Not Just Another Scaffolding Protein Family: The Multifaceted MPPs
Abstract
:1. Introduction
2. MPPs in Complexes with FERM Family Members
3. MPPs in Complexes with Other MAGUK Members: Lin-7, Discs Large Homolog 1 (Dlg1) and Postsynaptic Density Protein 95 (PSD-95)
4. MPPs in Complexes with Conserved Cell Polarity Complexes (Crumbs Complex and Partitioning Defective (Par) Complex)
5. MPPs in Complexes with Flotillins
6. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Funke, L.; Dakoji, S.; Bredt, D.S. Membrane-Associated Guanylate Kinases Regulate Adhesion and Plasticity At Cell Junctions. Annu. Rev. Biochem. 2005, 74, 219–245. [Google Scholar] [CrossRef] [PubMed]
- Oliva, C.; Escobedo, P.; Astorga, C.; Molina, C.; Sierralta, J. Role of the maguk protein family in synapse formation and function. Dev. Neurobiol. 2012, 72, 57–72. [Google Scholar] [CrossRef]
- Zhu, J.; Shang, Y.; Zhang, M. Mechanistic basis of MAGUK-organized complexes in synaptic development and signalling. Nat. Rev. Neurosci. 2016, 17, 209–223. [Google Scholar] [CrossRef]
- Ruff, P.; Speicher, D.W.; Husain-Chishti, A. Molecular identification of a major palmitoylated erythrocyte membrane protein containing the src homology 3 motif. Proc. Natl. Acad. Sci. USA 1991, 88, 6595–6599. [Google Scholar] [CrossRef] [Green Version]
- Kamberov, E.; Makarova, O.; Roh, M.; Liu, A.; Karnak, D.; Straight, S.; Margolis, B. Molecular cloning and characterization of Pals, proteins associated with mLin-7. J. Biol. Chem. 2000, 275, 11425–11431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katoh, M.; Katoh, M. Identification and characterization of human MPP7 gene and mouse Mpp7 gene in silico. Int. J. Mol. Med. 2004, 13, 333–338. [Google Scholar] [CrossRef]
- Kim, G.; Luján, R.; Schwenk, J.; Kelley, M.H.; Aguado, C.; Watanabe, M.; Fakler, B.; Maylie, J.; Adelman, J.P. Membrane palmitoylated protein 2 is a synaptic scaffold protein required for synaptic SK2-containing channel function. Elife 2016, 5, 1–18. [Google Scholar] [CrossRef]
- Kantardzhieva, A.; Alexeeva, S.; Versteeg, I.; Wijnholds, J. MPP3 is recruited to the MPP5 protein scaffold at the retinal outer limiting membrane. FEBS J. 2006, 273, 1152–1165. [Google Scholar] [CrossRef] [PubMed]
- Stöhr, H.; Stojic, J.; Weber, B.H.F. Cellular Localization of the MPP4 Protein in the Mammalian Retina. Investig. Ophthalmol. Vis. Sci. 2003, 44, 5067–5074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biernatowska, A.; Podkalicka, J.; Majkowski, M.; Hryniewicz-Jankowska, A.; Augoff, K.; Kozak, K.; Korzeniewski, J.; Sikorski, A.F. The role of MPP1/p55 and its palmitoylation in resting state raft organization in HEL cells. Biochim. Biophys. Acta Mol. Cell Res. 2013, 1833, 1876–1884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dimitratos, S.D.; Woods, D.F.; Stathakis, D.G.; Bryant, P.J. Signaling pathways are focused at specialized regions of the plasma membrane by scaffolding proteins of the MAGUK family. BioEssays 1999, 21, 912–921. [Google Scholar] [CrossRef]
- Olsen, O.; Bredt, D.S. Functional analysis of the nucleotide binding domain of membrane-associated guanylate kinases. J. Biol. Chem. 2003, 278, 6873–6878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Shang, Y.; Chen, J.; Zhang, M. Structure and function of the guanylate kinase-like domain of the MAGUK family scaffold proteins. Front. Biol. 2012, 7, 379–396. [Google Scholar] [CrossRef]
- Nourry, C.; Grant, S.G.N.; Borg, J.P. PDZ domain proteins: Plug and play! Sci. STKE 2003, 2003, 1–13. [Google Scholar] [CrossRef]
- Kim, E.; Sheng, M. PDZ domain proteins of synapses. Nat. Rev. Neurosci. 2004, 5, 771–781. [Google Scholar] [CrossRef]
- Kusunoki, H.; Kohno, T. Solution structure of human erythroid p55 PDZ domain. Proteins Struct. Funct. Bioinforma. 2006, 64, 804–807. [Google Scholar] [CrossRef]
- Quinn, B.J.; Welch, E.J.; Kim, A.C.; Lokuta, M.A.; Huttenlocher, A.; Khan, A.A.; Kuchay, S.M.; Chishti, A.H. Erythrocyte scaffolding protein p55/MPP1 functions as an essential regulator of neutrophil polarity. Proc. Natl. Acad. Sci. USA 2009, 106, 19842–19847. [Google Scholar] [CrossRef] [Green Version]
- Gallardo, R.; Ivarsson, Y.; Schymkowitz, J.; Rousseau, F.; Zimmermann, P. Structural diversity of PDZ-lipid interactions. ChemBioChem 2010, 11, 456–467. [Google Scholar] [CrossRef]
- Liu, Q.; Berry, D.; Nash, P.; Pawson, T.; McGlade, C.J.; Li, S.S.C. Structural basis for specific binding of the gads SH3 domain to an RxxK motif-containing SLP-76 peptide: A novel mode of peptide recognition. Mol. Cell 2003, 11, 471–481. [Google Scholar] [CrossRef]
- Jia, C.Y.H.; Nie, J.; Wu, C.; Li, C.; Li, S.S.C. Novel Src homology 3 domain-binding motifs identified from proteomic screen of a pro-rich region. Mol. Cell. Proteomics 2005, 4, 1155–1166. [Google Scholar] [CrossRef] [Green Version]
