Antibody-Targeted Imaging of Gastric Cancer
Abstract
:1. Introduction
2. ImmunoPET and ImmunoSPECT with Full-Length Antibodies in GC
2.1. MG7
2.2. PD-1
2.3. CDH17
2.4. HER2
2.5. HGF/MET
3. Antibody-Fluorescent Dyes for GC Diagnosis
3.1. EGFR-Targeted Fluorescent Imaging
3.2. MG7-Targeted Fluorescent Imaging
3.3. VEGF-Targeted Fluorescent Imaging
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roukos, D.H. Current status and future perspectives in gastric cancer management. Cancer Treat Rev. 2000, 26, 243–255. [Google Scholar] [CrossRef] [PubMed]
- Ruschoff, J.; Hanna, W.; Bilous, M. HER2 testing in gastric cancer: A practical approach. Modern Pathol. 2012, 25, 637–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, D.Y.; Bang, Y.J. HER2-targeted therapies—A role beyond breast cancer. Nat. Rev. Clin. Oncol. 2020, 17, 33–48. [Google Scholar] [CrossRef] [PubMed]
- O’Donoghue, J.A.; Lewis, J.S.; Pandit-Taskar, N. Pharmacokinetics, biodistribution, and radiation dosimetry for 89Zr-Trastuzumab in patients with esophagogastric cancer. J. Nucl. Med. 2018, 59, 161–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Vega, F.; Hechtman, J.F.; Castel, P. EGFR and MET amplifications determine response to HER2 inhibition in ERBB2-amplified esophagogastric cancer. Cancer Discov. 2019, 9, 199–209. [Google Scholar] [CrossRef] [Green Version]
- Findlay, J.M.; Antonowicz, S.; Segaran, A. Routinely staging gastric cancer with 18F-FDG PET-CT detects additional metastases and predicts early recurrence and death after surgery. Eur. Radiol. 2019, 29, 2490–2498. [Google Scholar] [CrossRef] [Green Version]
- Van Cutsem, E.; Sagaert, X.; Topal, B.; Haustermans, K.; Prenen, H. Gastric cancer. Lancet 2016, 388, 2654–2664. [Google Scholar] [CrossRef]
- Guo, X.Y.; Zhu, H.; Zhou, N.N. Noninvasive detection of HER2 expression in gastric cancer by 64Cu-NOTA-Trastuzumab in PDX mouse model and in patients. Mol. Pharm. 2018, 15, 5174–5182. [Google Scholar] [CrossRef]
- Jagoda, E.M.; Lang, L.X.; Bhadrasetty, V. Immuno-PET of the hepatocyte growth factor receptor Met using the 1-armed antibody onartuzumab. J. Nucl. Med. 2012, 53, 1592–1600. [Google Scholar] [CrossRef] [Green Version]
- Price, E.W.; Carnazza, K.E.; Carlin, S.D. 89Zr-DFO-AMG102 immuno-PET to determine local Hepatocyte Growth Factor protein levels in tumors for enhanced patient selection. J. Nucl. Med. 2017, 58, 1386–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pool, M.; Kol, A.; de Jong, S.; de Vries, E.G.E.; Lub-de Hooge, M.N.; van Scheltinga, A.G.T.T. 89Zr-mAb3481 PET for HER3 tumor status assessment during lapatinib treatment. Mabs 2017, 9, 1370–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwab, C.L.; Bellone, S.; English, D.P. Afatinib demonstrates remarkable activity against HER2-amplified uterine serous endometrial cancer in vitro and in vivo. Br. J. Cancer. 2014, 111, 1750–1756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, B.; Li, X.W.; Yin, J.P. Evaluation of 68Ga-labeled MG7 antibody: A targeted probe for PET/CT imaging of gastric cancer. Sci. Rep. UK 2015, 5, 2686. [Google Scholar] [CrossRef] [Green Version]
- Fujiwara, K.; Tsuji, A.B.; Sudo, H. 111In-labeled anti-cadherin17 antibody D2101 has potential as a noninvasive imaging probe for diagnosing gastric cancer and lymph-node metastasis. Ann. Nucl. Med. 2020, 34, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.Y.; Zhu, H.; Liu, T.L. Development of 99mTc-conjugated JS001 antibody for in vivo mapping of PD-1 distribution in murine. Bioorg. Med. Chem. Lett. 2019, 29, 2178–2181. [Google Scholar] [CrossRef]
- Hoetker, M.S.; Kiesslich, R.; Diken, M. Molecular in vivo imaging of gastric cancer in a human-murine xenograft model: Targeting epidermal growth factor receptor. Gastrointest. Endosc. 2012, 76, 612–620. [Google Scholar] [CrossRef]
