Design, Synthesis and In Vitro Characterization of Novel Antimicrobial Agents Based on 6-Chloro-9H-carbazol Derivatives and 1,3,4-Oxadiazole Scaffolds
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.2. Biological Assays
2.3. In Silico Analyses
3. Discussion
4. Materials and Methods
4.1. Measurements
4.2. Chemical Synthesis and Spectral Characterization
4.3. Antimicrobial Activity Assay
4.4. In Vitro Cytotoxicity Assay
4.4.1. Evaluation of Cytotoxicity Using CellTiter 96® AQueous One Solution Cell Proliferation Assay
4.4.2. Toxicity Assessment Using Fluorescein Diacetate Staining (FDA)-Propidium Iodide (PI)
4.4.3. Evaluation of the Cellular Cycle
4.5. In Silico Biopharmaceutical Study of the Compounds 4a–c, 5a–c
4.5.1. Molecular Modeling of Compounds
4.5.2. Energy Minimization
4.5.3. Determination of Drug-Like Character and Bioavailability
4.5.4. Structural Similarities Using Chemical Compounds Database
4.5.5. Identifying the Pharmacokinetic Profile
Author Contributions
Funding
Conflicts of Interest
References
- Salih, N.; Salimon, J.; Yousif, E. Synthesis and antimicrobial activities of 9H-carbazole derivatives. Arab. J. Chem. 2016, 9, 781–786. [Google Scholar] [CrossRef] [Green Version]
- Knölker, H.J.; Reddy, K.R. Isolation and synthesis of biologically active carbazole alkaloids. Chem. Rev. 2002, 102, 4303. [Google Scholar] [CrossRef] [PubMed]
- Montoia, A.; e Silva, L.F.R.; Torres, Z.E.; Costa, D.S.; Henrique, M.C.; Lima, E.S.; Vasconcellos, M.C.; Souza, R.C.; Costa, M.R.; Grafov, A.; et al. Antiplasmodial activity of synthetic ellipticine derivatives and an isolated analog. Bioorg. Med. Chem. Lett. 2014, 24, 2631–2634. [Google Scholar] [CrossRef] [PubMed]
- Patel, O.P.S.; Mishra, A.; Maurya, R.; Saini, D.; Pandey, J.; Taneja, I.; Raju, K.S.R.; Kanojiya, S.; Shukla, S.K.; Srivastava, M.N.; et al. Naturally occurring carbazole alkaloids from Murraya koenigii as potential antidiabetic agents. J. Nat. Prod. 2016, 79, 1276–1284. [Google Scholar] [CrossRef] [PubMed]
- Ruegg, U.T.; Burgess, G.M. Staurosporine, K-252 and UCN-01: Potent but nonspecific inhibitors of protein kinases. Trends Pharmacol. Sci. 1989, 10, 218–220. [Google Scholar] [CrossRef]
- Hagiwara, H.; Choshi, T.; Fujimoto, H.; Sugino, E.; Hibino, S. A novel total synthesis of antibiotic carbazole alkaloid carbazomycin G. Tetrahedron 2000, 56, 5807–5811. [Google Scholar] [CrossRef]
- Cuong, N.M.; Wilhelm, H.; Porzel, A.; Arnold, N.; Wessjohann, L. 1-O-Substituted derivatives of murrayafoline A and their antifungal properties. Prod. Res. 2008, 22, 1428–1432. [Google Scholar] [CrossRef]
- Chakraborty, A.; Saha, C.; Podder, G.; Chowdhury, B.K.; Bhattacharyya, P. Carbazole alkaloid with antimicrobial activity from Clausena heptaphylla. Phytochemistry 1995, 38, 787–789. [Google Scholar] [CrossRef]
- Clausen, J.D.; Kjellerup, L.; O’Hanlon, C.K.; Hansen, J.B.; Dalby-Brown, W.; Winther, A.-M.L. Elucidation of antimicrobial activity and mechanism of action by N-substituted carbazole derivatives. Bioorg. Med. Chem. Lett. 2017, 27, 4564–4570. [Google Scholar] [CrossRef]
- Kaplancikli, Z.A.; Yurttaş, L.; Turan-Zitouni, G.; Özdemir, A.; Özic, R.; Ulusoylar-Yildirim, Ş. Synthesis, antimicrobial activity and cytotoxicity of some new carbazole derivatives. J. Enzyme. Inhib. Med. Chem. 2012, 27, 868–874. [Google Scholar] [CrossRef]
- Sharma, D.; Kumar, N.; Pathak, D. Synthesis, characterization and biological evaluation of some newer carbazole derivatives. J. Serb. Chem. Soc. 2014, 79, 125–132. [Google Scholar] [CrossRef]
- Desai, N.C.; Dodiya, A.M.; Rajpara, K.M.; Rupala, Y.M. Synthesis and antimicrobial screening of 1,3,4-oxadiazole and clubbed thiophene derivatives. J. Saudi Chem. Soc. 2014, 18, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Wani, M.Y.; Ahmad, A.; Shiekh, R.A.; Al-Ghamdi, K.J.; Sobral, A.J. Imidazole clubbed 1,3,4-oxadiazole derivatives as potential antifungal agents. Bioorg. Med. Chem. 2015, 23, 4172–4180. [Google Scholar] [CrossRef] [PubMed]