- Saksela, K.; Permi, P. SH3 domain ligand binding: What’s the consensus and where’s the specificity? FEBS Lett. 2012, 586, 2609–2614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teyra, J.; Huang, H.; Jain, S.; Guan, X.; Dong, A.; Liu, Y.; Tempel, W.; Min, J.; Tong, Y.; Kim, P.M.; et al. Comprehensive Analysis of the Human SH3 Domain Family Reveals a Wide Variety of Non-canonical Specificities. Structure 2017, 25, 1598–1610.e3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hara, H.; Yokosuka, T.; Hirakawa, H.; Ishihara, C.; Yasukawa, S.; Yamazaki, M.; Koseki, H.; Yoshida, H.; Saito, T. Clustering of CARMA1 through SH3-GUK domain interactions is required for its activation of NF-κB signalling. Nat. Commun. 2015, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- McGee, A.W.; Bredt, D.S. Identification of an intramolecular interaction between the SH3 and guanylate kinase domains of PSD-95. J. Biol. Chem. 1999, 274, 17431–17436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Wei, Z.; Yan, Y.; Wan, Q.; Du, Q.; Zhang, M. Structure of Crumbs tail in complex with the PALS1 PDZ-SH3-GK tandem reveals a highly specific assembly mechanism for the apical Crumbs complex. Proc. Natl. Acad. Sci. USA 2014, 111, 17444–17449. [Google Scholar] [CrossRef] [Green Version]
- Gosens, I.; van Wijk, E.; Kersten, F.F.J.; Krieger, E.; van der Zwaag, B.; Märker, T.; Letteboer, S.J.F.; Dusseljee, S.; Peters, T.; Spierenburg, H.A.; et al. MPP1 links the Usher protein network and the Crumbs protein complex in the retina. Hum. Mol. Genet. 2007, 16, 1993–2003. [Google Scholar] [CrossRef] [Green Version]
- Kistner, U.; Garner, C.C.; Linial, M. Nucleotide bindind by the synapse associated protein SAP90. FEBS Lett. 1995, 359, 159–163. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Spangenberg, O.; Paarmann, I.; Konrad, M.; Lavie, A. Structural basis for nucleotide-dependent regulation of membrane-associated guanylate kinase-like domains. J. Biol. Chem. 2002, 277, 4159–4165. [Google Scholar] [CrossRef] [Green Version]
- Doerks, T.; Bork, P.; Kamberov, E.; Makarova, O.; Muecke, S.; Margolis, B. L27, a novel heterodimerization domain in receptor targeting proteins Lin-2 and Lin-7. Trends Biochem. Sci. 2000, 25, 317–318. [Google Scholar] [CrossRef]
- Kaech, S.M.; Whitfield, C.W.; Kim, S.K. The LIN-2/LIN-7/LIN-10 complex mediates basolateral membrane localization of the C. elegans EGF receptor LET-23 in vulval epithelial cells. Cell 1998, 94, 761–771. [Google Scholar] [CrossRef] [Green Version]
- Roh, M.H.; Makarova, O.; Liu, C.J.; Shin, K.; Lee, S.; Laurinec, S.; Goyal, M.; Wiggins, R.; Margolis, B. The Maguk protein, Pals1, functions as an adapter, linking mammalian homologues of crumbs and discs lost. J. Cell Biol. 2002, 157, 161–172. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Long, J.F.; Fan, J.S.; Suetake, T.; Zhang, M. The tetrameric L27 domain complex as an organization platform for supramolecular assemblies. Nat. Struct. Mol. Biol. 2004, 11, 475–480. [Google Scholar] [CrossRef]
- Petrosky, K.Y.; Ou, H.D.; Löhr, F.; Dötsch, V.; Lim, W.A. A general model for preferential hetero-oligomerization of LIN-2/7 domains: Mechanism underlying directed assembly of supramolecular signaling complexes. J. Biol. Chem. 2005, 280, 38528–38536. [Google Scholar] [CrossRef] [Green Version]
- Straight, S.W.; Shin, K.; Fogg, V.C.; Fan, S.; Liu, C.-J.; Roh, M.; Margolis, B. Loss of PALS1 Expression Leads to Tight Junction and Polarity Defects. Mol. Biol. Cell 2004, 15, 1981–1990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kantardzhieva, A.; Gosens, I.; Alexeeva, S.; Punte, I.M.; Versteeg, I.; Krieger, E.; Neefjes-Mol, C.A.; Den Hollander, A.I.; Letteboer, S.J.F.; Klooster, J.; et al. MPP5 recruits MPP4 to the CRB1 complex in photoreceptors. Investig. Ophthalmol. Vis. Sci. 2005, 46, 2192–2201. [Google Scholar] [CrossRef] [Green Version]
- Gavarini, S.; Bécamel, C.; Altier, C.; Lory, P.; Poncet, J.; Wijnholds, J.; Bockaert, J.; Marin, P. Opposite Effects of PSD-95 and MPP3 PDZ Proteins on Serotonin 5-Hydroxytryptamine 2C Receptor Desensitization and Membrane Stability. Mol. Biol. Cell 2006, 17, 4619–4631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stucke, V.M.; Timmerman, E.; Vandekerckhove, J.; Gevaert, K.; Hall, A. The MAGUK Protein MPP7 Binds to the Polarity Protein hDlg1 and Facilitates Epithelial Tight Junction Formation. Mol. Biol. Cell 2007, 18, 1744–1755. [Google Scholar] [CrossRef]
- Podkalicka, J.; Biernatowska, A.; Majkowski, M.; Grzybek, M.; Sikorski, A.F. MPP1 as a factor regulating phase separation in giant plasma membrane-derived vesicles. Biophys. J. 2015, 108, 2201–2211. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Muthuswamy, S.K. Polarity protein alterations in carcinoma: A focus on emerging roles for polarity regulators. Curr. Opin. Genet. Dev. 2010, 20, 41–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, H.; Cai, H.; Zhang, Y.; Wu, J.; Liu, X.; Zuo, J.; Jiang, W.; Ji, G.; Zhang, Y.; Liu, C.; et al. Membrane palmitoylated protein 3 promotes hepatocellular carcinoma cell migration and invasion via up-regulating matrix metalloproteinase 1. Cancer Lett. 2014, 344, 74–81. [Google Scholar] [CrossRef]
- Xu, F.; Si, X.; Du, J.; Xu, F.; Yang, A.; Zhang, C.; Zhang, X.; Yang, Y. Downregulating SynCAM and MPP6 expression is associated with ovarian cancer progression. Oncol. Lett. 2019, 18, 2477–2483. [Google Scholar] [CrossRef] [PubMed]
- New, M.; Van Acker, T.; Sakamaki, J.-I.; Jiang, M.; Saunders, R.E.; Long, J.; Wang, V.M.Y.; Behrens, A.; Cerveira, J.; Sudhakar, P.; et al. MDH1 and MPP7 Regulate Autophagy in Pancreatic Ductal Adenocarcinoma. Cancer Res. 2019, 79, 1884–1898. [Google Scholar] [CrossRef] [Green Version]
