Target and Suspect HRMS Metabolomics for the Determination of Functional Ingredients in 13 Varieties of Olive Leaves and Drupes from Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instrumentation
2.3. Sampling and Sample Preparation
2.4. Quality Control
2.5. Target Screening
2.6. Method Validation
2.7. Suspect Screening
2.8. Statistical Analysis
2.9. Olive Leaf Tea Preparation
3. Results and Discussion
3.1. Method Development and Validation Results for Leaves
3.2. Method Development and Validation Results for Drupes
3.3. Determination of Bioactive Compounds in Leaves
3.3.1. Target Screening Results for Leaves
3.3.2. Quantification Results for Leaves
Oleuropein
Tyrosol
Hydroxytyrosol
3.3.3. Suspect Results for Leaves
3.3.4. Determination of Phenolic Compounds in Tea Extracts Prepared under Different Temperatures
3.4. Determination of Bioactive Compounds in Drupes
3.4.1. Target Screening Results for Drupes
3.4.2. Quantification Results for Drupes
Oleuropein
Tyrosol
Hydroxytyrosol
3.4.3. Suspect Screening Results for Drupes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Morelló, J.R.; Romero, M.P.; Ramo, T.; Motilva, M.J. Evaluation of l-phenylalanine ammonia-lyase activity and phenolic profile in olive drupe (Olea europaea L.) from fruit setting period to harvesting time. Plant Sci. 2005, 168, 65–72. [Google Scholar] [CrossRef]
- Hashmi, M.A.; Khan, A.; Hanif, M.; Farooq, U.; Perveen, S. Traditional uses, phytochemistry, and pharmacology of Olea europaea (olive). Evidence-Based Complement. Altern. Med. 2015, 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalogeropoulos, N.; Tsimidou, M.Z. Antioxidants in greek virgin olive oils. Antioxidants 2014, 3, 387–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erbay, Z.; Icier, F. The importance and potential uses of olive leaves. Food Rev. Int. 2010, 26, 319–334. [Google Scholar] [CrossRef]
- Medfai, W.; Contreras, M.D.M.; Lama-Muñoz, A.; Mhamdi, R.; Oueslati, I.; Castro, E. How Cultivar and Extraction Conditions Affect Antioxidants Type and Extractability for Olive Leaves Valorization. ACS Sustain. Chem. Eng. 2020, 8, 5107–5118. [Google Scholar] [CrossRef]
- Japón-Luján, R.; Luque de Castro, M.D. Small branches of olive tree: A source of biophenols complementary to olive leaves. J. Agric. Food Chem. 2007, 55, 4584–4588. [Google Scholar] [CrossRef]
- Nicolì, F.; Negro, C.; Vergine, M.; Aprile, A.; Nutricati, E.; Sabella, E.; Miceli, A.; Luvisi, A.; De Bellis, L. Evaluation of phytochemical and antioxidant properties of 15 Italian Olea europaea L. Cultivar Leaves. Molecules 2019, 24, 1998. [Google Scholar] [CrossRef] [Green Version]
- Bouaziz, M.; Sayadi, S. Isolation and evaluation of antioxidants from leaves of a Tunisian cultivar olive tree. Eur. J. Lipid Sci. Technol. 2005, 107, 497–504. [Google Scholar] [CrossRef]
- Medina, E.; Romero, C.; García, P.; Brenes, M. Characterization of bioactive compounds in commercial olive leaf extracts, and olive leaves and their infusions. Food Funct. 2019, 10, 4716–4724. [Google Scholar] [CrossRef] [Green Version]
- Tsimidou, M.Z.; Papoti, V.T. Bioactive Ingredients in Olive Leaves; Elsevier Inc.: Amsterdam, The Netherlands, 2010; ISBN 9780123744203. [Google Scholar]
