Non-Chromatographic Speciation of As by HG Technique—Analysis of Samples with Different Matrices
Abstract
:1. Introduction
2. Instrumental Techniques Used for the Determination of As Species and Ways of Verifying the Reliability of the Results
3. Samples and Their Preparation
- natural/environmental waters, i.e., mainly drinking [2,3,4,5,14,18,71,83], tap [4,9,15,16,17,18,19,20,21,84,85], ground [4,6,7,8,9,10,11,12,13,14,83], underground [3,15,16], sea [3,10,11,17,24,25,68,80], lake [10,14,20,21,22,23,24,80], river [10,14,20,21,22,75,82,86], waste [4,21] and snow and rain [26]
- ash [72]
- phosphate rocks [33]
- airborne particular matter [34]
- plants [75]
- glass [35]
- milk [49]
- mushrooms [50]
4. Non-Chromatographic As Speciation by Selective HG
4.1. Case of Inorganic Arsenic (As(III) and As(V))
4.1.1. Individual Speciation, i.e., Separately Determined As(III) and As(V)
- (a)
- Different reaction media, i.e., the acidity-dependent reduction reaction between As species and NaBH4 to generate hydrides (affected strongly by the type and the concentration of acid or buffer solutions used, as well as the pH of the reacting medium).
- (b)
- The reaction rate with NaBH4, i.e., differences in the reduction efficiency between As(III) and As(V) at different NaBH4 concentrations (especially low) in the acid medium.
- (c)
- The absence or presence of additives like pre-reduction agents or other specific organic substances including chelating and masking reagents. The addition of various pre-reductants ensures that any As(V) is in the As(III) form before the reaction with NaBH4 takes place; this provides the highest sensitivity in the HG technique for As, and hence, makes it possible to quantify the total As content.
4.1.2. Operational Speciation, i.e., Dealing Only with i-As Determination (total As(III) and As(V))
4.2. Case of Inorganic As(III) and As(V) and Organic Arsenic (DMA and MMA)—Speciation and Fractionation Protocols
5. Pre-Concentration and/or Separation
5.1. Pre-Concentration and Separation Methods before HG Process
5.1.1. Selective Complexation–Extraction
5.1.2. Selective Retention—Solid Phase Extraction
5.1.3. Selective Co-Precipitation
5.2. Pre-Concentration and Separation Methods after HG Process
6. Alternative HG Technique-Electrolytic Hydride Generation
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Caroli, S.; Torre, F.L.; Petrucci, F.; Violante, N. Arsenic speciation and Health Aspects. In Element Speciation in Bioinorganic Chemistry; Caroli, S., Ed.; John Wiley and Sons: New York, NY, USA, 1996; pp. 445–463. [Google Scholar]
- Alp, O.; Tosun, G. A rapid on-line non-chromatographic hydride generation atomic fluorescence spectrometry technique for speciation of inorganic arsenic in drinking water. Food Chem. 2019, 290, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Bundaleska, J.M.; Stafilov, T.; Arpadjan, S. Direct analysis of natural waters for arsenic species by hydride generation atomic absorption spectrometry. Int. J. Environ. Anal. Chem. 2005, 85, 199–207. [Google Scholar] [CrossRef]
- Khaligh, A.; Mousavi, H.Z.; Shirkhanloo, H.; Rashidi, A. Speciation and determination of inorganic arsenic species in water and biological samples by ultrasound assisted-dispersive-micro-solid phase extraction on carboxylated nanoporous graphene coupled with flow injection-hydride generation atomic absorption spectrometry. RSC Adv. 2015, 5, 93347–93359. [Google Scholar]
- van Elteren, J.T.; Stibilj, V.; Slejkovec, Z. Speciation of inorganic arsenic in some bottled Slovene mineral waters using HPLC–HGAFS and selective coprecipitation combined with FI-HGAFS. Water Res. 2002, 36, 2967–2974. [Google Scholar] [CrossRef]
- Maity, S.; Chakravarty, S.; Thakur, P.; Gupta, K.K.; Bhattacharjee, S.; Roy, B.C. Evaluation and standardisation of a simple HG-AAS method for rapid speciation of As(III) and As(V) in some contaminated groundwater samples of West Bengal, India. Chemosphere 2004, 54, 1199–1206. [Google Scholar] [CrossRef]
- Akter, K.F.; Chen, Z.; Smith, L.; Davey, D.; Naidu, R. Speciation of arsenic in ground water samples: A comparative study of CE-UV, HG-AAS and LC-ICP-MS. Talanta 2005, 68, 406–415. [Google Scholar]
- Smichowski, P.; Marrero, J.; Ledesma, A.; Polla, G.; Batistoni, D.A. Speciation of As(III) and As(V) in aqueous solutions using baker’s yeast and hydride generation inductively coupled plasma atomic emission spectrometric determination. J. Anal. At. Spectrom. 2000, 15, 1493–1497. [Google Scholar] [CrossRef]
- Li, N.; Fang, G.; Zhu, H.; Gao, Z.; Wang, S. Determination of As(III) and As(V) in water samples by flow injection online sorption preconcentration coupled to hydride generation atomic fluorescence spectrometry. Microchim. Acta 2009, 165, 135–141. [Google Scholar] [CrossRef]
- Wu, H.; Wang, X.; Liu, B.; Liu, Y.; Li, S.; Lu, J.; Tian, J.; Zhao, W.; Yang, Z. Simultaneous speciation of inorganic arsenic and antimony in water samples by hydride generation-double channel atomic fluorescence spectrometry with on-line solid-phase extraction using single-walled carbon nanotubes micro-column. Spectrochim. Acta B 2011, 66, 74–80. [Google Scholar] [CrossRef]
