.; S, J.A. Deciphering the late steps in the biosynthesis of the anti-tumour indolocarbazole stauroporine: Sugar donor substrate flexibility of the StaG glycosyltransferase. Mol. Microbiol. 2005, 58, 17–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sancelme, M.; Fabre, S.; Prudhomme, M. Antimicrobial Activities of Indolocarbazoles and Bis-Indole Protein Kinase C Inhibitors. J. Antibiot. 1994, 4, 792–798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doerig, C. Protein kinases as targets for anti-parasitic chemotherapy. Biochim. Biophys. Acta Proteins Proteomics 2004, 1697, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Paul, C.; Mausz, M.A.; Pohnert, G. A co-culturing/metabolomics approach to investigate chemically mediated interactions of planktonic organisms reveals influence of bacteria on diatom metabolism. Metabolomics 2013, 9, 349–359. [Google Scholar] [CrossRef]
- Janda, J.M.; Abbott, S.L. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. J. Clin. Microbiol. 2007, 45, 2761–2764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenni, L.; Marti, S.; Schweizer, J.; Betschart, B.; Le Page, R.W.F.; Wells, J.M.; Tait, A.; Paindavoine, P.; Pays, E.; Steinert, M. Hybrid formation between African trypanosomes during cyclical transmission. Nature 1986, 322, 173–175. [Google Scholar] [CrossRef]
- Hirumi, H.; Hirumi, K. Continuous cultivation of Trypanosoma brucei blood stream forms in a medium containing a low concentration of serum protein without feeder cell layers. J. Parasitol. 1989, 75, 985–989. [Google Scholar] [CrossRef] [Green Version]
Sample Availability: Not available. |
No. | 1H | 13C a | |||
---|---|---|---|---|---|
α (ppm) | mult. | J (Hz) | α (ppm) | Type | |
1 | 10.63 (OH) | s | 143.3 b | C | |
2 | 6.98 | d | 8.2 | 111.4 | CH |
3 | 7.13 | tr | 8.2 | 121.3 | CH |
4 | 8.41 | d | 7.8 | 115.5 | CH |
4a | - | - | - | 123.0 | C |
4b | - | - | - | 115.9 | C |
4c | - | - | - | 120.3 | C |
5 | - | - | - | 171.7 | C |
6 | 10.87 (NH) | s | - | - | |
7 | - | - | - | 171.7 | C |
7a | - | - | - | 120.3 | C |
7b | - | - | - | 115.9 | C |
7c | - | - | - | 123.0 | C |
8 | 8.41 | d | 8.2 | 115.5 | CH |
9 | 7.13 | tr | 8.2 | 121.3 | CH |
10 | 6.98 | d | 7.8 | 111.4 | CH |
11 | 10.63(OH) | s | - | 143.3 b | C |
11a | - | - | - | 130.7 | C |
12 | 11.57 (NH) | s | - | - | - |
12a | - | - | - | 129.7 | C |
12b | - | - | - | 129.7 | C |
13 | 11.57 (NH) | s | - | - | - |
13a | - | - | - | 130.6 | C |
Gene | Deduced Function | AA |
---|---|---|
becO | amino acid oxidase | 508 |
becD | chromopyrrolic acid synthase | 1095 |
becC | Flavin-binding monooxygenase | 540 |
becP | cytochrome P450 oxygenase | 417 |
becR | LuxR response regulator | 221 |
Pathogen | Minimum Inhibitory Concentration (MIC) (µM) | |
---|---|---|
BE-13793C 1 | Gentamicin | |
Enterococcus faecalis ATCC 29,212 | >140 | 1.05 |
Staphylococcus aureus ATCC 25,923 | >140 | 0.25 |
Methicillin-resistant S. aureus, MRSA ATCC 33591 | >140 | 2.00 |
Streptococcus B. ATCC 12,386 | >140 | 1.04 |
Staphylococcus haemolyticus clinical isolate 8-7A | >140 | 40.2 |
Escherichia coli ATCC 25,922 | >140 | 0.25 |
Pseudomonas aeruginosa ATCC 27,853 | >140 | 1.04 |
Biofilm Staphylococcus epidermidis ATCC 35,984 | >140 | 17.8 |
Human Colon Carcinoma (HT29 ATCC HTB-38) | Normal Lung Cell ATCC CCL-171 | |
---|---|---|
BE-13793C 1 (IC50, µM) | 3.16 | >140 |
Staurosporine (IC50, µM) | 0.20 | >100 |
IC50 (µM) | |
---|---|
BE-13793C 1 | >50 |
Staurosporine | 0.022 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maglangit, F.; Fang, Q.; Kyeremeh, K.; Sternberg, J.M.; Ebel, R.; Deng, H. A Co-Culturing Approach Enables Discovery and Biosynthesis of a Bioactive Indole Alkaloid Metabolite. Molecules 2020, 25, 256. https://doi.org/10.3390/molecules25020256
Maglangit F, Fang Q, Kyeremeh K, Sternberg JM, Ebel R, Deng H. A Co-Culturing Approach Enables Discovery and Biosynthesis of a Bioactive Indole Alkaloid Metabolite. Molecules. 2020; 25(2):256. https://doi.org/10.3390/molecules25020256
Chicago/Turabian StyleMaglangit, Fleurdeliz, Qing Fang, Kwaku Kyeremeh, Jeremy M. Sternberg, Rainer Ebel, and Hai Deng. 2020. "A Co-Culturing Approach Enables Discovery and Biosynthesis of a Bioactive Indole Alkaloid Metabolite" Molecules 25, no. 2: 256. https://doi.org/10.3390/molecules25020256
APA StyleMaglangit, F., Fang, Q., Kyeremeh, K., Sternberg, J. M., Ebel, R., & Deng, H. (2020). A Co-Culturing Approach Enables Discovery and Biosynthesis of a Bioactive Indole Alkaloid Metabolite. Molecules, 25(2), 256. https://doi.org/10.3390/molecules25020256