- Japón-Luján, R.; Janeiro, P.; De Castro, M.D.L. Solid-liquid transfer of biophenols from olive leaves for the enrichment of edible oils by a dynamic ultrasound-assisted approach. J. Agric. Food Chem. 2008, 56, 7231–7235. [Google Scholar] [CrossRef] [PubMed]
- De Bock, M.; Thorstensen, E.B.; Derraik, J.G.B.; Henderson, H.V.; Hofman, P.L.; Cutfield, W.S. Human absorption and metabolism of oleuropein and hydroxytyrosol ingested as olive (Olea europaea L.) leaf extract. Mol. Nutr. Food Res. 2013, 57, 2079–2085. [Google Scholar] [CrossRef] [PubMed]
- Michel, T.; Khlif, I.; Kanakis, P.; Termentzi, A.; Allouche, N.; Halabalaki, M.; Skaltsounis, A.L. UHPLC-DAD-FLD and UHPLC-HRMS/MS based metabolic profiling and characterization of different Olea europaea organs of Koroneiki and Chetoui varieties. Phytochem. Lett. 2015, 11, 424–439. [Google Scholar] [CrossRef]
- Papoti, V.T.; Papageorgiou, M.; Dervisi, K.; Alexopoulos, E.; Apostolidis, K.; Petridis, D. Screening olive leaves from unexploited traditional Greek cultivars for their phenolic antioxidant dynamic. Foods 2018, 7, 197. [Google Scholar] [CrossRef] [Green Version]
- Kalogiouri, N.; Samanidou, V. Advances in the Optimization of Chromatographic Conditions for the Separation of Antioxidants in Functional Foods. Rev. Sep. Sci. 2019, 1, 17–33. [Google Scholar] [CrossRef]
- Kalogiouri, N.P.; Aalizadeh, R.; Dasenaki, M.E.; Thomaidis, N.S. Application of High Resolution Mass Spectrometric Methods coupled with Chemometric Techniques in Olive Oil Authenticity Studies—A Review. Anal. Chim. ACTA 2020. [Google Scholar] [CrossRef] [PubMed]
- Talhaoui, N.; Gómez-Caravaca, A.M.; León, L.; de la Rosa, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Pattern of Variation of Fruit Traits and Phenol Content in Olive Fruits from Six Different Cultivars. J. Agric. Food Chem. 2015, 63, 10466–10476. [Google Scholar] [CrossRef]
- Santos, M.M.; Piccirillo, C.; Castro, P.M.L.; Kalogerakis, N.; Pintado, M.E. Bioconversion of oleuropein to hydroxytyrosol by lactic acid bacteria. World J. Microbiol. Biotechnol. 2012, 28, 2435–2440. [Google Scholar] [CrossRef]
- Quirantes-Piné, R.; Lozano-Sánchez, J.; Herrero, M.; Ibáñez, E.; Segura-Carretero, A.; Fernández-Gutiérrez, A. HPLC-ESI-QTOF-MS as a powerful analytical tool for characterising phenolic compounds in olive-leaf extracts. Phytochem. Anal. 2013, 24, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Kontogianni, V.G.; Gerothanassis, I.P. Phenolic compounds and antioxidant activity of olive leaf extracts. Nat. Prod. Res. 2012, 26, 186–189. [Google Scholar] [CrossRef]
- Talhaoui, N.; Taamalli, A.; Gómez-Caravaca, A.M.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Phenolic compounds in olive leaves: Analytical determination, biotic and abiotic influence, and health benefits. Food Res. Int. 2015, 77, 92–108. [Google Scholar] [CrossRef]
- Kalogiouri, N.P.; Aalizadeh, R.; Thomaidis, N.S. Investigating the organic and conventional production type of olive oil with target and suspect screening by LC-QTOF-MS, a novel semi-quantification method using chemical similarity and advanced chemometrics. Anal. Bioanal. Chem. 2017, 409, 5413–5426. [Google Scholar] [CrossRef] [PubMed]