- Montoro Leal, P.; Vereda Alonso, E.; López Guerrero, M.M.; Siles Cordero, M.T.; Cano Pavón, J.N.; García de Torres, A. Speciation analysis of inorganic arsenic by magnetic solid phase extraction on-line with inductively coupled mass spectrometry determination. Talanta 2018, 184, 251–259. [Google Scholar] [CrossRef]
- Sigrist, M.E.; Beldomencio, H.R. Determination of inorganic arsenic species by flow injection hydride generation atomic absorption spectrometry with variable sodium tetrahydroborate concentrations. Spectrochim. Acta B 2004, 59, 1041–4045. [Google Scholar] [CrossRef]
- Chaparro, L.L.; Ferrer, L.; Cerda, V.; Leal, L.O. Automated system for on-line determination of dimethylarsinic and inorganic arsenic by hydride generation–atomic fluorescence spectrometry. Anal. Bioanal. Chem. 2012, 404, 1589–1595. [Google Scholar] [CrossRef] [PubMed]
- Deng, F.; Dong, R.; Yu, K.; Luo, X.; Tu, X.; Luo, S.; Yang, L. Determination of trace total inorganic arsenic by hydride generation atomic fluorescence spectrometry after solid phase extraction-preconcentration on aluminium hydroxide gel. Microchim. Acta 2013, 180, 509–515. [Google Scholar] [CrossRef]
- Ciftci, T.D.; Henden, E. Arsenic Speciation of Waters from the Aegean Region, Turkey by Hydride Generation: Atomic Absorption Spectrometry. Bull. Environ. Contam. Toxicol. 2016, 97, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Erdogan, H.; Yalcınkaya, O.; Turker, A.R. Determination of inorganic arsenic species by hydride generation atomic absorption spectrometry in water samples after preconcentration/separation on nano ZrO2/B2O3 by solid phase extraction. Desalination 2011, 280, 391–396. [Google Scholar] [CrossRef]
- Wang, N.; Tyson, J. Non-chromatographic speciation of inorganic arsenic by atomic fluorescence spectrometry with flow injection hydride generation with a tetrahydroborate-form anion-exchanger. J. Anal. At. Spectrom. 2014, 29, 665–673. [Google Scholar] [CrossRef] [Green Version]
- Ulusoy, H.I.; Akcay, M.; Ulusoy, S.; Gürkan, R. Determination of ultra trace arsenic species in water samples by hydride generation atomic absorption spectrometry after cloud point extraction. Anl. Chim. Acta 2011, 703, 137–144. [Google Scholar] [CrossRef]
- Maratta, A.; Martinez, L.D.; Pacheco, P. Development of an on line miniaturized non-chromatographic arsenic speciation system. Microchem. J. 2016, 127, 199–205. [Google Scholar] [CrossRef]
- Anthemidis, A.N.; Zachariadis, G.A.; Stratis, J.A. Determination of arsenic(III) and total inorganic arsenic in water samples using an on-line sequential insertion system and hydride generation atomic absorption spectrometry. Anal. Chim. Acta 2005, 547, 237–242. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, W.; Li, L.; Huang, Y.; Cao, J. Eggshell membrane-based solid-phase extraction combined with hydride generation atomic fluorescence spectrometry for trace arsenic(V) in environmental water samples. Talanta 2010, 80, 1907–1912. [Google Scholar] [CrossRef]
- Yang, X.-A.; Lu, X.-P.; Liu, L.; Chi, M.-B.; Hu, H.-H.; Zhang, W.-B. Selective determination of four arsenic species in rice and water samples by modified graphite electrode-based electrolytic hydride generation coupled with atomic fluorescence spectrometry. Talanta 2016, 159, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, M.; Zhong, Y.; Zhang, Z.; Yang, B. Cloud point extraction for trace inorganic arsenic speciation analysis in water samples by hydride generation atomic fluorescence spectrometry. Spectrochim. Acta B 2015, 111, 74–79. [Google Scholar] [CrossRef]
- Hsiung, T.-M.; Wang, J.-M. Cryogenic trapping with a packed cold finger trap for the determination and speciation of arsenic by flow injection/hydride generation/atomic absorption spectrometry. J. Anal. At. Spectrom. 2004, 19, 923–928. [Google Scholar] [CrossRef]
- dos Santos, Q.O.; Silva Junior, M.M.; Lemos, V.A.; Ferreira, S.L.C.; de Andrade, J.B. An online preconcentration system for speciation analysis of arsenic in seawater by hydride generation flame atomic absorption spectrometry. Microchem. J. 2018, 143, 175–180. [Google Scholar] [CrossRef]
- Chen, M.; Lin, Y.; Gu, C.; Wang, J. Arsenic sorption and speciation with branch-polyethyleneimine modified carbon nanotubes with detection by atomic fluorescence spectrometry. Talanta 2013, 104, 53–57. [Google Scholar] [CrossRef]
- Tasev, K.; Karadjova, I.; Stafilov, T. Determination of Inorganic and Total Arsenic in Wines by Hydride Generation Atomic Absorption Spectrometry. Microchim. Acta 2005, 149, 55–60. [Google Scholar] [CrossRef]
- Karadjova, I.B.; Lampugnani, L.; Onor, M.; D’Ulivo, A.; Tsalev, D.L. Continuous flow hydride generation-atomic fluorescence spectrometric determination and speciation of arsenic in wine. Spectrochim. Acta B 2005, 60, 816–823. [Google Scholar] [CrossRef]