- Dewangan, D.; Nakhate, K.T.; Tripathi, D.K.; Kashyap, P.; Dhongde, H. Synthesis, Characterization and Screening for Analgesic and Anti-inflammatory activities of 2,5-disubstituted 1,3,4-oxadiazole derivatives. Antiinflamm. Antiallergy Agents Med. Chem. 2015, 14, 138–145. [Google Scholar] [CrossRef]
- Singh, A.K.; Lohani, M.; Parthsarthy, R. Synthesis, characterization and anti-inflammatory activity of some 1,3,4-oxadiazole derivatives. Iran J. Pharm. Res. 2013, 12, 319–323. [Google Scholar]
- Gan, X.; Hu, D.; Chen, Z.; Wang, Y.; Song, B. Synthesis and antiviral evaluation of novel 1,3,4-oxadiazole/thiadiazolechalcone conjugates. Bioorg. Med. Chem. Lett. 2017, 27, 4298–4301. [Google Scholar] [CrossRef]
- Abdo, N.Y.M.; Kamel, M.M. Synthesis and anticancer evaluation of 1,3,4-oxadiazoles, 1,3,4-thiadiazoles, 1,2,4-triazoles and Mannich bases. Chem. Pharm. Bull. 2015, 63, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Schlecker, R.; Thieme, P.C. The synthesis of antihypertensive 3-(1,3,4-oxadiazol-2-yl)phenoxypropanolamines. Tetrahedron 1988, 44, 3289–3294. [Google Scholar] [CrossRef]
- Tabatabai, S.A.; Barghi Lashkari, S.; Zarrindast, M.R.; Gholibeikian, M.; Shafiee, A. Design, synthesis and anticonvulsant activity of 2-(2-phenoxy)phenyl-1,3,4-oxadiazole derivatives. Iran J. Pharm. Res. 2013, 12, 105–111. [Google Scholar]
- Shyma, P.C.; Kalluraya, B.; Peethambar, S.K.; Vijesh, A.M. Synthesis, characterization, antidiabetic and antioxidant activity of 1,3,4-oxadiazole derivatives bearing 6-methyl pyridine moiety. Der Pharma Chem. 2015, 7, 137–145. [Google Scholar]
- Musmade, D.; Pattan, S.; Yalgatti, M. Oxadiazole a nucleus with versatile biological behavior. Int. J. Pharm. Chem. 2015, 5, 11–20. [Google Scholar]
- Sengupta, P.; Mal, M.; Mandal, S.; Singh, J.; Maity, T.K. Evaluation of antibacterial and antifungal activity of some 1,3,4-oxadiazoles. Iran J. Pharm. Ther. 2008, 7, 165–167. [Google Scholar]
- Udrea, A.; Puia, A.; Shaposhnikov, S.; Avram, S. Computational approaches of new perspectives in the treatment of depression during pregnancy. Farmacia 2018, 66, 680–687. [Google Scholar] [CrossRef]
- Hacker, K.; Maas, R.; Kornhuber, J.; Fromm, M.F.; Zolk, O. Substrate dependent inhibition of the human organic cation transporter OCT2: A comparation of Metformin with experimental substrates. PLoS ONE 2015, 10, e0136451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuta, D.C.; Marutescu, L.; Missir, A.V.; Morusciag, L.; Chirita, C.; Curutiu, C.; Badiceanu, C.D.; Papacocea, M.T.; Limban, C. In vitro evaluation of the antimicrobial activity of N-phenylcarbamothioylbenzamides against planktonic and adherent microbial cells. Rom. Biotechnol. Lett. 2016, 22, 13163–13168. [Google Scholar]
- Limban, C.; Missir, A.V.; Caproiu, M.T.; Grumezescu, A.M.; Chifiriuc, C.M.; Bleotu, C.; Marutescu, L.; Papacocea, M.T.; Nuta, D.C. Novel Hybrid Formulations Based on Thiourea Derivatives and Core@Shell Fe3O4@C-18 Nanostructures for the Development of Antifungal Strategies. Nanomaterials 2018, 8, 47. [Google Scholar] [CrossRef] [Green Version]
- Limban, C.; Missir, A.V.; Chirita, I.C.; Nitulescu, G.M.; Caproiu, M.T.; Chifiriuc, M.C.; Ismail, A.M. Synthesis and antimicrobial properties of new 2-((4-ethylphenoxy)methyl)benzoylthioureas. Chem. Pap. 2011, 65, 60–69. [Google Scholar] [CrossRef]
- Nuţă, C.D.; Chifiriuc, M.C.; Drăghici, C.; Limban, C.; Missir, A.V.; Moruşciag, L. Synthesis, characterization and antimicrobial activity evaluation of new agents from benzamides class. Farmacia 2013, 61, 966–974. [Google Scholar]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- ExPASy: SIB Bioinformatics Resource Portal. Available online: https://www.expasy.org/ (accessed on 28 November 2019).
- Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. AdmetSAR: A comprehensive source and free tool for evaluating chemical ADMET properties. J. Chem. Inf. Model 2012, 52, 3099–3105. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Compound | 4a | 4b | 4c | 5a | 5b | 5c | 5d | |
---|---|---|---|---|---|---|---|---|
Microorganism | ||||||||
Enterococcus faecalis ATCC 29212 | 10 | 5 | 10 | 5 | 5 | 2.5 | 5 | |
Staphylococcus aureus ATCC 25923 | 5 | 5 | 2.5 | 2.5 | 5 | 5 | 5 | |
Pseudomonas aeruginosa ATCC 27853 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | |
Escherichia coli ATCC 25922 | 1.25 | 2.5 | 2.5 | 2.5 | 2.5 | 5 | 2.5 | |
Candida albicans ATCC 90029 | 5 | 2.5 | 5 | 2.5 | 2.5 | 0.625 | 5 |
Compound | 4a | 4b | 4c | 5a | 5b | 5c | 5d | |
---|---|---|---|---|---|---|---|---|
Microorganism | ||||||||
Enterococcus faecalis ATCC 29212 | 10 | 10 | 10 | 10 | 10 | 5 | 5 | |
Staphylococcus aureus ATCC 25923 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | |
Pseudomonas aeruginosa ATCC 27853 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | |
Escherichia coli ATCC 25922 | 1.25 | 5 | 5 | 5 | 5 | 5 | 5 | |
Candida albicans ATCC 90029 | 10 | 5 | 10 | 5 | 5 | 0.625 | 10 |
Compound | 4a | 4b | 4c | 5a | 5b | 5c | 5d | |
---|---|---|---|---|---|---|---|---|
Microorganism | ||||||||
Enterococcus faecalis ATCC 29212 | 2.5 | 0.009 | 2.5 | 1.25 | 0.078 | 10 | 0.625 | |
Staphylococcus aureus ATCC 25923 | 1.25 | 0.625 | 1.25 | 0.312 | 0.039 | 1.25 | 0.312 | |
Pseudomonas aeruginosa ATCC 27853 | 0.009 | 0.009 | 0.009 | 0.009 | 0.009 | 0.009 | 0.625 | |
Escherichia coli ATCC 25922 | 1.25 | 1.25 | 1.25 | 10 | 1.25 | 2.5 | 1.25 | |
Candida albicans ATCC 90029 | 0.312 | 0.039 | 0.625 | 0.078 | 1.25 | 0.312 | 0.156 |
Compound | Lipinski Rule | Veber Rule | Bioavailability Score | MW (g/mol) |
---|---|---|---|---|
4a | YES | YES | 0.55 | 391.85 |
4b | YES * | YES | 0.55 | 459.85 |
4c | YES * | YES | 0.55 | 426.30 |
5a | YES | YES | 0.55 | 373.83 |
5b | YES * | YES | 0.55 | 408.28 |
5c | YES | YES | 0.55 | 441.83 |
5d | YES | YES | 0.55 | 450.92 |
Carprofen | YES | YES | 0.56 | 273.71 |
Compound | Similar Compound | Percent | Chemical Structure | Target Structure of Similar Compound |
---|---|---|---|---|
4a | CHEMBL2171276 * | 0.602 | 2-(6-chloro-9H-carbazol-2-yl)-N-phenylpropanamide * | Faah inhibition-fatty acid amide hydrolase (Norway rat) |
CHEMBL2171249 | 0.585 | |||
CHEMBL1316 | 0.585 | |||
4b | CHEMBL2171276 | 0.557 | 2-(6-chloro-9H-carbazol-2-yl)-N-phenilpropanamide | Faah inhibition-fatty acid amide hydrolase (Norway rat) |
4c | CHEMBL2171276 * | 0.590 | 2-(6-chloro-9H-carbazol-2-yl)-N-phenilpropanamide | Faah inhibition-fatty acid amide hydrolase (Norway rat) |
CHEMBL2171249 | 0.573 | |||
CHEMBL1316 | 0.573 | |||
5a | CHEMBL380021 * | 0.595 | 2-[2-[5-[2-(4-chlorophenyl)ethyl]-1,3,4-oxadiazol-2-yl]-1~{H}-indol-4-yl]-~{N},~{N}-dimethylethanamine * | nociceptive receptor ligand |
CHEMBL2418797 | 0.588 | |||
CHEMBL197502 | 0.557 | |||