- Kalogiouri, N.P.; Aalizadeh, R.; Thomaidis, N.S. Application of an advanced and wide scope non-target screening workflow with LC-ESI-QTOF-MS and chemometrics for the classification of the Greek olive oil varieties. Food Chem. 2018, 256, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Kalogiouri, N.P.; Alygizakis, N.A.; Aalizadeh, R.; Thomaidis, N.S. Olive oil authenticity studies by target and nontarget LC–QTOF-MS combined with advanced chemometric techniques. Anal. Bioanal. Chem. 2016, 408, 7955–7970. [Google Scholar] [CrossRef] [PubMed]
- Kalogiouri, N.P.; Aalizadeh, R.; Dasenaki, M.E.; Thomaidis, N.S. Authentication of Greek PDO kalamata table olives: A novel non-target high resolution mass spectrometric approach. Molecules 2020, 25, 2919. [Google Scholar] [CrossRef]
- Edziri, H.; Jaziri, R.; Chehab, H.; Verschaeve, L.; Flamini, G.; Boujnah, D.; Hammami, M.; Aouni, M.; Mastouri, M. A comparative study on chemical composition, antibiofilm and biological activities of leaves extracts of four Tunisian olive cultivars. Heliyon 2019, 5, e01604. [Google Scholar] [CrossRef] [Green Version]
- Ghasemi, S.; Koohi, D.E.; Emmamzadehhashemi, M.S.B.; Khamas, S.S.; Moazen, M.; Hashemi, A.K.; Amin, G.; Golfakhrabadi, F.; Yousefi, Z.; Yousefbeyk, F. Investigation of phenolic compounds and antioxidant activity of leaves extracts from seventeen cultivars of Iranian olive (Olea europaea L.). J. Food Sci. Technol. 2018, 55, 4600–4607. [Google Scholar] [CrossRef]
- Agalias, A.; Melliou, E.; Magiatis, P.; Mitaku, S.; Gikas, E.; Tsarbopoulos, A. Quantitation of oleuropein and related metabolites in decoctions of Olea europaea leaves from ten greek cultivated varieties by HPLC with diode array detection (HPLC-DAD). J. Liq. Chromatogr. Relat. Technol. 2005, 28, 1557–1571. [Google Scholar] [CrossRef]
- Papoti, V.T.; Tsimidou, M.Z. Looking through the qualities of a fluorimetric assay for the total phenol content estimation in virgin olive oil, olive fruit or leaf polar extract. Food Chem. 2009, 112, 246–252. [Google Scholar] [CrossRef]
- Taamalli, A.; Arráez-Román, D.; Zarrouk, M.; Valverde, J.; Segura-Carretero, A.; Fernández-Gutiérrez, A. The Occurrence and Bioactivity of Polyphenols in Tunisian Olive Products and by-Products: A Review. J. Food Sci. 2012, 77. [Google Scholar] [CrossRef]
- Jemai, H.; Bouaziz, M.; Fki, I.; El Feki, A.; Sayadi, S. Hypolipidimic and antioxidant activities of oleuropein and its hydrolysis derivative-rich extracts from Chemlali olive leaves. Chem. Biol. Interact. 2008, 176, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Kountouri, A.M.; Mylona, A.; Kaliora, A.C.; Andrikopoulos, N.K. Bioavailability of the phenolic compounds of the fruits (drupes) of Olea europaea (olives): Impact on plasma antioxidant status in humans. Phytomedicine 2007, 14, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Jemai, H.; Bouaziz, M.; Sayadi, S. Phenolic composition, sugar contents and antioxidant activity of tunisian sweet olive cuitivar with regard to fruit ripening. J. Agric. Food Chem. 2009, 57, 2961–2968. [Google Scholar] [CrossRef] [PubMed]