- Cai, L.; Xu, C.; Zhong, M.; Wu, Y.; Zheng, S. Arsenic Speciation in Drinking Tea Samples by Hydride Generation Atomic Fluorescence Spectrometry. Asian J. Chem. 2013, 14, 8169–8172. [Google Scholar] [CrossRef]
- Lai, G.; Chen, G.; Chen, T. Speciation of AsIII and AsV in fruit juices by dispersive liquid–liquid microextraction and hydride generation-atomic fluorescence spectrometry. Food Chem. 2016, 190, 158–163. [Google Scholar] [CrossRef]
- Matousek, T.; Wang, Z.; Douillet, C.; Musil, S.; Styblo, M. Direct Speciation Analysis of Arsenic in Whole Blood and Blood Plasma at Low Exposure Levels by Hydride Generation-Cryotrapping-Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2017, 89, 9633–9637. [Google Scholar] [CrossRef]
- Shi, J.-B.; Tang, Z.-Y.; Jin, Z.-X.; Chi, Q.; He, B.; Jiang, G.-b. Determination of As(III) and As(V) in soils using sequential extraction combined with flow injection hydride generation atomic fluorescence detection. Anal Chim. Acta 2003, 477, 139–147. [Google Scholar] [CrossRef]
- Macedo, S.M.; de Jesus, R.M.; Garcia, K.S.; Hatje, V.; de Queiroz, S.A.F.; Ferreira, S.L.C. Determination of total arsenic and arsenic (III) in phosphate fertilizers and phosphate rocks by HG-AAS after multivariate optimization based on Box-Behnken design. Talanta 2009, 80, 974–979. [Google Scholar] [CrossRef] [PubMed]
- Macedo, S.M.; dos Santos, D.C.; de Jesus, R.M.; da Rocha, G.O.; Ferreira, S.L.C.; de Andrade, J.B. Development of an analytical approach for determination of total arsenic and arsenic(III) in airborne particulate matter by slurry sampling and HG-FAAS. Microchem. J. 2010, 96, 46–49. [Google Scholar] [CrossRef]
- do Nascimento, P.C.; Bohrer, D.; Becker, E.; de Carvalho, L.M. Comparison of different sample treatments for arsenic speciation in glass samples. J. Noncryst. Solids 2005, 351, 1312–1316. [Google Scholar] [CrossRef]
- Rezende, H.C.; Coelho, N.M.M. Determination of Total Arsenic and Arsenic(III) in Phosphate Fertilizers by Hydride Generation Atomic Absorption Spectrometry After Ultrasound-Assisted Extraction Based on a Control Acid Media. J. AOAC Int. 2014, 97, 736–741. [Google Scholar] [CrossRef]
- Koh, J.; Kwon, Y.; Pak, Y.-N. Separation and sensitive determination of arsenic species (As3+/As5+) using the yeast-immobilized column and hydride generation in ICP-AES. Microchem. J. 2005, 80, 195–199. [Google Scholar] [CrossRef]
- Cerveira, C.; Pozebon, D.; de Moraes, D.P.; de Fraga, J.C.S. Speciation of inorganic arsenic in rice using hydride generation atomic absorption spectrometry (HGAAS). Anal. Methods 2015, 7, 4528–4534. [Google Scholar] [CrossRef]
- Matos Reyes, M.N.; Cervera, M.L.; Campos, R.C.; de la Guardia, M. Determination of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid in cereals by hydride generation atomic fluorescence spectrometry. Spectrochim. Acta B 2007, 62, 1078–1082. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Lv, K.; Chen, X.; Yu, X. A simple and sensitive non-chromatographic method for quantification of four arsenic species in rice by hydride generation−atomic fluorescence spectrometry. Spectrochim. Acta B 2019, 149, 197–202. [Google Scholar] [CrossRef]
- Rasmussen, R.R.; Qian, Y.; Sloth, J.J. SPE HG-AAS method for the determination of inorganic arsenic in rice—Results from method validation studies and a survey on rice products. Anal. Bioanal. Chem. 2013, 405, 7851–7857. [Google Scholar] [CrossRef]
- Chen, G.; Chen, T. SPE speciation of inorganic arsenic in rice followed by hydride-generation atomic fluorescence spectrometric quantification. Talanta 2014, 119, 202–206. [Google Scholar] [CrossRef]
- Huang, Y.; Shan, J.; Fan, B.; He, Y.; Hia, S.; Sun, Y.; Lu, J.; Wang, M.; Wang, F. Determination of inorganic arsenic in rice by solid phase extraction and hydride generation atomic fluorescence spectrometry. Anal. Methods 2015, 7, 8896–8900. [Google Scholar] [CrossRef]
- Musil, S.; Petursdottir, A.H.; Raab, A.; Gunnlaugsdottir, H.; Krupp, E.; Feldmann, J. Speciation without Chromatography Using Selective Hydride Generation: Inorganic Arsenic in Rice and Samples of Marine Origin. Anal. Chem. 2014, 86, 993–999. [Google Scholar] [CrossRef] [PubMed]
- Welna, M.; Pohl, P.; Szymczycha-Madeja, A. Non-chromatographic Speciation of Inorganic Arsenic in Rice by Hydride Generation Inductively Coupled Plasma Optical Emission Spectrometry. Food Anal. Methods 2019, 12, 581–594. [Google Scholar] [CrossRef] [Green Version]
- Schlotthauer, J.; Brusa, L.; Liberman, C.; Durand, M.; Livore, A.; Sigrist, M. Determination of inorganic arsenic in Argentinean rice by selective HGAAS: Analytical performance for paddy, brown and polished rice. J. Food Compos. Anal. 2020, 91, 103506. [Google Scholar] [CrossRef]
- dos Santos, G.M.; Pozebon, D.; Cerveira, C.; de Moraes, D.P. Inorganic arsenic speciation in rice products using selective hydride generation and atomic absorption spectrometry (AAS). Microchem. J. 2017, 133, 265–271. [Google Scholar] [CrossRef]