- Listowski, M.A.; Leluk, J.; Kraszewski, S.; Sikorski, A.F. Cholesterol interaction with the MAGUK protein family member, MPP1, via CRAC and CRAC-like motifs: An in silico docking analysis. PLoS ONE 2015, 10, e0133141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusunoki, H.; Kohno, T. Structural insight into the interaction between the p55 PDZ domain and glycophorin C. Biochem. Biophys. Res. Commun. 2007, 359, 972–978. [Google Scholar] [CrossRef]
- Li, Y.; Karnak, D.; Demeler, B.; Margolis, B.; Lavie, A. Structural basis for L27 domain-mediated assembly of signaling and cell polarity complexes. EMBO J. 2004, 23, 2723–2733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosanquet, D.C.; Ye, L.; Harding, K.G.; Jiang, W.G. FERM family proteins and their importance in cellular movements and wound healing (Review). Int. J. Mol. Med. 2014, 34, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Nunomura, W.; Takakuwa, Y.; Parra, M.; Conboy, J.; Mohandas, N. Regulation of protein 4.1R, p55, and Glycophorin C ternary complex in human erythrocyte membrane. J. Biol. Chem. 2000, 275, 24540–24546. [Google Scholar] [CrossRef] [Green Version]
- Marfatia, S.M.; Lue, R.A.; Branton, D.; Chishti, A.H. In vitro binding studies suggest a membrane-associated complex between erythroid p55, protein 4.1, and glycophorin C. J. Biol. Chem. 1994, 269, 8631–8634. [Google Scholar]
- Marfatia, S.M.; Morais-Cabral, J.H.; Kim, A.C.; Byron, O.; Chishti, A.H. The PDZ domain of human erythrocyte p55 mediates its binding to the cytoplasmic carboxyl terminus of glycophorin C. Analysis of the binding interface by in vitro mutagenesis. J. Biol. Chem. 1997, 272, 24191–24197. [Google Scholar] [CrossRef] [Green Version]
- Hemming, N.J.; Anstee, D.J.; Staricoff, M.A.; Tanner, M.J.A.; Mohandas, N. Identification of the membrane attachment sites for protein 4.1 in the human erythrocyte. J. Biol. Chem. 1995, 270, 5360–5366. [Google Scholar] [CrossRef] [Green Version]
- Marfatia, S.M.; Lue, R.A.; Branton, D.; Chishti, A.H. Identification of the protein 4.1 binding interface on glycophorin C and p55, a homologue of the Drosophila discs-large tumor suppressor protein. J. Biol. Chem. 1995, 270, 715–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, P.S.; Jeong, J.J.; Zeng, L.; Takoudis, C.G.; Quinn, B.J.; Khan, A.A.; Hanada, T.; Chishti, A.H. Alternatively spliced exon 5 of the FERM domain of protein 4.1R encodes a novel binding site for erythrocyte p55 and is critical for membrane targeting in epithelial cells. Biochim. Biophys. Acta Mol. Cell Res. 2009, 1793, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Sakurai-Yageta, M.; Masuda, M.; Tsuboi, Y.; Ito, A.; Murakami, Y. Tumor suppressor CADM1 is involved in epithelial cell structure. Biochem. Biophys. Res. Commun. 2009, 390, 977–982. [Google Scholar] [CrossRef] [PubMed]
- Terada, N.; Ohno, N.; Saitoh, S.; Seki, G.; Komada, M.; Suzuki, T.; Yamakawa, H.; Soleimani, M.; Ohno, S. Interaction of membrane skeletal protein, protein 4.1B and p55, and sodium bicarbonate cotransporterl in mouse renal S1-S2 proximal tubules. J. Histochem. Cytochem. 2007, 55, 1199–1206. [Google Scholar] [CrossRef] [PubMed]
- Mburu, P.; Kikkawa, Y.; Townsend, S.; Romero, R.; Yonekawa, H.; Brown, S.D.M. Whirlin complexes with p55 at the stereocilia tip during hair cell development. Proc. Natl. Acad. Sci. USA 2006, 103, 10973–10978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mburu, P.; Romero, M.R.; Hilton, H.; Parker, A.; Townsend, S.; Kikkawa, Y.; Brown, S.D.M. Gelsolin plays a role in the actin polymerization complex of hair cell stereocilia. PLoS ONE 2010, 5, e11627. [Google Scholar] [CrossRef] [Green Version]
- Biernatowska, A.; Augoff, K.; Podkalicka, J.; Tabaczar, S.; Gajdzik-Nowak, W.; Czogalla, A.; Sikorski, A.F. MPP1 directly interacts with flotillins in erythrocyte membrane—Possible mechanism of raft domain formation. Biochim. Biophys. Acta Biomembr. 2017, 1859, 2203–2212. [Google Scholar] [CrossRef]
- Seo, P.S.; Quinn, B.J.; Khan, A.A.; Zeng, L.; Takoudis, C.G.; Hanada, T.; Bolis, A.; Bolino, A.; Chishti, A.H. Identification of erythrocyte p55/MPP1 as a binding partner of NF2 tumor suppressor protein/merlin. Exp. Biol. Med. 2009, 234, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Pitre, A.; Ge, Y.; Lin, W.; Wang, Y.; Fukuda, Y.; Temirov, J.; Phillips, A.H.; Peters, J.L.; Fan, Y.; Ma, J.; et al. An unexpected protein interaction promotes drug resistance in leukemia. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef]
- Jing-Ping, Z.; Tian, Q.B.; Sakagami, H.; Kondo, H.; Endo, S.; Suzuki, T. p55 protein is a member of PSD scaffold proteins in the rat brain and interacts with various PSD proteins. Mol. Brain Res. 2005, 135, 204–216. [Google Scholar] [CrossRef]
- Rademacher, N.; Schmerl, B.; Lardong, J.A.; Wahl, M.C.; Shoichet, S.A. MPP2 is a postsynaptic MAGUK scaffold protein that links SynCAM1 cell adhesion molecules to core components of the postsynaptic density. Sci. Rep. 2016, 6, 35247. [Google Scholar] [CrossRef] [Green Version]
- Karnak, D.; Lee, S.; Margolis, B. Identification of multiple binding partners for the amino-terminal domain of synapse-associated protein 97. J. Biol. Chem. 2002, 277, 46730–46735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butz, S.; Okamoto, M.; Südhof, T.C. A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell 1998, 94, 773–782. [Google Scholar] [CrossRef] [Green Version]