- Bouaziz, M.; Chamkha, M.; Sayadi, S. Comparative study on phenolic content and antioxidant activity during maturation of the olive cultivar Chemlali from Tunisia. J. Agric. Food Chem. 2004, 52, 5476–5481. [Google Scholar] [CrossRef] [PubMed]
- Kishikawa, A.; Ashour, A.; Zhu, Q.; Yasuda, M.; Ishikawa, H.; Shimizu, K. Multiple biological effects of olive oil by-products such as leaves, stems, flowers, olive milled waste, fruit pulp, and seeds of the olive plant on skin. Phyther. Res. 2015, 29, 877–886. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Ahmad, W.; Hussain, I.; Imran, M.; Afridi, M.S.; Ullah, S. Phytochemical composition, antioxidant and antimicrobial activities of leaves of Olea europaea wild variety. J. Food Meas. Charact. 2020, 14, 640–648. [Google Scholar] [CrossRef]
- Kontogianni, V.G.; Charisiadis, P.; Margianni, E.; Lamari, F.N.; Gerothanassis, I.P.; Tzakos, A.G. Olive leaf extracts are a natural source of advanced glycation end product inhibitors. J. Med. Food 2013, 16, 817–822. [Google Scholar] [CrossRef] [Green Version]
- Ahmad-Qasem, M.H.; Cánovas, J.; Barrajón-Catalán, E.; Micol, V.; Cárcel, J.A.; García-Pérez, J.V. Kinetic and compositional study of phenolic extraction from olive leaves (var. Serrana) by using power ultrasound. Innov. Food Sci. Emerg. Technol. 2013, 17, 120–129. [Google Scholar] [CrossRef]
- Olmo-García, L.; Bajoub, A.; Benlamaalam, S.; Hurtado-Fernández, E.; Bagur-González, M.G.; Chigr, M.; Mbarki, M.; Fernández-Gutiérrez, A.; Carrasco-Pancorbo, A. Establishing the phenolic composition of Olea europaea L. Leaves from cultivars grown in Morocco as a crucial step towards their subsequent exploitation. Molecules 2018, 23, 2524. [Google Scholar] [CrossRef] [Green Version]
- Ryan, D.; Antolovich, M.; Herlt, T.; Prenzler, P.D.; Lavee, S.; Robards, K. Identification of phenolic compounds in tissues of the novel olive cultivar Hardy’s Mammoth. J. Agric. Food Chem. 2002, 50, 6716–6724. [Google Scholar] [CrossRef]
- Briante, R.; Patumi, M.; Terenziani, S.; Bismuto, E.; Febbraio, F.; Nucci, R. Olea europaea L. leaf extract and derivatives: Antioxidant properties. J. Agric. Food Chem. 2002, 50, 4934–4940. [Google Scholar] [CrossRef]
- Goulas, V.; Papoti, V.T.; Exarchou, V.; Tsimidou, M.Z.; Gerothanassis, I.P. Contribution of flavonoids to the overall radical scavenging activity of olive (Olea europaea L.) leaf polar extracts. J. Agric. Food Chem. 2010, 58, 3303–3308. [Google Scholar] [CrossRef] [PubMed]
- Gentile, L.; Uccella, N.A. Selected bioactives from callus cultures of olives (Olea europaea L. Var. Coratina) by LC-MS. Food Res. Int. 2014, 55, 128–136. [Google Scholar] [CrossRef]
- Tóth, G.; Alberti, Á.; Sólyomváry, A.; Barabás, C.; Boldizsár, I.; Noszál, B. Phenolic profiling of various olive bark-types and leaves: HPLC-ESI/MS study. Ind. Crops Prod. 2015, 67, 432–438. [Google Scholar] [CrossRef]
- Giménez, E.; Juan, M.E.; Calvo-Melià, S.; Barbosa, J.; Sanz-Nebot, V.; Planas, J.M. Pentacyclic triterpene in Olea europaea L.: A simultaneous determination by high-performance liquid chromatography coupled to mass spectrometry. J. Chromatogr. A 2015, 1410, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Quirantes-Piné, R.; Zurek, G.; Barrajón-Catalán, E.; Bäßmann, C.; Micol, V.; Segura-Carretero, A.; Fernández-Gutiérrez, A. A metabolite-profiling approach to assess the uptake and metabolism of phenolic compounds from olive leaves in SKBR3 cells by HPLC-ESI-QTOF-MS. J. Pharm. Biomed. Anal. 2013, 72, 121–126. [Google Scholar] [CrossRef]
