New Lead Discovery of Herbicide Safener for Metolachlor Based on a Scaffold-Hopping Strategy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Target Compounds 2a–k, 3a–k, and 4a–k
2.2. The Phytotoxicity of Target Compounds 2a–k, 3a–k, 4a–k, and Dichlormid on Rice Seedlings
2.3. Safening Effects and Structure-Activity Relationship of 2a–k, 3a–k, and 4a–k on Rice Seedlings
2.4. Safening Effect of Compounds 2k, 4k, and Dichlormid in Rice at Lower Concentrations
2.5. Enzyme Activity Assay
2.6. Acute Toxicity of Compounds 2k, 4k, and Dichlormid on Zebrafish Embryos
3. Materials and Methods
3.1. Chemicals
3.2. General Procedures for the Synthesis of N-Alkyl Amides 2a–k, 3a–k, and 4a–k
3.3. Phytotoxicity and Safening Effects of Compounds 2a–k, 3a–k, and 4a–k on Rice Seedlings
height of non-treatment) × 100%
length of non-treatment) × 100%
fresh weight of non-treatment) × 100%
3.4. Enzyme Activity Assays
3.5. Acute Toxicities of 2k, 4k, and Dichlormid to Zebrafish Embryos
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Adhikari, S.P.; Kim, H.; Yang, H.; Kim, H. Learning semantic graphics using convolutional encoder-decoder network for autonomous weeding in paddy. Front. Plant Sci. 2019, 10, 1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shumilina, E.; Andreasen, C.; Bitarafan, Z.; Dikiy, A. Determination of glyphosate in dried wheat by 1H-NMR Spectroscopy. Molecules 2020, 25, 1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trognitz, F.; Hackl, E.; Widhalm, S.; Sessitsch, A. The role of plant-microbiome interactions in weed establishment and control. FEMS Microbiol. Ecol. 2016, 92, fiw138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Jaisi, D.P. Competition of sorption and degradation reactions during glyphosate degradation by ferrihydrite/δ-manganese oxide composites. ACS Earth Space Chem. 2019, 3, 1362–1370. [Google Scholar] [CrossRef]
- Deng, X.L.; Zhao, P.Y.; Zhou, X.M.; Bai, L.Y. Excellent sustained-release efficacy of herbicide quinclorac with cationic covalent organic frameworks. Chem. Eng. J. 2021, 405, 126979. [Google Scholar] [CrossRef]
- Chen, C.; Qin, Z.; Jian, Z.; Xinhui, J.; Wanyong, M.; Jianhua, Z. The reaction mechanism and kinetics for the reaction of OH radicals with atmospheric metolachlor. Russ. J. Phys. Chem. A 2018, 92, 1266–1273. [Google Scholar] [CrossRef]
- De Melo Tavares Vieira, K.C.; Couto, J.C.; Zanetti, E.; Sanches, J.M.J.; Favareto, A.P.A. Maternal and fetal toxicity of Wistar rats exposed to herbicide metolachlor. Acta Sci. Biol. Sci. 2016, 38, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Machado, M.D.; Soares, E.V. Reproductive cycle progression arrest and modification of cell morphology (shape and biovolume) in the alga Pseudokirchneriella subcapitata exposed to metolachlor. Aquat. Toxicol. 2020, 222, 105449. [Google Scholar] [CrossRef] [Green Version]
- Mueller-Warrant, G.W.; Rosato, S.C. Weed control for stand duration perennial ryegrass seed production: II. Residue retained. Agron. J. 2002, 94, 1192–1203. [Google Scholar] [CrossRef]
- Shipitalo, M.J.; Malone, R.W.; Ma, L.; Nolan, B.T.; Kanwar, R.S.; Shaner, D.L.; Pederson, C.H. Corn stover harvest increases herbicide movement to subsurface drains-root zone water quality model simulations. Pest Manag. Sci. 2016, 72, 1124–1132. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Webster, E.P.; Braverman, M.P. Rice (Oryza sativa) response to rotational crop and rice herbicide combinations. Weed Technol. 2002, 16, 340–345. [Google Scholar]
- Broschat, T.K. Phytotoxicity and longevity of twenty-two preemergent herbicides used on three species of container-grown palms. Hort Technol. 2000, 10, 597–602. [Google Scholar] [CrossRef] [Green Version]
- Saayman-du Toit, A.E.J. Phytotoxicity resulting from a combination of a pre-emergence herbicide and a pesticide seed dressing in maize (Zea mays L.). S. Afr. J. Plant Soil 2002, 19, 156–158. [Google Scholar] [CrossRef]