- Lee, B.E.; Kim, G.H.; Park, D.Y. Acetic acid-indigo carmine chromoendoscopy for delineating early gastric cancers: Its usefulness according to histological type. BMC Gastroenterol. 2010, 10, 97. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Zuo, X.L.; Li, C.Q. In vivo molecular imaging of gastric cancer by targeting MG7 antigen with confocal laser endomicroscopy. Endoscopy 2013, 45, 79–85. [Google Scholar] [CrossRef]
- Foersch, S.; Kiesslich, R.; Waldner, M.J. Molecular imaging of VEGF in gastrointestinal cancer in vivo using confocal laser endomicroscopy. Gut 2010, 59, 1046–1055. [Google Scholar] [CrossRef]
- Kuo, W.Y.; Lin, J.J.; Hsu, H.J.; Chen, H.S.; Yang, A.S.; Wu, C.Y. Noninvasive assessment of characteristics of novel anti-HER2 antibodies by molecular imaging in a human gastric cancer xenograft-bearing mouse model. Sci. Rep. UK 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janjigian, Y.Y.; Viola-Villegas, N.; Holland, J.P. Monitoring afatinib treatment in HER2-positive gastric cancer with 18F-FDG and 89Zr-Trastuzumab PET. J. Nucl. Med. 2013, 54, 936–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, P.M.R.; Sharma, S.K.; Carter, L.M. Caveolin-1 mediates cellular distribution of HER2 and affects trastuzumab binding and therapeutic efficacy. Nat. Commun. 2018, 9, 5137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, P.M.R.; Mandleywala, K.; Ragupathi, A. Temporal modulation of HER2 membrane availability increases pertuzumab uptake and pretargeted molecular imaging of gastric tumors. J. Nucl. Med. 2019, 60, 1569–1578. [Google Scholar] [CrossRef]
- Guo, D.L.; Dong, M.; Wang, L.; Sun, L.P.; Yuan, Y. Expression of gastric cancer-associated MG7 antigen in gastric cancer, precancerous lesions and H-pylori-associated gastric diseases. World J. Gastroenterol. 2002, 8, 1009–1013. [Google Scholar] [CrossRef]
- Keir, M.E.; Butte, M.J.; Freeman, G.J.; Sharpe, A.H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 2008, 26, 677–704. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.; Xi, H.; Ju, S.; Zhang, X. Blockade of PD-1/PD-L1 immune checkpoint during DC vaccination induces potent protective immunity against breast cancer in hu-SCID mice. Cancer Lett. 2013, 336, 253–259. [Google Scholar] [CrossRef]
- Ordonez, N.G. Cadherin 17 is a novel diagnostic marker for adenocarcinomas of the digestive system. Adv. Anat. Pathol. 2014, 21, 131–137. [Google Scholar] [CrossRef]
- Hinoi, T.; Lucas, P.C.; Kuick, R.; Hanash, S.; Cho, K.R.; Fearon, E.R. CDX2 regulates liver intestine-cadherin expression in normal and malignant colon epithelium and intestinal metaplasia. Gastroenterology 2002, 123, 1565–1577. [Google Scholar] [CrossRef]
- Yarden, Y.; Sliwkowski, M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2001, 2, 127–137. [Google Scholar] [CrossRef]
- Machlowska, J.; Maciejewski, R.; Sitarz, R. The pattern of signatures in gastric cancer prognosis. Int. J. Mol. Sci. 2018, 19, 1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathenge, E.G.; Dean, C.A.; Clements, D. Core needle biopsy of breast cancer tumors increases distant metastases in a mouse model. Neoplasia 2014, 16, 950–960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konecny, G.E.; Pegram, M.D.; Venkatesan, N. Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells. Cancer Res. 2006, 66, 1630–1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakrabarty, A.; Sanchez, V.; Kuba, M.G.; Rinehart, C.; Arteaga, C.L. Feedback upregulation of HER3 (ErbB3) expression and activity attenuates antitumor effect of PI3K inhibitors. Proc. Natl. Acad. Sci. USA 2012, 109, 2718–2723. [Google Scholar] [CrossRef] [Green Version]
- Fukushima, T.; Uchiyama, S.; Tanaka, H.; Kataoka, H. Hepatocyte growth factor activator: A proteinase linking tissue injury with repair. Int. J. Mol. Sci. 2018, 19, 3435. [Google Scholar] [CrossRef] [Green Version]
- Bottaro, D.P.; Rubin, J.S.; Faletto, D.L. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 1991, 251, 802–804. [Google Scholar] [CrossRef]