- Huber, C.S.; Vale, M.G.R.; Dessuy, M.B.; Svoboda, M.; Musil, S.; Dedina, J. Sample preparation for arsenic speciation analysis in baby food by generation of substituted arsines with atomic absorption spectrometry detection. Talanta 2017, 175, 406–412. [Google Scholar] [CrossRef]
- Cava-Montesions, P.; de la Guardia, A.; Teutsch, C.; Cervera, M.C.; de la Guardia, M. Non-chromatographic speciation analysis of arsenic and antimony in milk hydride generation atomic fluorescence spectrometry. Anal. Chim. Acta 2003, 493, 195–203. [Google Scholar] [CrossRef]
- Gonzalvez, A.; Llorens, A.; Cervera, M.L.; Armenta, S.; de la Guardia, M. Non-chromatographic speciation of inorganic arsenic in mushrooms by hydride generation atomic fluorescence spectrometry. Food Chem. 2009, 115, 360–364. [Google Scholar] [CrossRef]
- Matos Reyes, M.N.; Cervera, M.L.; Campos, R.C.; de la Guardia, M. Non-chromatographic speciation of toxic arsenic in vegetables by hydride generation-atomic fluorescence spectrometry after ultrasound-assisted extraction. Talanta 2008, 75, 811–816. [Google Scholar] [CrossRef]
- Cava-Montesinos, P.; Nilles, K.; Cervera, M.L.; de la Guardia, M. Non-chromatographic speciation of toxic arsenic in fish. Talanta 2005, 66, 895–901. [Google Scholar] [CrossRef] [PubMed]
- Marschner, K.; Petursdottir, A.H.; Bucker, P.; Raab, A.; Feldmann, J.; Mester, Z.; Matousek, T.; Musil, S. Validation and inter-laboratory study of selective hydride generation for fast screening of inorganic arsenic in seafood. Anal. Chim. Acta 2019, 1049, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Petursdottir, A.H.; Gunnlaugsdottir, H. Selective and fast screening method for inorganic arsenic in seaweed using hydride generation inductively coupled plasma mass spectrometry (HG-ICPMS). Microchem. J. 2019, 144, 45–50. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, Y.; Qin, D.; Liu, J.; Mao, X.; Chen, G.; Wei, C.; Qian, Y. Determination of inorganic arsenic in algae using bromine halogenation and on-line nonpolar solid phase extraction followed by hydride generation atomic fluorescence spectrometry. Talanta 2017, 170, 152–157. [Google Scholar] [CrossRef]
- Yang, L.-L.; Gao, L.-R.; Zhang, D.-Q. Speciation Analysis of Arsenic in Traditional Chinese Medicines by Hydride Generation-Atomic Fluorescence Spectrometry. Anal. Sci. 2003, 9, 897–902. [Google Scholar] [CrossRef] [Green Version]
- Deng, T.; Liao, M.; Jia, M. Arsenic Speciation in Chinese Herb Ligusticum chuanxiong Hort by Hydride Generation Atomic Fluorescence Spectrometry. Spectrosc. Lett. 2005, 38, 109–119. [Google Scholar] [CrossRef]
- Lu, X.-P.; Yang, X.-A.; Liu, L.; Hu, H.-H.; Zhang, W.-B. Selective and sensitive determination of As(III) and tAs in Chinese herbal medicine samples using L-cysteine modified carbon paste electrode-based electrolytic hydride generation and AFS analysis. Talanta 2017, 165, 258–266. [Google Scholar] [CrossRef]
- Sun, H.; Liu, X.; Miao, Y. Speciation Analysis of Trace Inorganic Arsenic in Dietary Supplements by Slurry Sampling Hydride Generation Atomic Absorption Spectrometry. Food Anal. Methods 2011, 4, 251–257. [Google Scholar] [CrossRef]
- Matousek, T.; Hernandez-Zavala, A.; Svoboda, M.; Langrova, L.; Adair, B.M.; Drobna, Z.; Thomas, D.J.; Styblo, M.; Dedina, J. Oxidation state specific generation of arsines from methylated arsenicals based on L-cysteine treatment in buffered media for speciation analysis by hydride generation-automated cryotrapping-gas chromatography-atomic absorption spectrometry with the multiatomizer. Spectrochim. Acta B 2008, 63, 396–406. [Google Scholar]
- Hernandez-Zavala, A.; Matousek, T.; Drobna, Z.; Paul, D.S.; Walton, F.; Adair, B.M.; Dedina, J.; Thomas, D.J.; Styblo, M. Speciation analysis of arsenic in biological matrices by automated hydride generation cryotrapping-atomic absorption spectrometry with multiple microflame quartz tube atomizer (multiatomizer). J. Anal. At. Spectrom. 2008, 23, 342–351. [Google Scholar] [CrossRef]
- Musil, S.; Matousek, T. On-line pre-reduction of pentavalent arsenicals by thioglycolic acid for speciation analysis by selective hydride generation–cryotrapping–atomic absorption spectrometry. Spectrochim. Acta B 2008, 63, 685–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musil, S.; Matousek, T.; Currier, J.M.; Styblo, M.; Dedina, J. Speciation Analysis of Arsenic by Selective Hydride Generation-Cryotrapping-Atomic Fluorescence Spectrometry with Flame-in-Gas-Shield Atomizer: Achieving Extremely Low Detection Limits with Inexpensive Instrumentation. Anal. Chem. 2014, 86, 10422–10428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Li, C.; Tian, Y. Recent developments in determination and speciation of arsenic in environmental and biological samples by atomic spectrometry. Microchem. J. 2020, 152, 104312. [Google Scholar] [CrossRef]
- Pohl, P. Hydride Generation—Recent Advances In Atomic Emission Spectrometry. TrAC Trends Anal. Chem. 2004, 23, 87–101. [Google Scholar] [CrossRef]