- Zheng, W.N.; Zhu, Z.Y.; Deng, Y.N.; Wu, Z.C.; Zhou, Y.; Zhou, X.M.; Bai, L.Y.; Deng, X.L. Synthesis, crystal structure, herbicide safening, and antifungal activity of N-(4,6-dichloropyrimidine-2-yl)benzamide. Crystals 2018, 8, 75. [Google Scholar] [CrossRef] [Green Version]
- Casida, J.E.; Gray, R.A.; Tilles, H. Thiocarbamate sulfoxides: Potent, selective, and biodegradable herbicides. Science 1974, 184, 573–574. [Google Scholar] [CrossRef]
- Kraehmer, H.; Laber, B.; Rosinger, C.; Schulz, A. Herbicides as weed control agents: State of the art: I. Weed control research and safener technology: The path to modern agriculture. Plant Physiol. 2014, 166, 1119–1131. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Liu, Q.; Zang, X.; Yuan, S.; Bat-Erdene, U.; Nguyen, C.; Gan, J.; Zhou, J.; Jacobsen, S.E.; Tang, Y. Resistance-gene-directed discovery of a natural-product herbicide with a new mode of action. Nature 2018, 559, 415–418. [Google Scholar] [CrossRef]
- Tang, X.K.; Zhou, X.M.; Wu, J.; Li, J.B.; Bai, L.Y. A novel function of sanshools: The alleviation of injury from metolachlor in rice seedlings. Pest. Biochem. Physiol. 2014, 110, 44–49. [Google Scholar] [CrossRef]
- Hatzios, K.K.; Wu, J. Herbicide safeners: Tools for improving the efficacy and selectivity of herbicides. J. Environ. Sci. Health Part B 1996, B31, 545–553. [Google Scholar] [CrossRef]
- Gao, S.; Liu, Y.Y.; Jiang, J.Y.; Fu, Y.; Zhao, L.X.; Li, C.Y.; Ye, F. Protective responses induced by chiral 3-dichloroacetyl oxazolidine safeners in maize (Zea mays L.) and the detoxification mechanism. Molecules 2019, 24, 3060. [Google Scholar] [CrossRef] [Green Version]
- Abu-Qare, A.W.; Duncan, H.J. Herbicide safeners: Uses, limitations, metabolism, and mechanisms of action. Chemosphere 2002, 48, 965–974. [Google Scholar] [CrossRef]
- Hoffmann, O.L. 1,8-Naphthalic Anhydride Protective Coatings of Cereals against Herbicidal S-ethyl N,N-Dipropylthiocarbamate. Patent. DE 1952910A, 25 June 1970. [Google Scholar]
- Zhang, Y.Y.; Zhang, S.G.; Liu, Y.X.; Wang, C.; Jiang, W.; Zhao, L.X.; Fu, Y.; Ye, F. Design, synthesis, and biological activity of novel diazabicyclo derivatives as safeners. J. Agric. Food Chem. 2020, 68, 3403–3414. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.X.; Wu, H.; Zou, Y.L.; Wang, Q.R.; Fu, Y.; Li, C.Y.; Ye, F. Design, synthesis, and safener activity of novel methyl (R)-N-benzoyl/dichloroacetyl-thiazolidine-4-carboxylates. Molecules 2018, 23, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.B.; Zheng, W.; Wang, Y.H.; Cai, H.L.; Jin, C.Z.; Liu, X.; Bai, L.Y. Identification and S-metolachlor-safening effects of compounds extracted from Ligusticum chuanxiong on rice. Int. J. Agric. Biol. 2016, 18, 698–702. [Google Scholar] [CrossRef]
- Sun, L.; Xu, H.; Su, W.; Xue, F.; An, S.; Lu, C.; Wu, R. The expression of detoxification genes in two maize cultivars by interaction of isoxadifen-ethyl and nicosulfuron. Plant Physiol. Biochem. 2018, 129, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Taylor, V.L.; Cummins, I.; Brazier-Hicks, M.; Edwards, R. Protective responses induced by herbicide safeners in wheat. Environ. Exp. Bot. 2013, 88, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Hu, L.F.; Yao, Y.; Cai, R.W.; Pan, L.; Liu, K.L.; Bai, L.Y. Effects of fenclorim on rice physiology, gene transcription and pretilachlor detoxification ability. BMC Plant Biol. 2020, 20, 100. [Google Scholar] [CrossRef] [Green Version]
- Giannakopoulos, G.; Dittgen, J.; Schulte, W.; Zoellner, P.; Helmke, H.; Lagojda, A.; Edwards, R. Safening activity and metabolism of the safener cyprosulfamide in maize and wheat. Pest Manag. Sci. 2020, 76, 3413–3422. [Google Scholar] [CrossRef]
- Cox, C.; Surgan, M. Unidentified inert ingredients in pesticides: Implications for human and environmental health. Environ. Health Perspect. 2006, 114, 1803–1806. [Google Scholar] [CrossRef] [Green Version]