- Jerman Klen, T.; Golc Wondra, A.; Vrhovšek, U.; Mozetič Vodopivec, B. Phenolic Profiling of Olives and Olive Oil Process-Derived Matrices Using UPLC-DAD-ESI-QTOF-HRMS Analysis. J. Agric. Food Chem. 2015, 63, 3859–3872. [Google Scholar] [CrossRef]
- Savarese, M.; De Marco, E.; Sacchi, R. Characterization of phenolic extracts from olives (Olea europaea cv. Pisciottana) by electrospray ionization mass spectrometry. Food Chem. 2007, 105, 761–770. [Google Scholar] [CrossRef]
- Taamalli, A.; Sánchez, J.L.; Jebabli, H.; Trabelsi, N.; Abaza, L.; Carretero, A.S.; Cho, J.Y.; Román, D.A. Monitoring the bioactive compounds status in Olea europaea according to collecting period and drying conditions. Energies 2019, 12, 947. [Google Scholar] [CrossRef] [Green Version]
- Kanakis, P.; Termentzi, A.; Michel, T.; Gikas, E.; Halabalaki, M.; Skaltsounis, A.L. From olive drupes to olive OilAn HPLC-orbitrap-based qualitative and quantitative exploration of olive key metabolites. Planta Med. 2013, 79, 1576–1587. [Google Scholar] [CrossRef] [Green Version]
- Vinha, A.F.; Ferreres, F.; Silva, B.M.; Valentão, P.; Gonçalves, A.; Pereira, J.A.; Oliveira, M.B.; Seabra, R.M.; Andrade, P.B. Phenolic profiles of Portuguese olive fruits (Olea europaea L.): Influences of cultivar and geographical origin. Food Chem. 2005, 89, 561–568. [Google Scholar] [CrossRef]
- Jimenez, P.; Masson, L.; Barriga, A.; Chávez, J.; Robert, P. Oxidative stability of oils containing olive leaf extracts obtained by pressure, supercritical and solvent-extraction. Eur. J. Lipid Sci. Technol. 2011, 113, 497–505. [Google Scholar] [CrossRef]
- El, S.N.; Karakaya, S. Olive tree (Olea europaea) leaves: Potential beneficial effects on human health. Nutr. Rev. 2009, 67, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Kiritsakis, K.; Kontominas, M.G.; Kontogiorgis, C.; Hadjipavlou-Litina, D.; Moustakas, A.; Kiritsakis, A. Composition and antioxidant activity of olive leaf extracts from Greek olive cultivars. JAOCS J. Am. Oil Chem. Soc. 2010, 87, 369–376. [Google Scholar] [CrossRef]
- Cittan, M.; Çelik, A. Development and validation of an analytical methodology based on liquid chromatography-electrospray tandem mass spectrometry for the simultaneous determination of phenolic compounds in olive leaf extract. J. Chromatogr. Sci. 2018, 56, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Capriotti, A.L.; Cavaliere, C.; Crescenzi, C.; Foglia, P.; Nescatelli, R.; Samperi, R.; Laganà, A. Comparison of extraction methods for the identification and quantification of polyphenols in virgin olive oil by ultra-HPLC-QToF mass spectrometry. Food Chem. 2014, 158, 392–400. [Google Scholar] [CrossRef]
- Gago-Ferrero, P.; Schymanski, E.L.; Bletsou, A.A.; Aalizadeh, R.; Hollender, J.; Thomaidis, N.S. Extended Suspect and Non-Target Strategies to Characterize Emerging Polar Organic Contaminants in Raw Wastewater with LC-HRMS/MS. Environ. Sci. Technol. 2015, 49, 12333–12341. [Google Scholar] [CrossRef] [Green Version]