- Birchmeier, C.; Birchmeier, W.; Gherardi, E.; Vande Woude, G.F. Met, metastasis, motility and more. Nat. Rev. Mol. Cell Bio. 2003, 4, 915–925. [Google Scholar] [CrossRef]
- Gordon, M.S.; Mendelson, D.S.; Sweeney, C. Interim results from a first-in-human study with AMG102, a fully human monoclonal antibody that neutralizes hepatocyte growth factor (HGF), the ligand to c-Met receptor, in patients (pts) with advanced solid tumors. J. Clin. Oncol. 2007, 25, 3551. [Google Scholar] [CrossRef]
- Martens, T.; Schmidt, N.O.; Eckerich, C. A novel one-armed anti-c-Met antibody inhibits glioblastoma growth in vivo. Clin. Cancer Res. 2006, 12, 6144–6152. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.L.; Qin, J.Y.; Wang, J.; Guo, T.J.; Wang, Z.J.; Yang, J.L. Early Gastric Cancer: Current advances of endoscopic diagnosis and treatment. Gastroent. Res. Pract. 2016. [CrossRef] [Green Version]
- Nam, S.Y.; Choi, I.J.; Park, K.W. Effect of repeated endoscopic screening on the incidence and treatment of gastric cancer in health screenees. Eur. J. Gastroenterol. Hepatol. 2009, 21, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Tipirneni, K.E.; Rosenthal, E.L.; Moore, L.S. Fluorescence Imaging for cancer screening and surveillance. Mol. Imaging Biol. 2017, 19, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Wu, L.C.; Huang, M.W.; Jin, Q.W.; Qin, Y.Z.; Chen, J.S. The accuracy of magnifying narrow band imaging (ME-NBI) in distinguishing between cancerous and noncancerous gastric lesions: A meta-analysis. Medicine 2018, 97, 9. [Google Scholar] [CrossRef]
- Numata, N.; Oka, S.; Tanaka, S. Useful condition of chromoendoscopy with indigo carmine and acetic acid for identifying a demarcation line prior to endoscopic submucosal dissection for early gastric cancer. BMC Gastroenterol. 2016, 16, 72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbeiro, S.; Libanio, D.; Castro, R.; Dinis-Ribeiro, M.; Pimentel-Nunes, P. Narrow-Band Imaging: Clinical application in gastrointestinal endoscopy. GE Port. J. Gastroenterol. 2018, 26, 40–53. [Google Scholar] [CrossRef] [Green Version]
- Maki, S.; Yao, K.S.; Nagahama, T. Magnifying endoscopy with narrow-band imaging is useful in the differential diagnosis between low-grade adenoma and early cancer of superficial elevated gastric lesions. Gastric Cancer 2013, 16, 140–146. [Google Scholar] [CrossRef]
- Pereira, P.M.R.; Korsak, B.; Sarmento, B.; Schneider, R.J.; Fernandes, R.; Tome, J.P.C. Antibodies armed with photosensitizers: From chemical synthesis to photobiological applications. Org. Biomol. Chem. 2015, 13, 2518–2529. [Google Scholar] [CrossRef]
- Celli, J.P.; Spring, B.Q.; Rizvi, I. Imaging and Photodynamic Therapy: Mechanisms, monitoring, and optimization. Chem. Rev. 2010, 110, 2795–2838. [Google Scholar] [CrossRef] [Green Version]
- Korsak, B.; Almeida, G.M.; Rocha, S. Porphyrin modified trastuzumab improves efficacy of HER2 targeted photodynamic therapy of gastric cancer. Int. J. Cancer 2017, 141, 1478–1489. [Google Scholar] [CrossRef]
- Pierce, M.C.; Javier, D.J.; Richards-Kortum, R. Optical contrast agents and imaging systems for detection and diagnosis of cancer. Int. J. Cancer 2008, 123, 1979–1990. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.P.; Yang, S.; Chen, W.H.; Hu, T.T.; Lin, J. The diagnostic value of confocal laser endomicroscopy for gastric cancer and precancerous lesions among Asian population: A system review and meta-analysis. Scand. J. Gastroenterol. 2017, 52, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Karstensen, J.G.; Klausen, P.H.; Saftoiu, A.; Vilmann, P. Molecular confocal laser endomicroscopy: A novel technique for in vivo cellular characterization of gastrointestinal lesions. World J. Gastroenterol. 2014, 20, 7794–7800. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.A.; Lee, H.S.; Lee, H.E.; Jeon, Y.K.; Yang, H.K.; Kim, W.H. EGFR in gastric carcinomas: Prognostic significance of protein overexpression and high gene copy number. Histopathology 2008, 52, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Abhinand, C.S.; Raju, R.; Soumya, S.J.; Arya, P.S.; Sudhakaran, P.R. VEGF-A/VEGFR2 signaling network in endothelial cells relevant to angiogenesis. J. Cell Commun. Signal. 2016, 10, 347–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.H.; Jeong, D.; Han, Y.S.; Baek, M.J. Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis. Ann. Surg. Treat. Res. 2015, 89, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature 2000, 407, 249–257. [Google Scholar] [CrossRef] [PubMed]