- Baumgartner, M.; Weiss, A.; Fritzius, T.; Heinrich, J.; Moelling, K. The PDZ protein MPP2 interacts with c-Src in epithelial cells. Exp. Cell Res. 2009, 315, 2888–2898. [Google Scholar] [CrossRef]
- Horresh, I.; Poliak, S.; Grant, S.; Bredt, D.; Rasband, M.N.; Peles, E. Multiple molecular interactions determine the clustering of Caspr2 and Kv1 channels in myelinated axons. J. Neurosci. 2008, 28, 14213–14222. [Google Scholar] [CrossRef] [Green Version]
- Pinatel, D.; Hivert, B.; Saint-Martin, M.; Noraz, N.; Savvaki, M.; Karagogeos, D.; Faivre-Sarrailh, C. The Kv1-associated molecules TAG-1 and Caspr2 are selectively targeted to the axon initial segment in hippocampal neurons. J. Cell Sci. 2017, 130, 2209–2220. [Google Scholar] [CrossRef] [Green Version]
- Fukuhara, H.; Masvuda, M.; Yageta, M.; Fukami, T.; Kuramochi, M.; Maruyama, T.; Kitamura, T.; Murakami, Y. Association of a lung tumor suppressor TSLC1 with MPP3, a human homologue of Drosophila tumor suppressor Dlg. Oncogene 2003, 22, 6160–6165. [Google Scholar] [CrossRef] [Green Version]
- Murakami, S.; Sakurai-Yageta, M.; Maruyama, T.; Murakami, Y. Trans-homophilic interaction of CADM1 activates PI3K by forming a complex with MAGuK-family proteins MPP3 and Dlg. PLoS ONE 2014, 9, e82894. [Google Scholar] [CrossRef]
- Kakunaga, S.; Ikeda, W.; Itoh, S.; Deguchi-Tawarada, M.; Ohtsuka, T.; Mizoguchi, A.; Takai, Y. Nectin-like molecule-1/TSLL1/SynCAM3: A neural tissue-specific immunoglobulin-like cell-cell adhesion molecule localizing at non-junctional contact sites of presynaptic nerve terminals, axons and glia cell processes. J. Cell Sci. 2005, 118, 1267–1277. [Google Scholar] [CrossRef] [Green Version]
- Dudak, A.; Kim, J.; Cheong, B.; Federoff, H.J.; Lim, S.T. Membrane palmitoylated proteins regulate trafficking and processing of nectins. Eur. J. Cell Biol. 2011, 90, 365–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aartsen, W.M.; Arsanto, J.P.; Chauvin, J.P.; Vos, R.M.; Versteeg, I.; Cardozo, B.N.; Le Bivic, A.; Wijnholds, J. PSD95β regulates plasma membrane Ca(2+) pump localization at the photoreceptor synapse. Mol. Cell. Neurosci. 2009, 41, 156–165. [Google Scholar] [CrossRef]
- Förster, J.R.; Lochnit, G.; Stöhr, H. Proteomic analysis of the membrane palmitoylated protein-4 (MPP4)-associated protein complex in the retina. Exp. Eye Res. 2009, 88, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Aartsen, W.M.; Kantardzhieva, A.; Klooster, J.; van Rossum, A.G.S.H.; van de Pavert, S.A.; Versteeg, I.; Cardozo, B.N.; Tonagel, F.; Beck, S.C.; Tanimoto, N.; et al. Mpp4 recruits Psd95 and Veli3 towards the photoreceptor synapse. Hum. Mol. Genet. 2006, 15, 1291–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stöhr, H.; Molday, L.L.; Molday, R.S.; Weber, B.H.F.; Biedermann, B.; Reichenbach, A.; Krämer, F. Membrane-associated guanylate kinase proteins MPP4 and MPP5 associate with Veli3 at distinct intercellular junctions of the neurosensory retina. J. Comp. Neurol. 2005, 481, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Pawlyk, B.; Wen, X.H.; Adamian, M.; Soloviev, M.; Michaud, N.; Zhao, Y.; Sandberg, M.A.; Makino, C.L.; Li, T. Mpp4 is required for proper localization of plasma membrane calcium ATPases and maintenance of calcium homeostasis at the rod photoreceptor synaptic terminals. Hum. Mol. Genet. 2007, 16, 1017–1029. [Google Scholar] [CrossRef]
- van de Pavert, S.A.; Kantardzhieva, A.; Malysheva, A.; Meuleman, J.; Versteeg, I.; Levelt, C.; Klooster, J.; Geiger, S.; Seeliger, M.W.; Rashbass, P.; et al. Crumbs homologue 1 is required for maintenance of photoreceptor cell polarization and adhesion during light exposure. J. Cell Sci. 2004, 117, 4169–4177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hurd, T.W.; Gao, L.; Roh, M.H.; Macara, I.G.; Margolis, B. Direct interaction of two polarity complexes implicated in epthelial tight junction assembly. Nat. Cell Biol. 2003, 5, 137–142. [Google Scholar] [CrossRef]
- Wang, Q.; Hurd, T.W.; Margolis, B. Tight junction protein Par6 interacts with an evolutionarily conserved region in the amino terminus of PALS1/stardust. J. Biol. Chem. 2004, 279, 30715–30721. [Google Scholar] [CrossRef] [Green Version]
- Roh, M.H.; Fan, S.; Liu, C.J.; Margolis, B. The Crumbs3-Pals1 complex participates in the establishment of polarity in mammalian epithelial cells. J. Cell Sci. 2003, 116, 2895–2906. [Google Scholar] [CrossRef] [Green Version]
- Bachmann, A.; Schneider, M.; Theilenberg, E.; Grawe, F.; Knust, E. Drosophila stardust is a partner of Crumbs in the control of epithelial cell polarity. Nature 2001, 414, 638–643. [Google Scholar] [CrossRef]
- McHugh, E.M.; Zhu, W.; Milgram, S.; Mager, S. The GABA transporter GAT1 and the MAGUK protein Pals1: Interaction, uptake modulation, and coexpression in the brain. Mol. Cell. Neurosci. 2004, 26, 406–417. [Google Scholar] [CrossRef]