- Marschner, K.; Musil, S.; Dedina, J. Demethylation of Methylated Arsenic Species during Generation of Arsanes with Tetrahydridoborate(1−) in Acidic Media. Anal. Chem. 2016, 88, 6366–6373. [Google Scholar] [CrossRef]
- Carrero, P.; Malave, A.; Burguera, J.L.; Burguera, M.; Rondon, C. Determination of various arsenic species by flow injection hydride generation atomic absorption spectrometry: Investigation of the effects of the acid concentration of different reaction media on the generation of arsines. Anal. Chim. Acta 2001, 438, 195–204. [Google Scholar] [CrossRef]
- Cabon, J.Y.; Cabon, N. Speciation of major arsenic species in seawater by flow injection hydride generation atomic absorption spectrometry. Fresenius J. Anal. Chem. 2000, 368, 484–489. [Google Scholar] [CrossRef]
- Marschner, K.; Musil, S.; Miksik, I.; Dedina, J. Investigation of hydride generation from arsenosugars—Is it feasible for speciation analysis? Anal. Chim. Acta 2018, 1008, 8–17. [Google Scholar] [CrossRef]
- Lehmann, E.L.; Fostier, A.H.; Arruda, M.A.Z. Hydride generation using a metallic atomizer after microwave-assisted extraction for inorganic arsenic speciation in biological samples. Talanta 2013, 104, 187–192. [Google Scholar] [CrossRef] [Green Version]
- Welna, M.; Pohl, P. Potential of the hydride generation technique coupled to inductively coupled plasma optical emission spectrometry for non-chromatographic As speciation. J. Anal. At. Spectrom. 2017, 32, 1766–1779. [Google Scholar] [CrossRef] [Green Version]
- Gonzales, J.C.; Lavilla, I.; Bendicho, C. Evaluation of non-chromatographic approaches for speciation of extractable As(III) and As(V) in environmental solid samples by FI-HGAAS. Talanta 2003, 59, 525–534. [Google Scholar]
- Anwar, H.M. Arsenic speciation in environmental samples by hydride generation and electrothermal atomic absorption spectrometry. Talanta 2012, 88, 30–42. [Google Scholar]
- Ramesh Kumar, A.; Riyazuddin, P. Non-chromatographic hydride generation atomic spectrometric techniques for the speciation analysis of arsenic, antimony, selenium, and tellurium in water samples—A review. Intern. J. Environ. Anal. Chem. 2007, 7, 469–500. [Google Scholar]
- Pinheiro, B.S.; Gimenes, L.L.S.; Moreira, A.J.; Freschi, C.D.; Freschi, G.P.G. Arsenic Speciation in Environmental Samples Using Different Acid Concentrations and Ultrasonic Extraction for the Determination by HG-FAAS. At. Spectrosc. 2016, 37, 83–89. [Google Scholar]
- Pinheiro, B.S.; Moreira, A.J.; Gimenes, L.L.S.; Freschi, C.D.; Freschi, G.P.G. UV photochemical hydride generation using ZnO nanoparticles for arsenic speciation in waters, sediments, and soils samples. Environ. Monit. Assess. 2020, 192, 331–343. [Google Scholar] [PubMed]
- Petrov, P.K.; Serafimovska, J.M.; Arpadjan, S.; Tsalev, D.L.; Stafilov, T. Influence of EDTA, carboxylic acids, amino- and hydroxocarboxylic acids and monosaccharides on the generation of arsines in hydride generation atomic absorption spectrometry. Cent. Eur. J. Chem. 2008, 6, 216–221. [Google Scholar]
- Li, X.; Jia, J.; Wang, Z. Speciation of inorganic arsenic by electrochemical hydride generation atomic absorption spectrometry. Anal. Chim. Acta 2006, 560, 153–158. [Google Scholar]
- Rasmussen, R.R.; Hedegaard, R.V.; Larsen, E.H.; Sloth, J.J. Development and validation of an SPE HG-AAS method for determination of inorganic arsenic in samples of marine origin. Anal. Bioanal. Chem. 2012, 403, 2825–2834. [Google Scholar] [PubMed]
- Leal, L.O.; Forteza, R.; Cerda, V. Speciation analysis of inorganic arsenic by a multisyringe flow injection system with hydride generation–atomic fluorescence spectrometric detection. Talanta 2006, 69, 500–508. [Google Scholar] [PubMed]
- Serafimovski, I.; Karadjova, I.B.; Stafilov, T.; Tsalev, D.L. Determination of total arsenic and toxicologically relevant arsenic species in fish by using electrothermal and hydride generation atomic absorption spectrometry. Microchem. J. 2006, 83, 55–60. [Google Scholar]
- Caballo-Lopez, A.; Luque de Castro, M.D. Hydride generation-pervaporation-atomic fluorescence detection prior to speciation analysis of arsenic in dirty samples. J. Anal. At. Spectrom. 2002, 17, 1363–1367. [Google Scholar] [CrossRef]
- Müller, J. Determination of inorganic arsenic(III) in ground water using hydride generation coupled to ICP-AES (HG-ICP-AES) under variable sodium boron hydride (NaBH4) concentrations. Fresenius J. Anal. Chem. 1999, 363, 572–576. [Google Scholar] [CrossRef]
- Assis, R.C.; de Araujo Faria, B.A.; Caldeira, C.L.; Mageste, A.B.; de Lemos, L.R.; Rodrigues, G.D. Extraction of arsenic(III) in aqueous two-phase systems: A new methodology for determination and speciation analysis of inorganic arsenic. Microchem. J. 2019, 147, 429–436. [Google Scholar] [CrossRef]
- Arbab-Zavar, M.H.; Chamsaz, M.; Heidari, T. Speciation and Analysis of Arsenic(III) and Arsenic(V) by Electrochemical Hydride Generation Spectrophotometric Method. Anal. Sci. 2010, 26, 107–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boonjob, W.; Miro, M.; Kolev, S.D. On-line speciation analysis of inorganic arsenic in complex environmental aqueous samples by pervaporation sequential injection analysis. Talanta 2013, 117, 8–13. [Google Scholar] [CrossRef] [PubMed]