- Wolf, S.; Schmidt, S.; Müller-Hannemann, M.; Neumann, S. In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinform. 2010, 11. [Google Scholar] [CrossRef] [Green Version]
- Aalizadeh, R.; Thomaidis, N.S.; Bletsou, A.A.; Gago-Ferrero, P. Quantitative Structure-Retention Relationship Models to Support Nontarget High-Resolution Mass Spectrometric Screening of Emerging Contaminants in Environmental Samples. J. Chem. Inf. Model. 2016, 56, 1384–1398. [Google Scholar] [CrossRef]
- Schymanski, E.L.; Jeon, J.; Gulde, R.; Fenner, K.; Ruff, M.; Singer, H.P.; Hollender, J. Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environ. Sci. Technol. 2014, 48, 2097–2098. [Google Scholar] [CrossRef]
Compound | LOD (mg/Kg) | LOQ (mg/Kg) | Equation y = (a ± Sa) + (b ± Sb)x (Linear Range: 0.1–8 mg/Kg) | r2 | Intra-Day Precision RSDr (%) (n = 6) | Inter-Day Precision RSDR (%) (n × k = 3 × 3) | RE% | ME% |
---|---|---|---|---|---|---|---|---|
Oleuropein | 0.038 | 0.131 | y = (1.18 ± 0.16) + (2.08 ± 0.05) | 0.996 | 5.8 | 6.5 | 85.9 | −18.6 |
Tyrosol | 0.042 | 0.125 | y = (0.06 ± 0.06) + (1.23 ± 0.02) | 0.998 | 5.4 | 6.1 | 93.2 | −16.4 |
Hydroxytyrosol | 0.046 | 0.098 | y = (0.18 ± 0.05) + (0.51 ± 0.01) | 0.995 | 4.7 | 5.8 | 90.5 | −12.7 |
Compound | LOD (mg/Kg) | LOQ (mg/Kg) | Equation y = (a ± Sa) + (b ± Sb)x (Linear Range: 0.1–8 mg/Kg) | r2 | Intra-Day Precision RSDr, (%) (n = 6) | Inter-Day Precision RSDR, (%) (n × k = 3 × 3) | RE% | ME% |
---|---|---|---|---|---|---|---|---|
Oleuropein | 0.037 | 0.136 | y = (1.15 ± 0.21) + (2.00 ± 0.06) | 0.992 | 5.2 | 6.2 | 89.7 | −15.4 |
Tyrosol | 0.045 | 0.098 | y = (0.01 ± 0.02) + (1.18 ± 0.01) | 0.999 | 4.6 | 5.8 | 92.5 | −11.1 |
Hydroxytyrosol | 0.048 | 0.096 | y = (0.13 ± 0.05) + (0.53 ± 0.02) | 0.993 | 3.8 | 5.1 | 91.4 | −12.8 |
Compound | Molecular Formula | [M − H]− m/z Theoretical | [M − H]− m/z Experimental | tR Standard (min) | ΔtR (min) | Fragments m/z | Elemental Formula |
---|---|---|---|---|---|---|---|
Phenolic acids | |||||||
Ferulic acid | C10H10O4 | 193.0506 | 193.0509 | 1.40 | −0.02 | 178.0271 | C9H6O4 |
Gallic acid | C7H6O5 | 169.0142 | 169.0146 | 1.25 | +0.03 | 125.0244 | C6H5O3 |
Phenolic alcohols | |||||||
Hydroxytyrosol | C8H10O3 | 153.0557 | 153.0555 | 3.53 | +0.06 | 123.0444 | C7H7O2 |
Tyrosol | C8H10O2 | 137.0608 | 137.0607 | 4.07 | +0.04 | 81.0267 93.0344 112.0531 | C5H5O C6H5O C6H8O2 |
Phenolic aldehydes | |||||||
Vanillin | C8H8O3 | 151.0400 | 151.0401 | 4.73 | −0.03 | 95.0105 136.0187 | C5H3O2 C7H4O3 |
Flavonoids | |||||||
Apigenin | C15H10O5 | 269.0455 | 269.0454 | 8.24 | −0.01 | 151.0038 | C7H3O4 |
Luteolin | C15H10O6 | 285.0404 | 285.0407 | 7.46 | −0.02 | 133.0295 151.0036 | C8H5O2 C7H3O4 |
Quercetin | C15H10O7 | 301.0353 | 301.0354 | 7.42 | −0.03 | 121.0293 151.0039 | C7H5O2 C7H3O4 |
Secoiridoids | |||||||
Oleuropein | C25H32O13 | 539.1770 | 539.1770 | 5.96 | −0.02 | 89.0241 101.0241 307.0821 327.0867 345.0985 377.1258 | C3H5O3 C4H5O3 C15H15O7 C18H15O6 C18H17O7 C19H21O8 |
Lignans | |||||||
Pinoresinol | C20H22O6 | 357.1343 | 357.1346 | 6.49 | +0.04 | 151.0401 | C8H7O3 |
Leaf Sample | Origin | Area | Sample Code | Oleuropein (mg/Kg) | Tyrosol (mg/Kg) | Hydroxytyrosol (mg/Kg) |