- Varelas, X.; Samavarchi-Tehrani, P.; Narimatsu, M.; Weiss, A.; Cockburn, K.; Larsen, B.G.; Rossant, J.; Wrana, J.L. The Crumbs Complex Couples Cell Density Sensing to Hippo-Dependent Control of the TGF-β-SMAD Pathway. Dev. Cell 2010, 19, 831–844. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Ding, X.; Guo, Z.; Zhou, R.; Wang, F.; Long, F.; Wu, F.; Bi, F.; Wang, Q.; Fan, D.; et al. PALS1 specifies the localization of ezrin to the apical membrane of gastric parietal cells. J. Biol. Chem. 2005, 280, 13584–13592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terada, N.; Saitoh, Y.; Ohno, N.; Komada, M.; Saitoh, S.; Peles, E.; Ohno, S. Essential Function of Protein 4.1G in Targeting of Membrane Protein Palmitoylated 6 into Schmidt-Lanterman Incisures in Myelinated Nerves. Mol. Cell. Biol. 2012, 32, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Kamijo, A.; Saitoh, Y.; Ohno, N.; Ohno, S.; Terada, N. Immunohistochemical study of the membrane skeletal protein, membrane protein palmitoylated 6 (MPP6), in the mouse small intestine. Histochem. Cell Biol. 2016, 145, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Kamijo, A.; Saitoh, Y.; Sakamoto, T.; Kubota, H.; Yamauchi, J.; Terada, N. Scaffold protein Lin7 family in membrane skeletal protein complex in mouse seminiferous tubules. Histochem. Cell Biol. 2019, 152, 333–343. [Google Scholar] [CrossRef]
- Tseng, T.C.; Marfatia, S.M.; Bryant, P.J.; Pack, S.; Zhuang, Z.; O’Brien, J.E.; Lin, L.; Hanada, T.; Chishti, A.H. VAM-1: A new member of the MAGUK family binds to human Veli-1 through a conserved domain. Biochim. Biophys. Acta Gene Struct. Expr. 2001, 1518, 249–259. [Google Scholar] [CrossRef]
- Terada, N.; Saitoh, Y.; Ohno, N.; Komada, M.; Yamauchi, J.; Ohno, S. Involvement of Src in the membrane skeletal complex, MPP6-4.1G, in Schmidt-Lanterman incisures of mouse myelinated nerve fibers in PNS. Histochem. Cell Biol. 2013, 140, 213–222. [Google Scholar] [CrossRef]
- Shingai, T.; Ikeda, W.; Kakunaga, S.; Morimoto, K.; Takekuni, K.; Itoh, S.; Satoh, K.; Takeuchi, M.; Imai, T.; Monden, M.; et al. Implications of nectin-like molecule-2/IGSF4/RA175/SgIGSF/TSLC1/SynCAM1 in cell-cell adhesion and transmembrane protein localization in epithelial cells. J. Biol. Chem. 2003, 278, 35421–35427. [Google Scholar] [CrossRef] [Green Version]
- Bohl, J.; Brimer, N.; Lyons, C.; Vande Pol, S.B. The Stardust family protein MPP7 forms a tripartite complex with LIN7 and DLG1 that regulates the stability and localization of DLG1 to cell junctions. J. Biol. Chem. 2007, 282, 9392–9400. [Google Scholar] [CrossRef] [Green Version]
- Wells, C.D.; Fawcett, J.P.; Traweger, A.; Yamanaka, Y.; Goudreault, M.; Elder, K.; Kulkarni, S.; Gish, G.; Virag, C.; Lim, C.; et al. A Rich1/Amot Complex Regulates the Cdc42 GTPase and Apical-Polarity Proteins in Epithelial Cells. Cell 2006, 125, 535–548. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Fan, C.M. A CREB-MPP7-AMOT Regulatory Axis Controls Muscle Stem Cell Expansion and Self-Renewal Competence. Cell Rep. 2017, 21, 1253–1266. [Google Scholar] [CrossRef] [Green Version]
- Baines, A.J.; Lu, H.C.; Bennett, P.M. The Protein 4.1 family: Hub proteins in animals for organizing membrane proteins. Biochim. Biophys. Acta Biomembr. 2014, 1838, 605–619. [Google Scholar] [CrossRef] [Green Version]
- Machnicka, B.; Czogalla, A.; Hryniewicz-Jankowska, A.; Bogusławska, D.M.; Grochowalska, R.; Heger, E.; Sikorski, A.F. Spectrins: A structural platform for stabilization and activation of membrane channels, receptors and transporters. Biochim. Biophys. Acta Biomembr. 2014, 1838, 620–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alloisio, N.; Dalla Venezia, N.; Rana, A.; Andrabi, K.; Texier, P.; Gilsanz, F.; Cartron, J.P.; Delaunay, J.; Chishti, A.H. Evidence that red blood cell protein p55 may participate in the skeleton- membrane linkage that involves protein 4.1 and glycophorin C. Blood 1993, 82, 1323–1327. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, P.G. Hereditary Elliptocytosis: Spectrin and Protein 4.1R. Semin. Hematol. 2004, 41, 142–164. [Google Scholar] [CrossRef] [PubMed]
- Fritz, D.I.; Hanada, T.; Lu, Y.; Martin Johnston, J.; Chishti, A.H. MPP1/p55 gene deletion in a hemophilia A patient with ectrodactyly and severe developmental defects. Am. J. Hematol. 2019, 94, E29–E32. [Google Scholar] [CrossRef] [Green Version]
- Ogita, H.; Rikitake, Y.; Miyoshi, J.; Takai, Y. Cell adhesion molecules nectins and associating proteins: Implications for physiology and pathology. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2010, 86, 621–629. [Google Scholar] [CrossRef] [Green Version]
- Ivanovic, A.; Horresh, I.; Golan, N.; Spiege, I.; Sabanay, H.; Frechter, S.; Ohno, S.; Terada, N.; Möbius, W.; Rosenbluth, J.; et al. The cytoskeletal adapter protein 4.1G organizes the internodes in peripheral myelinated nerves. J. Cell Biol. 2012, 196, 337–344. [Google Scholar] [CrossRef]
- Terada, N.; Saitoh, Y.; Kamijo, A.; Ohno, S.; Ohno, N. Involvement of membrane skeletal molecules in the Schmidt–Lanterman incisure in Schwann cells. Med. Mol. Morphol. 2016, 49, 5–10. [Google Scholar] [CrossRef]
- Saitoh, Y.; Ohno, N.; Yamauchi, J.; Sakamoto, T.; Terada, N. Deficiency of a membrane skeletal protein, 4.1G, results in myelin abnormalities in the peripheral nervous system. Histochem. Cell Biol. 2017, 148, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, Y.; Kamijo, A.; Yamauchi, J.; Sakamoto, T.; Terada, N. The membrane palmitoylated protein, MPP6, is involved in myelin formation in the mouse peripheral nervous system. Histochem. Cell Biol. 2019, 151, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Golan, N.; Kartvelishvily, E.; Spiegel, I.; Salomon, D.; Sabanay, H.; Rechav, K.; Vainshtein, A.; Frechter, S.; Maik-Rachline, G.; Eshed-Eisenbach, Y.; et al. Genetic deletion of Cadm4 results in myelin abnormalities resembling Charcot-Marie-Tooth neuropathy. J. Neurosci. 2013, 33, 10950–10961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bretscher, A.; Edwards, K.; Fehon, R.G. ERM proteins and merlin: Integrators at the cell cortex. Nat. Rev. Mol. Cell Biol. 2002, 3, 586–599. [Google Scholar] [CrossRef]