Matrix | As(III), μg L−1 | As(V), μg L−1 | i-As, μg L−1 | DMA, μg L−1 | MMA, μg L−1 | o-As b, μg L−1 |
---|---|---|---|---|---|---|
Liquid Matrices | ||||||
Waters | ||||||
drinking | 0.17–4.7 [2,3,4] | 0.05–63.9 [2,3,4,5] | ||||
ground | 0.080–395 [4,6,7,8,9,10,11] | 0.01–312 [4,6,7,8,9,10,11] | 0.31–308 [12,13,14] | |||
underground | 1.25–1016 [3,15,16] | 0.97–554.3 [3,15,16] | 1.4–2.8 [3] | 0.8–1.2 [3] | ||
tap | 0.015–12.7 [4,9,16,17,18,19] | 0.050–35 [4,9,15,16,17,18,19,20,21] | 0.30–0.80 [19] | |||
river | 0.235–1.4 [4,10,20,22] | 0.186–2.22 [4,10,20,21,22] | 1.79–2.05 [14] | |||
lake | 0.11–0.95 [10,20,23,24] | 0.03–1.30 [10,20,21,22,23,24] | 3.80 [14] | 0.007 [24] | ||
sea | 0.03–2.2 [3,10,11,17,24,25] | 0.17–19.8 [3,10,11,17,24,25] | 0.15 [24] | 0.15–0.19 [3] | ||
waste | 0.345 [4] | 0.052–0.957 [4,21] | ||||
rain | 1.52 [26] | 5.16 [26] | ||||
snow | 2.04 [26] | 3.60 [26] | ||||
Beverages | ||||||
wine | 1.3–21.3 [27,28] | |||||
tea | 0.3–14.4 [29] | 56–59.6 [29] | 11.4–23.3 [29] | |||
fruit juices | 0.3–3.9 [30] | 0.12–6.6 [30] | ||||
Biological Samples (human fluids/tissue) | ||||||
serum | 0.604–0.838 [4] | 1.087–3.010 [4] | ||||
urine | 0.548–3.142 [4] | 0.410–1.334 [4] | ||||
blood/blood plasma | 15.8–19.2 [31] | 13.4–34.8 [31] | 13.5–30.6 [31] | |||
Solid Matrices | ||||||
Matrix | As(III), ng g−1 | As(V), ng g−1 | i-As, ng g−1 | DMA, ng g−1 | MMA, ng g−1 | o-As b, ng g−1 |
Environmental | ||||||
soil | 5.2–8.1 c [32] | 16.0–20.4 c [32] | ||||
phosphate rocks | 2.1–3.9 µg g−1 [33] | 5.2–20.0 µg g−1 [33] | ||||
airborne particulate matter | 2.7–10.5 ng m−3 [34] | 3.8–20 ng m−3 [34] | ||||
Industrial | ||||||
glass | 13.6–395 µg g−1 [35] | 10.6–1205 µg g−1 [35] | ||||
Agricultural Agents | ||||||
phosphate fertilizers | 2.6–7.5 µg g−1 [33,36] | 11.79–69.02 µg g−1 [33,36] | ||||
pesticide | 0.90 µg g−1 [37] | 0.81 µg g−1 [37] | ||||
herbicyde | 1.47 µg g−1 [37] | |||||
Food | ||||||
rice | 22–248 [22,38,39,40] | 5–76 [22,38,39,40] | 30–600 [41,42,43,44,45,46] | 4.2–67.3 [22,39,40] | 2.2–38.1 [22,39] | 12.2–112.2 [45] |
rice products | 12.3–52.7 [47] | 1.4–29.6 [47] | 20–570 [41,42,43,44,45,46,47,48] | 15–89 [48] | 2.9–5.3 [48] | |
wheat semolina | 55 [39] | 25 [39] | 1.9 [39] | 1.5 [39] | ||
milk | 1.5–5.9 [49] | 2.1–8.1 [49] | ||||
mushrooms | 81–624 [50] | 59–380 [50] | ||||
chard | 89.2–90.6 [51] | 14.2–15.3 [51] | 4.1–4.3 [51] | 3.5–3.7 [51] | ||
aubergine | 20.6–20.9 [51] | 61.0–61.9 [51] | 1.1–1.2 [51] | 1.2 [51] | ||
Marine Organism | ||||||
fish | 80.3–230 [52] | 108–310 [52] | 510–1310 [52] | 490–780 [52] | 9.4–16 a,c µg g−1 [52] | |
seaweed | 0.05–57.5, µg/g [44,53,54,55] | |||||
Pharmaceuticals | ||||||
TCM (herbs) | 22.8 c [56] | 145.1 c [56] | 116.4 b,d [56] | |||
herbaceous plant | 0.030–8.32 µg g−1 [57,58] | 0.050–4.59 µg g−1 [57] | 1.08–6.91 µg g−1 [58] | 0.040, µg g−1 [57] | ||
dietary supplements | 25–93 [59] | 58–201 [59] |
Matrix | Species | Sample Preparation a | Speciation Approach | Detection | LOD b, μg L−1 | Ref. |
---|---|---|---|---|---|---|
Redox Property of NaBH4 (kinetic-dependent reduction reaction between NaBH4 and As(IIII,V) forms) | ||||||
natural waters | As(III) As(V) | direct analysis | I. Selective As(III): S: not acidified, A: 10 M HCl, R: 0.05% NaBH4 II. i-As (as As(III)): S: L-cysteine, A: 10 M HCl, 0.6% NaBH4 | HG-ICP-OES | 1.0 | [83] |
water CRMs (TMDA-54.3, CASS-4) | As(III) As(V) | direct analysis | I. Selective As(III): S: 4 M HCl, A: 6 M HCl, 0.2% NaBH4 II. i-As (as As(III)): S: KI-ascorbic acid–4 M HCl, A: 6 M HCl, 0.2% NaBH4 | HG-AFS | 0.05 | [80] |
natural waters | As(III) As(V) | direct analysis | I. Selective As(III): S: 0.1 M HCl, 4.0% NaBH4 II. i-As (as As(III)): S: KI-ascorbic acid–1 M HCl, 4.0% NaBH4 | HG-AAS | 1.2 | [15] |
natural waters | As(III) As(V) | direct analysis | I. Selective As(III): A: 1.5 M HCl, R: 0.5% NaBH4 II. i-As (as As(III)): A: 9.0 M HCl 3.0% NaBH4 | HG-AAS | As(III): 0.1 As(V): 0.06 | [20] |
ground water | As(III) As(V) | direct analysis | I. Selective As(III): S: 0.1 M HCl, A: 2 M HCl, 0.035% NaBH4, II. i-As (as As(III)): S: KI-ascorbic acid–2.6 M HCl, A: 2 M HCl, R: 0.2% NaBH4, | HG-AAS | As(III): 1.4 As(V): 0.6 | [12] |
rice | As(III) As(V) | MAE (0.14 M HNO3) | I. Selective As(III): S: 0.14 M HNO3, A: 10 M HCl, 0.1% NaBH4 II. i-As (as As(III)): S: 0.14 M HNO3–KI-ascorbic acid–1.2 M HCl, 10 M HCl, R: 0.1% NaBH4 | HG-AAS | As(III): 0.07 As(V): 0.14 | [38] |
rice products | As(III) i-As | HP (0.28 M HNO3) | I. Selective As(III): S: 0.28 M HNO3, A: 10 M HCl, 0.1% NaBH4 II. i-As (as As(III)): S: 0.28 M HNO3–KI-ascorbic acid–1.9 M HCl, 10 M HCl, R: 0.1% NaBH4 | HG-AAS | As(III): 0.08 i-As: 0.14 | [47] |
Specific HG from As(III) and As(V) under controlled pH conditions or different reaction media | ||||||
