Highly Efficient Extraction Procedures Based on Natural Deep Eutectic Solvents or Ionic Liquids for Determination of 20-Hydroxyecdysone in Spinach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Development of Chromatographic Method
2.2. Selection of NADES Extraction Parameters
2.2.1. Effect of NADES Composition
2.2.2. Effect of Water Content in NADES
2.2.3. Effect of Sample Weight
2.2.4. Effect of Extraction Time
2.3. Selection of the IL Extraction Parameters
2.3.1. Effect of Extraction Solvents
2.3.2. Effect of IL Dilution, pH, Solid/Liquid Ratio, and Extraction Time
2.4. Comparison of NADES and IL Extraction with Other Solvents
2.5. Analytical Figures of Merit
2.6. Application of the Developed Method to Real Samples
2.7. Comparison of Proposed NADES-SLE-UHPLC-UV and IL-SLE-UHPLC-UV Methods with Other Reported Methods
3. Experimental
3.1. Chemicals and Materials
3.2. Synthesis of NADES and ILs
3.3. Development of NADES-SLE and IL-SLE Extraction Procedures
3.3.1. Preliminary Evaluation of NADES-SLE Extraction Efficiency
3.3.2. Preliminary Evaluation of IL-SLE Extraction Efficiency
3.4. Chromatographic Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Tarkowska, D.; Strnad, M. Plant ecdysteroids: Plant sterols with intriguing distributions, biological effects and relations to plant hormone. Planta 2016, 244, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Dinan, L. Phytoecdysteroids: Biological aspects. Phytochemistry 2001, 57, 325–339. [Google Scholar] [CrossRef]
- Dinan, L.; Savchenko, T.; Whiting, P. On the distribution of phytoecdysteroids in plant. Cell. Mol. Life Sci. 2001, 58, 1121–1132. [Google Scholar] [CrossRef] [PubMed]
- Bathori, M.; Toth, N.; Hunyadi, A.; Marki, A.; Zador, E. Phytoecdysteroids and anabolic-androgenic steroids-structure and effects on humans. Curr. Med. Chem. 2008, 15, 75–91. [Google Scholar] [CrossRef] [Green Version]
- Muchate, N.S.; Kadam, N.S.; Rajurkar, N.S.; Nikam, T.D. High-performance thin-layer chromatography and indirect TLC–HRMS-based determination of 20-hydroxyecdysonein sesuvium portulacastrum. J. Planar Chromatogr. 2017, 30, 193–198. [Google Scholar] [CrossRef]
- Jadhav, A.N.; Rumalla, C.S.; Avula, B.; Khan, I.A. HPTLC method for determination of 20-hydroxyecdysone in Sida rhombifolia L. and dietary supplements. Chromatographia 2007, 66, 797–800. [Google Scholar] [CrossRef]
- Báthori, M.; Gergely, A.; Kalász, H. Liquid chromatographic monitoring of phytoecdysteroid production of serratula wolffii. J. Liq. Chromatogr. Relat. Technol. 2000, 23, 281–294. [Google Scholar] [CrossRef]
- Ghosh, D.; Laddha, K.S. Extraction and monitoring of phytoecdysteroids through HPLC. J. Chromatogr. Sci. 2006, 44, 2–26. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.J.; Cheng, K.W.; Wang, H. Simultaneous determination of three phytoecdysteroids in the roots of four medicinal plants from the genus asparagus by HPLC. Phytochem. Anal. 2009, 20, 58–63. [Google Scholar] [CrossRef]
- Coutinho-Gallo, M.B.; Beltrame, F.L.; Vieira, P.C. Quantitative determination of 20-hydroxyecdysone in methanolic extract of twigs from Vitex polygama Cham. J. Chromatogr. B 2006, 832, 36–40. [Google Scholar] [CrossRef]
- da Rosa, H.S.; Koetz, M.; Santos, M.C.; Jandrey, E.H.F.; Folmer, V. Extraction optimization and UHPLC method development for determination of the 20-hydroxyecdysone in Sida tuberculata leaves. Steroids 2018, 132, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Hunyadi, A.; Herke, I.; Lengyel, K.; Báthori, M.; Kele, Z.; Simon, A.; Tóth, G.; Szendrei, K. Ecdysteroid-containing food supplements from Cyanotis arachnoidea on the European market: Evidence for spinach product counterfeiting. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rybin, V.; Boltenkov, E.; Novozhilova, E. Application of high-performance liquid chromatography for simultaneous identification of integristerone A, 20-hydroxyecdysone, ecdysone and 2-Deoxy-20-hydroxyecdysone. Nat. Prod. Commun. 2007, 2, 1101–1104. [Google Scholar] [CrossRef]