Biological Model | Target | Antibody | Radioisotope | Main Findings | Reference |
---|---|---|---|---|---|
BGC-823 subcutaneous xenografts | MG7 | MG7 | 68Ga | Accumulation in the tumor, liver, and kidneys. | [14] |
BCG-823 orthotopic tumors | PD-1 | JS001 | 99mTc | Accumulation in the tumor, blood, liver, and kidneys. | [16] |
AGS subcutaneous xenografts | CDH17 | D2101 | 111In | Optimal tumor accumulation was achieved at 96 h after 111In-DS2101 administration. | [15] |
NCIN87 subcutaneous xenografts | HER2 | H32 IgG, 75 IgG, 61 IgG, and trastuzumab | 111In | 111In-labeled 61 IgG showed the highest tumor accumulation. | [21] |
Patient-derived gastric xenografts and patients | trastuzumab | 64Cu | The combination of 64Cu-NOTA with trastuzumab showed higher tumor uptake than trastuzumab alone. | [9] | |
Patients with HER2-expressing gastric tumors | trastuzumab | 89Zr | Tumor accumulation showed optimal results at 5-8 days after 89Zr-trastuzumab injection in patients. | [5] | |
NCIN87 subcutaneous xenografts | trastuzumab | 89Zr | Afatinib downregulated HER2 protein levels and reduced tumor size. | [22] | |
NCIN87 subcutaneous xenografts | trastuzumab pertuzumab | 89Zr | The endocytic protein caveolin-1 affects trastuzumab and pertuzumab binding to HER2-expressing gastric tumors. | [23,24] | |
NCIN87 subcutaneous xenografts | HER3 | mAb3481 | 89Zr | Lapatinib treatment resulted in internalization of HER3 and 89Zr-mAb3481. | [12] |
NCIN87 subcutaneous xenografts | HGF | AMG102 | 89Zr | 89ZrDFO-AMG102 is an effective antibody for determining HGF expression in murine gastric tumors. | [11] |
MKN-45, SNU-16, and U87-MG subcutaneous xenografts | MET | onartuzumab | 76Br or 89Zr | 89Zr-onartuzumab showed high gastric tumor uptake in mouse models. | [10] |
Biological Model | Target | Antibody | Fluorescent Dye | Main Findings | Reference |
---|---|---|---|---|---|
MKN45 subcutaneous xenografts | EGFR | cetuximab | FITC | Higher fluorescence intensity was observed in cetuximab-FITC group than FITC-labelled isotype control. | [17] |
BGC-823 and SGC-7901 subcutaneous xenografts | MG7 | anti-MG7 | Alexa Fluor 488 | The strongest fluorescent signal was observed in the tumor at 48 h after intracardiac injection of AF488-labeled MG7 antibody. | [19] |
APCmin mice with tumors in the small bowel and in the colon, SW480 and SW620 subcutaneous xenografts, and human tissues | VEGF | anti-VEGF | Alexa Fluor 488 | VEGF specific signal was observed in tumors implanted in APCmin mice and transition zones between healthy and neoplastic tissue were identified based on VEGF expression patterns. | [20] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mandleywala, K.; Shmuel, S.; Pereira, P.M.R.; Lewis, J.S. Antibody-Targeted Imaging of Gastric Cancer. Molecules 2020, 25, 4621. https://doi.org/10.3390/molecules25204621
Mandleywala K, Shmuel S, Pereira PMR, Lewis JS. Antibody-Targeted Imaging of Gastric Cancer. Molecules. 2020; 25(20):4621. https://doi.org/10.3390/molecules25204621
Chicago/Turabian StyleMandleywala, Komal, Shayla Shmuel, Patricia M. R. Pereira, and Jason S. Lewis. 2020. "Antibody-Targeted Imaging of Gastric Cancer" Molecules 25, no. 20: 4621. https://doi.org/10.3390/molecules25204621
APA StyleMandleywala, K., Shmuel, S., Pereira, P. M. R., & Lewis, J. S. (2020). Antibody-Targeted Imaging of Gastric Cancer. Molecules, 25(20), 4621. https://doi.org/10.3390/molecules25204621