drinking water | As(III) As(V) | direct analysis | I. Selective As(III): S: Tris-HCl buffer (pH 7.2), R: 3.0% NaBH4 II. i-As (as As(III)): S: Tris-HCl (pH 7.2)–TGA, R: 3.0% NaBH4 | HG-AFS | As(III): 0.027 As(V): 0.036 | [2] |
ground water | As(III) As(V) | direct analysis | I. Selective As(III): S: not acidified, A: 0.1 M citric acid, R: 0.6% NaBH4 II. i-As (as As(III)): S: KI–6.5 M HCl, A: 10 M HCl, R: 0.6% NaBH4 | HG-AAS | 0.4 | [6] |
ash and soil CRMs (NIST 1633b GBW07302 GBW07311) | As(III) As(V) | two-step sequential LE (H2O, 1 mM phosphate buffer) | I. Selective As(III): S: citric buffer (pH 4.5), A: 10% HCl, R: 0.3% NaBH4; optionally: S: 2% HCl, A: 2% HCl, R: 0.3% NaBH4 II. i-As (as As(III)): S: KI-ascorbic acid–HCl, A: 10% HCl, R: 0.3% NaBH4; optionally: S: 0.46% TGA in sample, A: 10% HCl, R: 0.3% NaBH4 | HG-AAS | As(III): 0.07 As(V): 0.06 | [72] |
soil | As(III) As(V) | four-step sequential LE (H2O, 0.6 M KH2PO4, 1% HCl, 1% NaOH) | I. Selective As(III): S: 0.1 M citric acid, R: 1.0% NaBH4 II. i-As (as As(III)) S: 0.1 M citric acid–L-cysteine, 1.0% NaBH4 | HG-AFS | As(III): 0.11 As(V): 0.07 | [32] |
glass | As(III) As(V) | dissolution (24% HF) | I. Selective As(III): S: citric buffer (pH 4.5), R: 1.0% NaBH4 II. i-As (as As(III)): S: 6.0 M HCl, R: 1.0% NaBH4 | HG-AAS | [35] | |
airborne particulate matter | As(III) i-As | SS (4 M HCl) | I. Selective As(III): S: citric buffer (pH 7.1), A: 2 M HCl, R: 2.15% NaBH4 II. i-As (as As(III)): S: KI-ascorbic acid–1.8 M HCl, A: 2 M HCl, R: 2.15% NaBH4 | HG-AAS | 0.1 | [34] |
phosphate fertilizer and rock | As(III) i-As | SS (6 M HCl) | I. Selective As(III): S: citric buffer (pH 7.1), A: 2 M HCl, R: 2.15% NaBH4 II. i-As (as As(III)): S: KI-ascorbic acid–2 M HCl, A: 2 M HCl, R: 2.15% NaBH4 | HG-AAS | 0.1 | [33] |
phosphate fertilizer | As(III) i-As | US (0.35% Triton X-114 + 6.5 M HNO3) | I. Selective As(III): S: citric buffer (pH 4.5), A: 10% HCl, R: 0.4% NaBH4 II. i-As (as As(III)): S: thiourea, A: 10% HCl, R: 0.4% NaBH4 | HG-AAS | As(III): 0.029 i-As: 0.022 | [36] |
wine | As(III) i-As | EtOH evaporation | I. Selective As(III): S: 8 M HCl, A: 9 M HCl, R: 0.2% NaBH4, II. i-As (as As(III)): S: KI– 8 M HCl, A: 9 M HCl, R: 0.2% NaBH4 | HG-AAS | 0.1 | [27] |
plankton | As(III) As(V) | MAE (H2O) | I. Selective As(III): S: citric buffer (pH 4.5), A: 2% HCl, R: 0.1% NaBH4 II. i-As (as As(III)): S: citric buffer (pH 4.5)–L-cysteine, A: 2% HCl, R: 0.1% NaBH4 | HG-MF-AAS | 2.0 | [70] |
Species-selective respond toward two different reducing conditions (As speciation based on systems of linear independent equations) | ||||||
milk | As(III) As(V) | SS (aqua regia) | 1.2% NaBH4–3.5 M HCl without and after pre-reduction with KI-ascorbic acid-hydroxylamine hydrochloride in 10.8 M HCl | HG-AAS | As(III): 0.0081 As(V): 0.0103 | [49] |
mushrooms | As(III) As(V) | US (1 M H3PO4-0.1% Triton X-100 + 0.1% EDTA) | 0.7% NaBH4–3.5 M HCl without and after pre-reduction with KI-ascorbic acid in 9 M HCl | HG-AFS | 6.5 ng g−1 c | [50] |
TCM (herbs) | As(III) As(V) | LE (H2O) | 1.0% KBH4–1 M HCl without and after pre-reduction with KI-thiourea in 2 M HCl | HG-AFS | 0.0797 | [56] |
tea | As(III) As(V) | brewing (H2O) | I. Selective As(III): S: 0.1 M citric acid–5% HCl, A: 5% HCl, R: 5% KBH4 II. i-As (as As(III)): S: thiourea-ascorbic acid–5% HCl, A: 5% HCl, R: 5% KBH4 | HG-AFS | As(III): 0.0070 As(V): 0.0095 | [29] |
natural waters | As(III) As(V) | direct analysis | I. S: 0.7 M HCl, R: 0.7% NaBH4 II. S: L-cysteine–0.1 M HCl, R: 0.7% NaBH4 | HG-AFS | As(III) 0.013 As(V): 0.015 | [17] |
Specific HG from As(III) and As(V) in the presence of masking reagents | ||||||
herbaceous plant | As(III) As(V) | LE (1% HCl) | I. Selective As(III): S: 8-hydroxyquinoline–10% HCl, R: 2.5% NaBH4 II. i-As (as As(III)): 8-hydroxyquinoline–KI-ascorbic acid–10% HCl, R: 2.5% NaBH4 | HG-AFS | [57] | |
dietary suplements | As(III) As(V) | SS (50% HCl) | I. Selective As(III): S: 8-hydroxyquinoline–1% HCl, R: 1.0% KBH4 II. i-As (as As(III)): S: 8-hydroxyquinoline–KI–5% HCl, R: 1.0% KBH4 | HG-AAS | As(III): 0.080 As(V): 0.089 | [59] |
Matrix | Species | Sample Preparation a | Speciation Procedures | Detection | LOD b, μg L−1 | Ref. |
---|---|---|---|---|---|---|
rice, seaweed | i-As (as As(V)) | MAE (1–2% HNO3–3% H2O2) | S: 3% H2O2, A: 5 M HCl, R: 2% NaBH4 | HG-ICP-MS | 0.006 | [44] |
rice | i-As (as As(III)) | US (aqua regia) | S: 1.25 M aqua regia–KI-ascorbic acid–3 M HCl, A: 10 M HCl, R: 1% NaBH4 | HG-ICP-OES | 0.28 ng g−1 | [45] |
rice | i-As (as As(III)) | MAE (0.28 M HNO3) | S: 0.28 M HNO3–KI-ascorbic acid–3 M HCl, A: 1.2 M HCl, R: 0.1% NaBH4 | HG-AAS | 16 ng g−1 c | [46] |
seafood, seaweed | i-As (as As(V)) | MAE (2% HNO3–3% H2O2) | S: 3% H2O2, A: 8 M HCl, R: 2% NaBH4 | HG-ICP-MS | 0.01 | [53] |
seaweed | i-As (as As(V)) | MAE (2% HNO3–3% H2O2) | S: 3% H2O2, A: 5 M HCl, R: 2% NaBH4 | HG-ICP-MS | 0.06 | [54] |
Matrix | Species | Sample Preparation a | Speciation Procedures | Detection | LOD b, μg L−1 | Ref. |
---|---|---|---|---|---|---|