- Wilson, I.D.; Morgan, E.D.; Lafont, R.; Shockcor, J.P.; Lindon, J.C.; Nicholson, J.K.; Wright, B. High performance liquid chromatography coupled to nuclear magnetic resonance spectroscopy and mass spectrometry applied to plant products: Identification of ecdysteroids from silene otitis. Chromatographia 1999, 49, 374–378. [Google Scholar] [CrossRef]
- Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural deep eutectic solvents—Solvents for the 21st century. Sustain. Chem. Eng. 2014, 2, 1063–1071. [Google Scholar] [CrossRef]
- Han, D.; Row, K.H. Recent applications of ionic liquids in separation technology. Molecules 2010, 15, 2405–2426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanda, H.; Dai, Y.; Wilskon, E.G.; Verpoorte, R.; Choi, Y.H. Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents. Comptes Rendus Chim. 2018, 21, 628–638. [Google Scholar] [CrossRef]
- Svinyarov, I.; Keremedchieva, R.; Bogdanov, M.G. Ion liquid-supported solid- liquid extraction of bioactive alkaloids. IV. New HPLC method for quantitative determination of galantamine in Leucojum aestivum L. (Amaryllidaceae). Sep. Sci. Technol. 2016, 51, 2691–2699. [Google Scholar] [CrossRef]
- Absalan, G.; Akhond, M.; Sheikhian, L. Extraction and high performance liquid chromatographic determination of 3-indole butyric acid in pea plants by using imidazolium-based ionic liquids as extractant. Talanta 2008, 77, 407–411. [Google Scholar] [CrossRef]
- Tan, T.; Lai, C.; Ouyang, H. Ionic liquid-based ultrasound-assisted extraction and aqueous two-phase system for analysis of caffeoylquinic acids from Flos Lonicerae Japonicae. J. Pharm. Biomed. Anal. 2016, 120, 134–141. [Google Scholar] [CrossRef]
- Bogdanov, M.G.; Svinyarov, I.; Keremedchieva, R.; Sidjimov, A. Ionic liquid- supported solid-liquid extraction of bioactive alkaloids. I. New HPLC method for quantitative determination of glaucine in Glaucium flavum Cr. (Papaveraceae). Sep. Purif. Technol. 2012, 97, 221–227. [Google Scholar] [CrossRef]
- Zhao, C.; Lu, Z.; Li, C.; He, X.; Li, Z. Optimization of ionic liquid based simultaneous ultrasonic- and microwave-assisted extraction of rutin and quercetin from leaves of velvetleaf (Abutilon theophrasti) by response surface methodology. Sci. World J. 2014, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Espino, M.; Fernandez, M.; Gomez, F. Novel approaches mediated by tailor-made green solvents for the extraction of phenolic compounds from agro-food industrial by- products. Food Chem. 2017, 239, 671–678. [Google Scholar]
- Huang, Y.; Feng, F.; Jiang, J.; Qiao, Y.; Wu, T.; Voglmeir, J.; Chen, Z.G. Green and efficient extraction of rutin from tartary buckwheat hull by using natural deep eutectic solvents. Food Chem. 2017, 221, 1400–1405. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.C.; Wu, P.; Li, Y.B.; Liu, T.C.; Zhang, L.; Zhou, Y.H. Natural deep eutectic solvents as new green solvents to extract anthraquinones from Rheum palmatum L. R. Soc. Chem. 2018, 8, 15069–15077. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.B.; Fan, Y.C.; Qian, Y.L. Determination of spices in food samples by ionic liquid aqueous solution extraction and ion chromatography. Chin. Chem. Lett. 2014, 25, 465–468. [Google Scholar] [CrossRef]
- Gómez, A.V.; Tadini, C.C.; Biswas, A.; Buttrum, M.; Kim, S.; Boddu, V.M.; Cheng, H.N. Microwave-assisted extraction of soluble sugars from banana puree with natural deep eutectic solvents (NADES). LWT 2019, 107, 79–88. [Google Scholar] [CrossRef]