- Viswanatha, R.; Bretscher, A.; Garbett, D. Dynamics of ezrin and EBP50 in regulating microvilli on the apical aspect of epithelial cells. Biochem. Soc. Trans. 2014, 42, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Jin, C.; Ge, L.; Ding, X.; Chen, Y.; Zhu, H.; Ward, T.; Wu, F.; Cao, X.; Wang, Q.; Yao, X. PKA-mediated protein phosphorylation regulates ezrin-WWOX interaction. Biochem. Biophys. Res. Commun. 2006, 341, 784–791. [Google Scholar] [CrossRef]
- Morrow, K.A.; Shevde, L. a Merlin: The wizard requires protein stability to function as a tumor suppressor: Is stability importnt for tumour suppressor activity? Biochim Biophys Acta 2012, 1826, 400–406. [Google Scholar] [CrossRef]
- Jindal, H.K.; Yoshinaga, K.; Seo, P.S.; Lutchman, M.; Dion, P.A.; Rouleau, G.A.; Hanada, T.; Chishti, A.H. Purification of the NF2 tumor suppressor protein from human erythrocytes. Can. J. Neurol. Sci. 2006, 33, 394–402. [Google Scholar] [CrossRef] [Green Version]
- Firestein, B.L.; Rongo, C. DLG-1 is a MAGUK similar to SAP97 and is required for adherens junction formation. Mol. Biol. Cell 2001, 12, 3465–3475. [Google Scholar] [CrossRef] [Green Version]
- Keith, D.; El-Husseini, A. Excitation control: Balancing PSD-95 function at the synapse. Front. Mol. Neurosci. 2008, 1. [Google Scholar] [CrossRef] [Green Version]
- Chetkovich, D.M.; Bunn, R.C.; Kuo, S.H.; Kawasaki, Y.; Kohwi, M.; Bredt, D.S. Postsynaptic targeting of alternative postsynaptic density-95 isoforms by distinct mechanisms. J. Neurosci. 2002, 22, 6415–6425. [Google Scholar] [CrossRef] [PubMed]
- Jo, K.; Derin, R.; Li, M.; Bredt, D.S. Characterization of MALS/Velis-1, -2, and -3: A family of mammalian LIN- 7 homologs enriched at brain synapses in association with the postsynaptic density-95/NMDA receptor postsynaptic complex. J. Neurosci. 1999, 19, 4189–4199. [Google Scholar] [CrossRef] [Green Version]
- Straight, S.W.; Pieczynski, J.N.; Whiteman, E.L.; Liu, C.J.; Margolis, B. Mammalian Lin-7 stabilizes polarity protein complexes. J. Biol. Chem. 2006, 281, 37738–37747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Yang, X.; Wang, Z.; Zhou, H.; Xie, X.; Shen, Y.; Long, J. Structure of an L27 domain heterotrimer from cell polarity complex Patj/Pals1/Mals2 reveals mutually independent L27 domain assembly mode. J. Biol. Chem. 2012, 287, 11132–11140. [Google Scholar] [CrossRef] [Green Version]
- Nelson, W.J. Adaptation of core mechanisms to generate cell polarity. Nature 2003, 422, 766–774. [Google Scholar] [CrossRef]
- St Johnston, D.; Ahringer, J. Cell polarity in eggs and epithelia: Parallels and diversity. Cell 2010, 141, 757–774. [Google Scholar] [CrossRef] [Green Version]
- Shin, K.; Fogg, V.C.; Margolis, B. Tight Junctions and Cell Polarity. Annu. Rev. Cell Dev. Biol. 2006, 22, 207–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulgakova, N.A.; Knust, E. The Crumbs complex: From epithelial-cell polarity to retinal degeneration. J. Cell Sci. 2009, 122, 2587–2596. [Google Scholar] [CrossRef] [Green Version]
- Pieczynski, J.; Margolis, B. Protein complexes that control renal epithelial polarity. Am. J. Physiol. Ren. Physiol. 2011, 300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makarova, O.; Roh, M.H.; Liu, C.J.; Laurinec, S.; Margolis, B. Mammalian Crumbs3 is a small transmembrane protein linked to protein associated with Lin-7 (Pals1). Gene 2003, 302, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Margolis, B. The Crumbs3 polarity protein. Cold Spring Harb. Perspect. Biol. 2018, 10. [Google Scholar] [CrossRef]
- Ivanova, M.E.; Fletcher, G.C.; O’Reilly, N.; Purkiss, A.G.; Thompson, B.J.; McDonald, N.Q. Structures of the human Pals1 PDZ domain with and without ligand suggest gated access of Crb to the PDZ peptide-binding groove. Acta Crystallogr. Sect. D Biol. Crystallogr. 2015, 71, 555–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.; Chen, X.-W.; Margolis, B. PALS1 Regulates E-Cadherin Trafficking in Mammalian Epithelial Cells. Mol. Biol. Cell 2007, 18, 874–885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teoh, K.-T.; Siu, Y.-L.; Chan, W.-L.; Schlüter, M.A.; Liu, C.-J.; Peiris, J.S.M.; Bruzzone, R.; Margolis, B.; Nal, B. The SARS Coronavirus E Protein Interacts with PALS1 and Alters Tight Junction Formation and Epithelial Morphogenesis. Mol. Biol. Cell 2010, 21, 3838–3852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gosens, I.; den Hollander, A.I.; Cremers, F.P.M.; Roepman, R. Composition and function of the Crumbs protein complex in the mammalian retina. Exp. Eye Res. 2008, 86, 713–726. [Google Scholar] [CrossRef] [Green Version]
- Mathur, P.; Yang, J. Usher syndrome: Hearing loss, retinal degeneration and associated abnormalities. Biochim. Biophys. Acta 2015, 1852. [Google Scholar] [CrossRef] [Green Version]
- Mathur, P.D.; Yang, J. Usher syndrome and non-syndromic deafness: Functions of different whirlin isoforms in the cochlea, vestibular organs, and retina. Hear. Res. 2019, 375, 14–24. [Google Scholar] [CrossRef]