cereals, fish, vegetables | As(III) As(V) DMA MMA t-Astoxic t-Asnon-toxic | US (3 M HNO3 or 1 M H3PO4–0.1% Triton X-114 + 0.1% EDTA) | -Individual speciation: I: 2 M HCl, 1.4% NaBH4 (maximum for DMA, MMA) II: 4 M HCl, 1.4% NaBH4 (intermediate for all species) III: 3.5 M HCl, 1.2% NaBH4 (maximum for As(III,V) IV: KI-ascorbic acid–3.5 M HCl, 1.2% NaBH4 (with pre-reduction As(V) and MMA to As(III)) -Operational speciation: t-Astoxic and t-Asnon-toxic fractions as difference between total As content (T-As) determined after complete sample digestion and sum of As(III,V), DMA and MMA species (t-Astoxic) | HG-AFS | As(III): 0.62-3.1 ng g−1 c As(V): 0.9-3.0 ng g−1 c DMA: 1.5-1.8 ng g−1 c MMA: 0.6-5.4 ng g−1 c | [39,51,52] [52] |
rice | As(III) As(V) DMA MMA | US (1% HNO3) | I: 0.06 M citric acid (maximum for As(III)+DMA) II: K2S2O8–0.06 M citric acid (maximum for DMA) III: L-cysteine-ascorbic acid–0.06 M citric acid (maximum for As(III)+As(V)+DMA) IV: thiourea-ascorbic acid–5% HCl (pre-reduction of As(V), DMA and MMA to As(III)) A: 1.6 M HCl–citrate buffer (pH 4.8), R: 2% KBH4 | HG-AFS | As(III): 0.21 μg kg−1 As(V): 0.52 μg kg−1 DMA: 0.65 μg kg−1 MMA: 0.9 μg kg−1 | [40] |
ground water | As(III) As(V) DMA | direct analysis | I. As(III): S: oxalate buffer (pH 4-4.5), R: 0.6% NaBH4 II. As(III)+As(V): S: KI, A: 6 M HCl, R: 0.6% NaBH4 III. DMA: S: L-cysteine, A: 1.5 M HCl, R: 0.6% NaBH4 | HG-AAS | As(III): 0.1 As(III,V): 0.1 DMA: 0.19 | [7] |
natural waters | As(III) As(V) DMA MMA | direct analysis | I. As(III)+As(V)+MMA: S: KI–0.1 M HCl, A: 1 M HCl, R: 0.6% NaBH4 II. As(III)+DMA: S: 0.1 M HCl, A: 6 M CH3COOH, R: 0.6% NaBH4 III. As(III)+As(V)+DMA: S: KI–0.1 M HCl, A: 6 M CH3COOH, R: 0.6% NaBH4 IV. As(III)+As(V)+DMA+MMA: S: KI–0.1 M HCl, A: 1 M tartaric acid, R: 0.6% NaBH4 | HG-AAS | 0.1 | [3] |
wine | As(III) As(V) DMA MMA | 5-10 dilution | I. As(III): S: citrate buffer (pH 5.1), R: 0.6% NaBH4 II. As(III)+DMA: S: 0.2 M CH3COOH, R: 0.6% NaBH4 III. As(III)+As(V): S: KI–8 mol/L HCl, R: 0.2% NaBH4 IV. As(III)+As(V)+DMA+MMA: S: L-cysteine–0.01 M HCl, R: 0.6% NaBH4 | HG-AAS | As(III): 0.4 As(V): 0.3 DMA: 0.3 MMA: 0.3 | [28] |
fish | As(III) As(V) DMA MMA | MAE (H2O:MeOH, 1:4 v:v)) | I. As(III): S: citrate buffer (pH 5.2), R: 0.45% NaBH4 II. As(III)+DMA: S: 0.2 M CH3COOH, R: 0.45% NaBH4 III. As(III)+As(V): S: KI–7 M HCl, R: 0.2% NaBH4 IV. As(III)+As(V)+DMA+MMA: S: L-cysteine–0.05 M HCl, R: 0.45% NaBH4 | HG-AAS | As(III): 3.5μg kg−1c As(V): 5.1 μg kg−1c DMA: 4.8 μg kg−1c | [81] |
plant, sediment | As(III) As(V) DMA | US (6 M HCl) | I. As(III): S: 2% HCl, R: 1.2% NaBH4 S: 15% HNO3, R: 1.2% NaBH4 II. As(III)+As(V): S: 10% HNO3, R: 1.2% NaBH4 III. As(III)+DMA: S: 2% HNO3, R: 1.2% NaBH4 | HG-AFS | As(III): 3.1 As(V): 5.7 DMA: 3.8 | [75] |
drinking water | As(III) As(V) DMA MMA i-As o-As | direct analysis | I. As(III): S: citrate buffer (pH 5.2), R: 1.0% NaBH4 II. As(III)+DMA: S: acetate buffer (pH 4.5), R: 1.0% NaBH4 III. As(III)+As(V)+MMA: S: KI-ascorbic acid–3 M HCl, A: 10 M HCl, R: 1.0% NaBH4 IV. DMA+MMA: S: L-cysteine, A: 2 M HCl, R: 1.0% NaBH4 V. As(III)+As(V)+DMA+MMA: S: L-cysteine, A: 10 M HCl, R: 1.0% NaBH4 | HG-ICP-OES | [71] | |
soil and sediment CRMs | As(III) As(V) DMA MMA | WB (0.05 M EDTA) | I. As(III)+DMA+MMA: S: 0.02 M EDTA (pH 5-6), II. As(III)+As(V)+DMA+MMA: S: 0.02 M EDTA (pH 5-6) + KI-ascorbic acid/HCl followed by neutralization to pH 5-7 A: 1.2 M HCl, R: 0.6% NaBH4 | HG-AAS | 0.2 mg kg−1 c | [77] |
ground water | i-As DMA | direct analysis | I. i-As (As(III)+As(V)): S: KI-ascorbic acid–2 M HCl, A: 3 M HCl, R: 2.2% NaBH4 II. As(III)+As(V)+DMA (UV photo-oxidation): S: K2S2O8, A: 3 M HCl, R: 2.2% NaBH4 | HG-AFS | As(III,V): 0.09 DMA: 0.47 | [13] |
water, soil, sediments | As(III) As(V) DMA | direct analysis/US | I. As(III): S: not acidified, A: 2% HCl, R: 0.5% NaBH4 II. As(III)+DMA (UV photo-reduction): S: ZnO–8% formic acid, 2% HCl, R: 0.5% NaBH4 III. As(III)+As(V)+DMA (UV photo-reduction): S: ZnO–8% formic acid, 10% HCl, R: 0.5% NaBH4 | HG-AFS | As(III): 3.20 As(V): 3.86 DMA: 6.68 | [76] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Welna, M.; Szymczycha-Madeja, A.; Pohl, P. Non-Chromatographic Speciation of As by HG Technique—Analysis of Samples with Different Matrices. Molecules 2020, 25, 4944. https://doi.org/10.3390/molecules25214944
Welna M, Szymczycha-Madeja A, Pohl P. Non-Chromatographic Speciation of As by HG Technique—Analysis of Samples with Different Matrices. Molecules. 2020; 25(21):4944. https://doi.org/10.3390/molecules25214944
Chicago/Turabian StyleWelna, Maja, Anna Szymczycha-Madeja, and Pawel Pohl. 2020. "Non-Chromatographic Speciation of As by HG Technique—Analysis of Samples with Different Matrices" Molecules 25, no. 21: 4944. https://doi.org/10.3390/molecules25214944
APA StyleWelna, M., Szymczycha-Madeja, A., & Pohl, P. (2020). Non-Chromatographic Speciation of As by HG Technique—Analysis of Samples with Different Matrices. Molecules, 25(21), 4944. https://doi.org/10.3390/molecules25214944