- Grebenok, R.J.; Rlpa, P.V.; Adler, J.H. Occurrence and levels of ecdysteroids in spinach. Lipids 1991, 26, 666–668. [Google Scholar] [CrossRef]
- Modlin, R.F.; Alredb, P.A.; Tjemeld, F. Utilization of temperature-induced phase separation for the purification of ecdysone and 20-hydroxyecdysone from spinach. J. Chromatogr. A 1994, 668, 229–236. [Google Scholar] [CrossRef]
- Bakrim, A.; Maria, A.; Sayah, F.; Lafont, R.; Takvorian, N. Ecdysteroids in spinach (Spinacia oleracea L.): Biosynthesis, transport and regulation of levels. Plant Physiol. Biochem. 2008, 46, 844–854. [Google Scholar] [CrossRef]
- Cao, V.D.; Riu, K.Z.; Boo, K.H. Biosynthesis and accumulation of 20-hydroxyecdysone in individual male and female spinach plants during the reproductive stage. Plant Physiol. Biochem. 2018, 29, 394–399. [Google Scholar] [CrossRef] [PubMed]
- Bajkacz, S.; Adamek, J. Development of a method based on natural deep eutectic solvents for extraction of flavonoids from food samples. Food Anal. Methods 2018, 11, 1330–1344. [Google Scholar] [CrossRef] [Green Version]
- McCune, J.A.; He, P.; Petkovic, M.; Coleman, F.; Estager, J.; Holbrey, J.D.; Seddon, K.R.; Swadźba-Kwaśny, M. Brønsted acids in ionic liquids: How acidity depends on the liquid structure. Phys. Chem. Chem. Phys. 2014, 16, 23233–23243. [Google Scholar] [CrossRef] [Green Version]
Parameters | NADES-SLE-UHPLC-UV | IL-SLE-UHPLC-UV | |
---|---|---|---|
Linear range (µg/g)/R2 | 0.5–30/0.9982 | 0.5–30/0.9994 | |
LOD/LOQ (µg/g) | 0.17/0.5 | ||
Precision RSD (%) | 1 µg/g | 7.7 | 6.8 |
10 µg/g | 2.6 | 6.2 | |
25 µg/g | 0.4 | 5.8 | |
Accuracy RE (%) | 1 µg/g | 9.1 | 6.2 |
10 µg/g | 5.2 | 6.3 | |
25 µg/g | 1.1 | 4.1 | |
Recovery R (%) | 1 µg/g | 88.1 | 86.2 |
10 µg/g | 90.3 | 88.5 | |
25 µg/g | 93.4 | 88.8 |
Sample | 20-E Content (µg/g Dry Mass) | SD (µg/g Dry Mass) |
---|---|---|
Fresh spinach 1 | 878 | 30 |
Fresh spinach 2 | 228 | 8.8 |
Fresh spinach 3 | 65.3 | 4.7 |
Fresh spinach 4 | 55.6 | 3.7 |
Fresh spinach 5 | 101 | 8.9 |
Fresh spinach 6 | 108 | 9.1 |
Fresh spinach 7 | 54.6 | 5.2 |
Frozen spinach 1 | 264 | 20 |
Frozen spinach 2 | 162 | 15 |
Frozen spinach 3 | 50.8 | 4.6 |
Frozen spinach 4 | 17.1 | 1.4 |
Frozen spinach 5 | 41.4 | 3.9 |
Frozen spinach 6 | 48.3 | 2.7 |
Frozen spinach 7 | 32.4 | 2.2 |
Spinach leaves 1 | 656 | 56 |
Spinach leaves 2 | 885 | 24 |
Spinach leaves 3 | 23 | 1.0 |
Spinach stalks 1 | 279 | 25 |
Spinach seeds 1 | 50 | 3.0 |
Spinach seeds 2 | 44 | 1.9 |
No | Sample Preparation | Extractant | Extraction Time | Analysis | Column | Mobile Phase | Analysis Time/Recovery | Ref. |
---|---|---|---|---|---|---|---|---|
1 | SLE | methanol | 48 h | HPLC-MS | Spherisorb 5ODS2 (150 × 4.6 mm, 5 μm) | 2-propanol:water (12:88; v:v) | 11 min/80% | [12] |
2 | SLE | ethanol | 72 h | HPLC-UV | C18 ODS (250 × 4.6 mm, 5 μm) | methanol:water (45:55; v:v) | - | [28] |
3 | UAE | ethylene oxide: propylene oxide (1:1; v:v) | 72 h | HPLC-UV | Waters Delta Pak C18 (150 × 3.9 mm) | methanol:water (40:60; v:v) | 11 min/88.7% | [29] |
4 | UAE | methanol | 3 h | HPLC-UV | Kromasil (250 × 4.6 mm) | dichloromethane:2-propanol:water (125:40:3; v:v:v) | 60 min | [30] |
5 | UAE | methanol | 3 h | HPLC-UV | Zorbax-TMS (250 × 4.6 mm; 5 µm) | A: acetonitrile:2-propanol (5:2; v:v) B: water containing 0.1% TFA | 60 min | |
6 | UAE | methanol | 3 h | HPLC-UV | Spherisorb 5ODS2 (250 × 4.6 mm; 5 µm) | A: acetonitrile:2-propanol (5:2; v:v) B: water containing 0.1% TFA | 50 min | |
7 | UAE | methanol | 3 h | HPLC-UV | Spherisorb 5ODS2 (250 × 4.6 mm; 5 µm) | A: acetonitrile:2-propanol (5:2; v:v) B: water containing 0.1% TFA | 50 min | |