- Pan, D. The Hippo Signaling Pathway in Development and Cancer. Dev. Cell 2010, 19, 491–505. [Google Scholar] [CrossRef] [Green Version]
- Bae, S.J.; Luo, X. Activation mechanisms of the Hippo kinase signaling cascade. Biosci. Rep. 2018, 38, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Lei, Q.Y.; Guan, K.L. The Hippo-YAP pathway: New connections between regulation of organ size and cancer. Curr. Opin. Cell Biol. 2008, 20, 638–646. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Feldmann, G.; Huang, J.; Wu, S.; Zhang, N.; Comerford, S.A.; Gayyed, M.F.F.; Anders, R.A.; Maitra, A.; Pan, D. Elucidation of a Universal Size-Control Mechanism in Drosophila and Mammals. Cell 2007, 130, 1120–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michgehl, U.; Pavenstädt, H.; Vollenbröker, B. Cross talk between the Crumbs complex and Hippo signaling in renal epithelial cells. Pflugers Arch. Eur. J. Physiol. 2017, 469, 917–926. [Google Scholar] [CrossRef]
- Gokhale, R.; Pfleger, C.M. The Power of Drosophila Genetics: The Discovery of the Hippo Pathway; Humana Press: New York, NY, USA, 2019; pp. 3–26. [Google Scholar] [CrossRef]
- Weide, T.; Vollenbröker, B.; Schulze, U.; Djuric, I.; Edeling, M.; Bonse, J.; Hochapfel, F.; Panichkina, O.; Wennmann, D.O.; George, B.; et al. Pals1 haploinsufficiency results in proteinuria and cyst formation. J. Am. Soc. Nephrol. 2017, 28, 2093–2107. [Google Scholar] [CrossRef]
- Podkalicka, J.; Biernatowska, A.; Olszewska, P.; Tabaczar, S.; Sikorski, A.F. The microdomain-organizing protein MPP1 is required for insulinstimulated activation of H-Ras. Oncotarget 2018, 9, 18410–18421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trybus, M.; Niemiec, L.; Biernatowska, A.; Hryniewicz-Jankowska, A.; Sikorski, A.F. MPP1-based mechanism of resting state raft organization in the plasma membrane. Is it a general or specialized mechanism in erythroid cells? Folia Histochem. Cytobiol. 2019, 57, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Lingwood, D.; Simons, K. Lipid rafts as a membrane-organizing principle. Science 2010, 327, 46–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, D.A.; London, E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 2000, 275, 17221–17224. [Google Scholar] [CrossRef] [Green Version]
- Bickel, P.E.; Scherer, P.E.; Schnitzer, J.E.; Oh, P.; Lisanti, M.P.; Lodish, H.F. Flotillin and epidermal surface antigen define a new family of caveolae- associated integral membrane proteins. J. Biol. Chem. 1997, 272, 13793–13802. [Google Scholar] [CrossRef] [Green Version]
- Schulte, T.; Paschke, K.A.; Laessing, U.; Lottspeich, F.; Stuermer, C.A.O. Reggie-1 and reggie-2, two cell surface proteins expressed by retinal ganglion cells during axon regeneration. Development 1997, 124, 577–587. [Google Scholar]
- Banning, A.; Kurrle, N.; Meister, M.; Tikkanen, R. Flotillins in Receptor Tyrosine Kinase Signaling and Cancer. Cells 2014, 3, 129–149. [Google Scholar] [CrossRef] [Green Version]
- Browman, D.T.; Hoegg, M.B.; Robbins, S.M. The SPFH domain-containing proteins: More than lipid raft markers. Trends Cell Biol. 2007, 17, 394–402. [Google Scholar] [CrossRef]
- Solis, G.P.; Hoegg, M.; Munderloh, C.; Schrock, Y.; Malaga-Trillo, E.; Rivera-Milla, E.; Stuermer, C.A.O. Reggie/flotillin proteins are organized into stable tetramers in membrane microdomains. Biochem. J. 2007, 403, 313–322. [Google Scholar] [CrossRef]
- Tulodziecka, K.; Diaz-Rohrer, B.B.; Farley, M.M.; Chan, R.B.; Di Paolo, G.; Levental, K.R.; Waxham, M.N.; Levental, I. Remodeling of the postsynaptic plasma membrane during neural development. Mol. Biol. Cell 2016, 27, 3480–3489. [Google Scholar] [CrossRef] [PubMed]
- Raghunathan, K.; Kenworthy, A.K. Dynamic pattern generation in cell membranes: Current insights into membrane organization. Biochim. Biophys. Acta Biomembr. 2018, 1860, 2018–2031. [Google Scholar] [CrossRef]
- Topinka, J.R.; Bredt, D.S. N-terminal palmitoylation of PSD-95 regulates association with cell membranes and interaction with K+ channel K(v)1.4. Neuron 1998, 20, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Craven, S.E.; Bredt, D.S. Synaptic targeting of the postsynaptic density protein PSD-95 mediated by a tyrosine-based trafficking signal. J. Biol. Chem. 2000, 275, 20045–20051. [Google Scholar] [CrossRef] [Green Version]
- El-Husseini, A.E.; Craven, S.E.; Chetkovich, D.M.; Firestein, B.L.; Schnell, E.; Aoki, C.; Bredt, D.S. Dual palmitoylation of PSD-95 mediates its vesiculotubular sorting, postsynaptic targeting, and ion channel clustering. J. Cell Biol. 2000, 148, 159–171. [Google Scholar] [CrossRef] [Green Version]
MPP Protein | MPP Binding Domain (If Identified) | Protein Partner | Domain/Motif of Partner Protein Binding MPP (If Identified) | Method Used for Identification | Source |
---|---|---|---|---|---|
MPP1 | PDZ (21 aa at N-terminus) | Glycophorin C (GPC) | 12 aa on C-terminal, type II PDZ-binding motif (EYFI) | SPR, overlay assay, ELISA, resonant mirror detection | [47,48,49,50] |
D5/HOOK | 4.1R | FERM domain | SPR, overlay assay, ELISA, resonant mirror detection | [47,48,50,51,52] | |
4.1B | FERM domain | Pull-down, co-IP | [53,54] | ||