5b | CHEMBL380021 * | 0.594 | 2-[2-[5-[2-(4-clorofenil)etil]-1,3,4-oxadiazol-2-il]-1~{H}-indol-4-il]-~{N},~{N}-dimetiletanamine * | nociceptive receptor ligand |
CHEMBL2418797 | 0.576 | |||
5c | CHEMBL2418770 * | 0.587 | 2-(3~{H}-benzimidazol-5-yl)-5-[2-[4-(trifluoromethyl)phenyl]ethyl]-1,3,4-oxadiazole * | QPCT—glutaminyl-peptide cyclotransferase inhibition (human) |
CHEMBL380021 | 0.565 | |||
5d | CHEMBL1611023 | 0.430 | (4-[5-(4-Chlorobenzoyl)-1,3,4-oxadiazol-2-yl]pyridine) | inactive |
Compound | 4a | 4b | 4c | 5a | 5b | 5c | 5d | Carprofen | Unit |
---|---|---|---|---|---|---|---|---|---|
Intestinal absorption | 91 | 89 | 90 | 94 | 92 | 91 | 96 | 94 | % Absorption |
Caco-2 pkCSM permeability | 0.919 | 0.944 | 0.934 | 1.021 | 1.01 | 1.016 | 0.934 | 1.301 | log Papp in 10−6 cm/s |
BBB permeability | −0.635 | −0.942 | −0.816 | 0.428 | 0.383 | 0.342 | −0.371 | 0.191 | log BB |
Renal Substrate OCT2 | NO | NO | NO | NO | NO | NO | NO | NO |
Compound | 4a | 4b | 4c | 5a | 5b | 5c | 5d | Unit |
---|---|---|---|---|---|---|---|---|
AMES toxicity | yes | yes | yes | yes | yes | yes | yes | Yes/No |
DMT(human) | 0.19 | 0.13 | 0.16 | 0.41 | 0.36 | 0.33 | 0.503 | log mg/kg/day |
I. hERGI | no | no | no | no | no | no | no | Yes/No |
I. hERGII | yes | yes | yes | yes | yes | yes | yes | Yes/No |
LD 50 | 2.46 | 2.46 | 2.50 | 2.30 | 2.33 | 2.34 | 2.60 | mol/kg |
Hepatotoxicity | yes | yes | yes | yes | yes | yes | yes | Yes/No |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bordei Telehoiu, A.T.; Nuță, D.C.; Căproiu, M.T.; Dumitrascu, F.; Zarafu, I.; Ioniță, P.; Bădiceanu, C.D.; Avram, S.; Chifiriuc, M.C.; Bleotu, C.; et al. Design, Synthesis and In Vitro Characterization of Novel Antimicrobial Agents Based on 6-Chloro-9H-carbazol Derivatives and 1,3,4-Oxadiazole Scaffolds. Molecules 2020, 25, 266. https://doi.org/10.3390/molecules25020266
Bordei Telehoiu AT, Nuță DC, Căproiu MT, Dumitrascu F, Zarafu I, Ioniță P, Bădiceanu CD, Avram S, Chifiriuc MC, Bleotu C, et al. Design, Synthesis and In Vitro Characterization of Novel Antimicrobial Agents Based on 6-Chloro-9H-carbazol Derivatives and 1,3,4-Oxadiazole Scaffolds. Molecules. 2020; 25(2):266. https://doi.org/10.3390/molecules25020266
Chicago/Turabian StyleBordei Telehoiu, Alexandra T., Diana C. Nuță, Miron T. Căproiu, Florea Dumitrascu, Irina Zarafu, Petre Ioniță, Carmellina D. Bădiceanu, Speranța Avram, Mariana C. Chifiriuc, Coralia Bleotu, and et al. 2020. "Design, Synthesis and In Vitro Characterization of Novel Antimicrobial Agents Based on 6-Chloro-9H-carbazol Derivatives and 1,3,4-Oxadiazole Scaffolds" Molecules 25, no. 2: 266. https://doi.org/10.3390/molecules25020266
APA StyleBordei Telehoiu, A. T., Nuță, D. C., Căproiu, M. T., Dumitrascu, F., Zarafu, I., Ioniță, P., Bădiceanu, C. D., Avram, S., Chifiriuc, M. C., Bleotu, C., & Limban, C. (2020). Design, Synthesis and In Vitro Characterization of Novel Antimicrobial Agents Based on 6-Chloro-9H-carbazol Derivatives and 1,3,4-Oxadiazole Scaffolds. Molecules, 25(2), 266. https://doi.org/10.3390/molecules25020266