8 | UAE | methanol | 3 h | HPLC-UV | ACE C18 (150 × 4.6 mm; 5 µm) | methanol:water (45:55; v:v) | - | |
9 | SLE | methanol | 3 h | HPLC-UV | C18 Luna (250 × 4.6 mm; 5 μm) | 11% 2-propanol containing 0.1% TFA | 60 min | [31] |
10 | SLE | NADES levulinic acid: lactic acid (1:1; v:v) | 20 min | UHPLC-UV | Zorbax 300SB-C18 (150 × 4.6 mm; 3.5 μm) | A: acetonitrileB: water containing 0.05% TFA | 10 min/93% | This work |
11 | SLE | IL triethylammonium triacetate | 2 h | UHPLC-UV | Poroshell 120 EC-C18 (50 × 3.0 mm; 2.7 µm) | A: acetonitrileB: water containing 0.05% TFA | 6 min/88% | This work |
Symbol | Name |
---|---|
NADESs | |
NADES1 | choline chloride:citric acid (1:1) |
NADES2 | choline chloride:lactic acid (1:1) |
NADES3 | choline chloride:tartaric acid (1:1) |
NADES4 | choline chloride:levulinic acid (1:1) |
NADES5 | acetylcholine chloride:citric acid (1:1) |
NADES6 | acetylcholine chloride:levulinic acid (1:1) |
NADES7 | levulinic acid:citric acid (1:1) |
NADES8 | levulinic acid:malic acid (1:1) |
NADES9 | acetylcholine chloride:malic acid (1:1) |
NADES10 | acetylcholine chloride:lactic acid (1:1) |
NADES11 | levulinic acid:malic acid (1:2) |
NADES12 | levulinic acid:malic acid (1:4) |
NADES13 | levulinic acid:malic acid (4:1) |
NADES14 | levulinic acid:malic acid (2:1) |
NADES15 | choline chloride:lactic acid (1:2) |
NADES16 | choline chloride:lactic acid (2:1) |
NADES17 | lactic acid:levulinic acid (1:1) |
NADES18 | lactic acid:levulinic acid (2:1) |
NADES19 | lactic acid:levulinic acid (1:2) |
NADES20 | levulinic acid:pyruvic acid (1:1) |
NADES21 | choline chloride:lactic acid: levulinic acid (1:1:1) |
NADES22 | choline chloride:lactic acid: levulinic acid (1:1:2) |
NADES23 | choline chloride:lactic acid: levulinic acid (2:1:2) |
NADES24 | choline chloride:malic acid (1:1) |
ILs | |
[BMIm]AlCl4 | 1-butyl-3-methylimidazolium tetrachloroaluminate |
[BMIm]NTf2 | 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide |
[BMIm]MeSO4 | 1-butyl-3-methylimidazolium methylsulfate |
[EMIm]OcSO4 | 1-ethyl-3-methylimidazolium octylsulfate |
[EMIm]OTf | 1-ethyl-3-methylimidazolium trifluoromethanesulfonate |
[EMIm]EtSO4 | 1-ethyl-3-methylimidazolium ethylsulfate |
[HMIm]Cl | 1-hexyl-3-methylimidazolium chloride |
[MOIm]Cl | 1-methyl-3-octylimidazolium chloride |
[TEA] [OAc]·AcOH | triethylammonium triacetate |
Sample Availability: Samples of the compounds are not available from the authors. Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bajkacz, S.; Rusin, K.; Wolny, A.; Adamek, J.; Erfurt, K.; Chrobok, A. Highly Efficient Extraction Procedures Based on Natural Deep Eutectic Solvents or Ionic Liquids for Determination of 20-Hydroxyecdysone in Spinach. Molecules 2020, 25, 4736. https://doi.org/10.3390/molecules25204736
Bajkacz S, Rusin K, Wolny A, Adamek J, Erfurt K, Chrobok A. Highly Efficient Extraction Procedures Based on Natural Deep Eutectic Solvents or Ionic Liquids for Determination of 20-Hydroxyecdysone in Spinach. Molecules. 2020; 25(20):4736. https://doi.org/10.3390/molecules25204736
Chicago/Turabian StyleBajkacz, Sylwia, Kornelia Rusin, Anna Wolny, Jakub Adamek, Karol Erfurt, and Anna Chrobok. 2020. "Highly Efficient Extraction Procedures Based on Natural Deep Eutectic Solvents or Ionic Liquids for Determination of 20-Hydroxyecdysone in Spinach" Molecules 25, no. 20: 4736. https://doi.org/10.3390/molecules25204736
APA StyleBajkacz, S., Rusin, K., Wolny, A., Adamek, J., Erfurt, K., & Chrobok, A. (2020). Highly Efficient Extraction Procedures Based on Natural Deep Eutectic Solvents or Ionic Liquids for Determination of 20-Hydroxyecdysone in Spinach. Molecules, 25(20), 4736. https://doi.org/10.3390/molecules25204736