GUK + C-terminal atypical PDZ-binding motif | Whirlin | PDZ3 and proline-rich domain | Yeast two-hybrid system, pull-down, co-IP | [26,55] | |
GUK | Gelsolin | Gelsolin-like repeats | Pull-down, co-IP | [56] | |
SH3-GUK | MPP5 | SH3-D5 | Yeast two-hybrid system, pull-down, co-IP | [26] | |
D5 | Flotillin 1 | Co-IP, pull-down, overlay assay, SPR, ELISA, PLA | [57], Olszewska et al. to be published | ||
D5 | Flotillin 2 | Co-IP, pull-down, overlay assay, SPR, ELISA, PLA | [57], Olszewska et al. to be published | ||
Merlin | FERM domain | SPR, co-IP, pull-down | [58] | ||
PDZ | ABCC4 | C-terminal PDZ-binding motif (ETAL) | Co-IP, PLA | [59] | |
D5-GUK | PSD-95 | PDZ | Pull-down, co-IP | [60] | |
D5-GUK | Dlg-1/SAP97 | Pull-down, co-IP | [60] | ||
D5-GUK | CASK | Pull-down, co-IP | [60] | ||
D5 | actin | Pull-down, co-IP | [60] | ||
D5 | CaMKII | Pull-down, co-IP | [60] | ||
MPP2 | SH3-D5-GUK | PSD-95 | Yeast two-hybrid system, pull-down, Co-IP | [61] | |
SH3-D5-GUK | GKAP | Yeast two-hybrid system, pull-down, co-IP | [61] | ||
PDZ | CADM1/Necl-2/SynCAM1 | C-terminal type II PDZ-binding motif (EYFI) | Yeast two-hybrid system, pull-down, co-IP, ITC | [53,61] | |
MPP2 | Co-IP | [61] | |||
4.1B | FERM domain | Pull-down, co-IP | [53] | ||
Dlg-1 | L27 domain | Co-IP | [7,62] | ||
L27C | Lin-7A | Pull-down, co-IP + mass spectrometry | [7,63] | ||
Lin-7C | Co-IP + mass spectrometry | [7] | |||
SH3-D5-GUK | SK2-L | N-terminal domain | Pull-down, co-IP + mass spectrometry | [7] | |
PDZ | c-Src | PDZ-binding motif (GENL) | Co-IP | [64] | |
Caspr2 | Type II PDZ-binding motif EWLI and juxtamembrane protein 4.1-binding motif | Pull-down, co-IP | [65,66] | ||
MPP3 | PDZ | CADM1/Necl-2 | Type II PDZ-binding motif (EYFI) | Yeast two-hybrid system, pull-down, co-IP | [53,67,68] |
4.1B | FERM domain | Pull-down, co-IP | [53] | ||
CADM3/Necl-1 | Type II PDZ-binding motif (EYFI) | Yeast two-hybrid system, co-IP | [69] | ||
PDZ | Nectin-1 | Entire C-terminal part, containing type II PDZ-binding motif (EWYV) | Yeast two-hybrid system, co-IP | [70] | |
PDZ | Nectin-3 | Type II PDZ-binding motif (EWYV) | Yeast two-hybrid system | [70] | |
GUK | MPP5 | SH3-D5 | Co-IP | [8] | |
Both L27 | Dlg1 | L27 domain | Pull-down, co-IP, far WB | [8,62,68] | |
L27C | Lin-7 | Co-IP | [62] | ||
PDZ | (5-HT)2C | C-terminus RISSV; EKVCV | Co-IP, pull-down | [36] | |
MPP4 | L27 | PSD-95β | Co-IP | [71,72] | |
Dlg-1/SAP97 | Co-IP | [73] | |||
L27C-L27N | Lin-7 | L27 | Co-IP | [74] | |
CRB (CRB1) | IP | [35] | |||
L27C-L27N | PMCA | Yeast two-hybrid; IEM (mouse/mutant mouse) | [71,75] | ||
C-terminal | PMCA | Yeast two-hybrid; IEM (mouse/mutant mouse) | [71,75] | ||
MUPP1 | IP | [76] | |||
GUK | MPP5 | SH3-D5 | Yeast two-hybrid | [35] | |
MPP5 | CC/L27N | Par6 | PDZ | IP; pull down | [77,78] |
L27N | PATJ/INADL | L27 | IP | [31] | |
L27N | MUPP1/MPD2/ | L27 | IP | [31] | |
L27C | Lin-7 | IP | [5] | ||
PDZ-SH3-GUK | CRB | ERLI motif (COOH domain) | IHC; IP; ITC | [25,79,80] | |
PDZ-SH3 | GABA transporter (GAT1) | Multiple sites of contact: (1) AYI motif (COOH domain; “type II PDZ-binding motif”); (2) Between 549–576 aa | Yeast two-hybrid, co-IP, pull-down | [81] | |
SH3-D5 | MPP1 | SH3-GUK | Yeast two-hybrid | [26] | |
SH3-D5 | MPP3 | GUK | Co-IP | [8] | |
SH3-D5 | MPP4 | GUK | Yeast two-hybrid | [35] | |
PDZ-SH3-GUK | MPP5 | PDZ-SH3-GUK | Crystallography | [25] | |
MPP7 | SH3-D5 | IP | [37] | ||
Taz | WW-PDZ | IP | [82] | ||
C-terminal (181–675 aa; PDZ-SH3-D5-GUK) | Ezrin | N-terminal (1–50) (FERM domain) | Affinity precipitation of PALS1 and ezrin; pull-down | [83] | |
MPP6 | 4.1 G | Co-IP | [84] | ||
mLin-2/CASK | Co-IP | [85] | |||
L27C | Lin-7 | L27 | Co-IP, pull-down | [5,86,87] | |
c-Src | Co-IP | [88] | |||
CADM3/Necl-1 | Type II PDZ-binding motif EYFI | Yeast two-hybrid system, co-IP | [69] | ||
PDZ | CADM1/Necl-2 | Type II PDZ-binding motif EYFI | Yeast two-hybrid system, co-IP, pull-down (affinity chromatography) | [69,89] | |
Caspr2 | Type II PDZ-binding motif EWLI and juxtamembrane protein 4.1-binding motif | Pull-down | [65] | ||
MPP7 | L27N | Dlg-1/SAP97 | L27 domain | Co-IP | [37,90] |
L27C | Lin-7 | Single L27 | Co-IP | [37,90] | |
SH3-D5 | MPP5 | Co-IP | [37,91] | ||
Caspr2 | Type II PDZ-binding motif EWLI | Pull-down | [65] | ||
PATJ | PLA | [92] | |||
AMOT | PLA | [92] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chytła, A.; Gajdzik-Nowak, W.; Olszewska, P.; Biernatowska, A.; Sikorski, A.F.; Czogalla, A. Not Just Another Scaffolding Protein Family: The Multifaceted MPPs. Molecules 2020, 25, 4954. https://doi.org/10.3390/molecules25214954
Chytła A, Gajdzik-Nowak W, Olszewska P, Biernatowska A, Sikorski AF, Czogalla A. Not Just Another Scaffolding Protein Family: The Multifaceted MPPs. Molecules. 2020; 25(21):4954. https://doi.org/10.3390/molecules25214954
Chicago/Turabian StyleChytła, Agnieszka, Weronika Gajdzik-Nowak, Paulina Olszewska, Agnieszka Biernatowska, Aleksander F. Sikorski, and Aleksander Czogalla. 2020. "Not Just Another Scaffolding Protein Family: The Multifaceted MPPs" Molecules 25, no. 21: 4954. https://doi.org/10.3390/molecules25214954
APA StyleChytła, A., Gajdzik-Nowak, W., Olszewska, P., Biernatowska, A., Sikorski, A. F., & Czogalla, A. (2020). Not Just Another Scaffolding Protein Family: The Multifaceted MPPs. Molecules, 25(21), 4954. https://doi.org/10.3390/molecules25214954