---|---|---|---|---|---|---|
Koroneiki | Naxos | Melanes | 1F | 142 | 47.9 | 331 |
Koroneiki | Naxos | Melanes | 1F2 | 163 | 31.6 | 391 |
Throumbolia | Naxos | Melanes | 2F | 230 | 15.1 | 116 |
Throumbolia | Naxos | Melanes | 2F2 | 199 | 11.2 | 74.8 |
Konservolia | Naxos | Melanes | 3F | 184 | 0.625 | 28.3 |
Konservolia | Naxos | Melanes | 3F2 | 100 | 1.30 | 32.3 |
Koutsourelia | Aetolia-Acarnania | Agrinio | 4F | 51.7 | 18.5 | 50.2 |
Koutsourelia | Aetolia-Acarnania | Agrinio | 4F2 | 77.5 | 26.0 | 56.4 |
Konservolia | Aetolia-Acarnania | Agrinio | 5F | 59.4 | 4.70 | 24.2 |
Konservolia | Aetolia-Acarnania | Agrinio | 5F2 | 35.2 | 7.01 | 20.1 |
Kalamon | Aetolia-Acarnania | Agrinio | 6F | 41.2 | 3.77 | 32.7 |
Kalamon | Aetolia-Acarnania | Agrinio | 6F2 | 82.9 | 1.83 | 27.4 |
Petrolia | Serres | Skoutari | 7F | 7.91 | <LOD | <LOQ |
Petrolia | Serres | Skoutari | 7F1 | 9.45 | <LOD | <LOQ |
Petrolia | Serres | Skoutari | 7F2 | 1.80 | <LOD | <LOQ |
Amigdalolia | Attica | Votanikos | 8F | 114 | 22.5 | 211 |
Amigdalolia | Attica | Votanikos | 8F2 | 60.1 | 21.2 | 206 |
Kalamon | Attica | Votanikos | 9F | 152 | 45.4 | 61.6 |
Kalamon | Attica | Votanikos | 9F2 | 167 | 20.0 | 54.5 |
Konservolia | Attica | Votanikos | 10F | 126 | 9.00 | 27.1 |
Konservolia | Attica | Votanikos | 10F2 | 129 | 2.24 | 33.9 |
Koroneiki | Attica | Votanikos | 11F | 162 | 3.16 | 104 |
Koroneiki | Attica | Votanikos | 11F2 | 115 | 5.04 | 112 |
Koroneiki | Messenia | Kalamata | 12F | 93.8 | 29.1 | 67.9 |
Kalamon | Messenia | Kalamata | 13F | 113 | 9.01 | 160 |
Megaritiki | Attica | Aspropyrgos | 14F | 45.6 | 20.4 | 282 |
Megaritiki | Attica | Sounio | 15F | 168 | 5.49 | 228 |
Megaritiki | Attica | Megara | 16F | 200 | <LOQ | 199 |
Mastoeidis | Laconia | Sparti | 17F | 119 | 8.49 | 154 |
Mastoeidis | Laconia | Sparti | 17F2 | 87.2 | <LOD | 112 |
Agouromanakolia | Laconia | Sparti | 18F | 82.0 | 67.4 | 240 |
Agouromanakolia | Laconia | Sparti | 18F2 | 165 | 68.1 | 281 |
Agrilia | Laconia | Sparti | 19F | 278 | 34.4 | 248 |
Agrilia | Laconia | Sparti | 19F2 | 293 | 11.1 | 199 |
Agouromanakolia | Arcadia | Kynouria | 20F | <LOQ | <LOD | <LOD |
Megaritiki | Boeotia | Dilesi | 21F | 5.10 | 0.373 | 115 |
Koroneiki | Arcadia | Kynouria | 22F | 134 | 5.42 | 139 |
Koroneiki | Boeotia | Dilesi | 23F | 3.23 | 19.9 | 67.4 |
Agrilia | Lesvos | Komi | 24F | 212 | 89.0 | 421 |
Agrilia | Lesvos | Komi | 24F1 | 165 | 114 | 385 |
Agrilia | Lesvos | Komi | 24F2 | 149 | 105 | 364 |
Adramitiani | Lesvos | Kalloni | 25F | 95.0 | 48.0 | 102 |
Adramitiani | Lesvos | Kalloni | 25F1 | 134 | 35.0 | 144 |
Adramitiani | Lesvos | Kalloni | 25F2 | 103 | 31.0 | 126 |
Kolovi | Lesvos | Palaiohori | 26F | 205 | 121 | 378 |
Kolovi | Lesvos | Palaiohori | 26F2 | 180 | 97.0 | 392 |
Kolovi | Lesvos | Moria | 27F | 167 | 112 | 412 |
Infusion Time (min) | Oleuropein (mg/100 mL Olive Leaf Tea ± SD) | Tyrosol (mg/100 mL Olive Leaf Tea) | Hydroxytyrosol (mg/100 mL Olive Leaf Tea ± SD) |
---|---|---|---|
3 | 8.11 ± 0.05 | <LOQ | 0.06 ± 0.01 |
6 | 9.36 ± 0.08 | <LOQ | 0.11 ± 0.01 |
10 | 9.86 ± 0.12 | <LOQ | 0.27 ± 0.03 |
Compound | Molecular Formula | [M − H]− m/z Theoretical | [M − H]− m/z Experimental | tR Standard (min) | ΔtR (min) | Fragments m/z | Elemental Formula | |
---|---|---|---|---|---|---|---|---|
Phenolic alcohols | ||||||||
Hydroxytyrosol | C8H10O3 | 153.0557 | 153.0555 | 3.52 | +0.05 | 123.0444 | C7H7O2 | |
Tyrosol | C8H10O2 | 137.0608 | 137.0607 | 4.07 | +0.04 | 93.0333 | C6H5O | |
Phenolic aldehydes | ||||||||
Vanillin | C8H8O3 | 151.0400 | 151.0401 | 4.73 | −0.03 | 95.0105 136.0187 | C5H3O2 C7H4O3 | |
Flavonoids | ||||||||
Apigenin | C15H10O5 | 269.0455 | 269.0454 | 8.24 | −0.01 | 151.0038 | C7H3O4 | |
Luteolin | C15H10O6 | 285.0404 | 285.0407 | 7.46 | −0.02 | 133.0295 151.0036 | C8H5O2 C7H3O4 | |
Quercetin | C15H10O7 | 301.0353 | 301.0354 | 7.42 | −0.03 | 121.0293 | C7H5O2 | |
Secoiridoids | ||||||||
Oleuropein | C25H32O13 | 539.1770 | 539.1770 | 5.96 | −0.02 | 89.0241 101.0241 307.0821 327.0867 345.0985 377.1258 | C3H5O3 C4H5O3 C15H15O7 C18H15O6 C18H17O7 C19H21O8 |
Origin | Area | Sample No. | Oleuropein (mg/kg) | Tyrosol (mg/kg) | Hydroxytyrosol (mg/kg) | |
---|---|---|---|---|---|---|
Koroneiki | Naxos | Melanes | 1K | 143 | 9.91 | 203 |
Throumbolia | Naxos | Melanes | 2K | 145 | 7.10 | 77.8 |
Konservolia | Naxos | Melanes | 3K | 96.3 | <LOQ | 426 |
Koutsourelia | Aetolia-Acarnania | Agrinio | 4K | <LOQ | <LOD | <LOD |
Konservolia | Aetolia-Acarnania | Agrinio | 5K | 90.0 | 4.72 | 172 |
Koroneiki | Attica | Votanikos | 11K | 85.1 | 25.0 | 201 |
Megaritiki | Attica | Sounio | 15K | 27.6 | 7.90 | 269 |
Megaritiki | Attica | Megara | 16K | 81.2 | 22.0 | 321 |
Mastoeidis | Laconia | Sparti | 17K | 125 | 19.8 | 77.8 |
Agouromanakolia | Laconia | Sparti | 18K | 133 | 14.7 | 78.6 |
Agrilia | Laconia | Sparti | 19K | 22.0 | 7.51 | 34.0 |
Agouromanakolia | Arcadia | Kynouria | 20K | <LOD | <LOD | <LOD |
Megaritiki | Boeotia | Dilesi | 21K | 28.3 | 11.7 | 53.7 |
Koroneiki | Arkadia | Kynouria | 22K | 63.8 | 7.71 | 335 |
Koroneiki | Boeotia | Dilesi | 23K | 10.0 | 40.3 | 120 |
Sample Availability: The samples were provided by Greek olive oil producers. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kritikou, E.; Kalogiouri, N.P.; Kolyvira, L.; Thomaidis, N.S. Target and Suspect HRMS Metabolomics for the Determination of Functional Ingredients in 13 Varieties of Olive Leaves and Drupes from Greece. Molecules 2020, 25, 4889. https://doi.org/10.3390/molecules25214889
Kritikou E, Kalogiouri NP, Kolyvira L, Thomaidis NS. Target and Suspect HRMS Metabolomics for the Determination of Functional Ingredients in 13 Varieties of Olive Leaves and Drupes from Greece. Molecules. 2020; 25(21):4889. https://doi.org/10.3390/molecules25214889
Chicago/Turabian StyleKritikou, Evangelia, Natasa P. Kalogiouri, Lydia Kolyvira, and Nikolaos S. Thomaidis. 2020. "Target and Suspect HRMS Metabolomics for the Determination of Functional Ingredients in 13 Varieties of Olive Leaves and Drupes from Greece" Molecules 25, no. 21: 4889. https://doi.org/10.3390/molecules25214889
APA StyleKritikou, E., Kalogiouri, N. P., Kolyvira, L., & Thomaidis, N. S. (2020). Target and Suspect HRMS Metabolomics for the Determination of Functional Ingredients in 13 Varieties of Olive Leaves and Drupes from Greece. Molecules, 25(21), 4889. https://doi.org/10.3390/molecules25214889