- Sivey, J.D.; Lehmler, H.J.; Salice, C.J.; Ricko, A.N.; Cwiertny, D.M. Environmental fate and effects of dichloroacetamide herbicide safeners: “Inert” yet biologically active agrochemical ingredients. Environ. Sci. Technol. Lett. 2015, 2, 260–269. [Google Scholar] [CrossRef]
- Watanabe, T.; Terada, Y. Food compounds activating thermosensitive TRP channels in asian herbal and medicinal foods. J. Nutr. Sci. Vitaminol. 2015, 61, S86–S88. [Google Scholar] [CrossRef] [PubMed]
- Sugai, E.; Morimitsu, Y.; Iwasaki, Y.; Morita, A.; Watanabe, T.; Kubota, K. Pungent qualities of sanshool-related compounds evaluated by a sensory test and activation of rat TRPV1. Biosci. Biotechnol. Biochem. 2005, 69, 1951–1957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devkota, K.P.; Wilson, J.; Henrich, C.J.; McMahon, J.B.; Reilly, K.M.; Beutler, J.A. Isobutylhydroxyamides from the pericarp of Nepalese Zanthoxylum armatum inhibit NF1-defective tumor cell line growth. J. Nat. Prod. 2013, 76, 59–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Xie, M.; Wei, D.; Wang, L.; Hu, M.; Zhang, Q.; He, Z.; Peng, W.; Wu, C. Hydroxy-α-sanshool isolated from Zanthoxylum bungeanum attenuates learning and memory impairments in scopolamine-treated mice. Food Funct. 2019, 10, 7315–7324. [Google Scholar] [CrossRef] [PubMed]
- Kubota, K.; Ohtake, N.; Ohbuchi, K.; Mase, A.; Imamura, S.; Sudo, Y.; Miyano, K.; Yamamoto, M.; Kono, T.; Uezono, Y. Hydroxy-α sanshool induces colonic motor activity in rat proximal colon: A possible involvement of KCNK9. Am. J. Physiol. 2015, 308, G579–G590. [Google Scholar] [CrossRef] [Green Version]
- Marrone, P.G. Pesticidal natural products-status and future potential. Pest Manag. Sci. 2019, 75, 2325–2340. [Google Scholar] [CrossRef]
- Hu, L.F.; Wang, L.F.; Zhou, X.M.; Luo, K.; Bai, L.Y. Two coumarins with safener activity from Rhizoma et Radix Notopterygii. Weed Technol. 2017, 29, 161–167. [Google Scholar] [CrossRef]
- Aoki, K.; Igarashi, Y.; Nishimura, H.; Morishita, I.; Usui, K. Application of iron carbonyl complexation to the selective total synthesis of sanshools. Tetrahedron Lett. 2012, 53, 6000–6003. [Google Scholar] [CrossRef]
- Avila, J.L.; Almeida-Aguirre, E.K.P.; Mendez-Cuesta, C.A.; Toscano, R.A.; Cerbon Cervantes, M.A.; Delgado, G. Structural reassignment of rel-(3’Z,3R,6R,7R,3a’R,6’R)-3,8-dihydrodiligustilide and the activity of diligustilide and 3,8-dihydro- and 3,8,7’,7a’-tetrahydrodiligustilides as progestins. Org. Lett. 2019, 21, 7460–7465. [Google Scholar] [CrossRef]
- Igarashi, Y.; Aoki, K.; Nishimura, H.; Morishita, I.; Usui, K. Total synthesis of hydroxy-alpha- and hydroxy-beta-sanshool using Suzuki-Miyaura coupling. Chem. Pharm. Bull. 2012, 60, 1088–1091. [Google Scholar] [CrossRef] [Green Version]
- Toy, P.; Xia, X. Synthesis of γ-Sanshool and Hydroxy-γ-sanshool. Synlett 2014, 25, 2787–2790. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Li, K.; Toy, P.H. Synthesis of hydroxy-α-sanshool. Synlett 2012, 23, 2564–2566. [Google Scholar]
- Lamberth, C. Agrochemical lead optimization by scaffold hopping. Pest Manag. Sci. 2018, 74, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Menozzi-Smarrito, C.; Riera, C.E.; Munari, C.; Coutre, J.L.; Robert, F. Synthesis and evaluation of new alkylamides derived from α-hydroxysanshool, the pungent molecule in szechuan pepper. J. Agric. Food Chem. 2009, 57, 1982–1989. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Gao, S.; Hoang, M.T.; Wang, Z.W.; Ma, X.; Zhai, Y.; Li, N.; Zhao, L.X.; Fu, Y.; Ye, F. Protective efficacy of phenoxyacetyl oxazolidine derivatives as safeners against nicosulfuron toxicity in maize. Pest Manag. Sci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Yang, H. Prometryne-induced oxidative stress and impact on antioxidant enzymes in wheat. Ecotoxicol. Environ. Saf. 2009, 72, 1687–1693. [Google Scholar] [CrossRef]
- Barbosa, G.S.S.; Oliveira, M.E.P.S.; dos Santos, A.B.S.; Sánchez, O.C.; Soares, C.M.F.; Fricks, A.T. Immobilization of low-cost alternative vegetable peroxidase (Raphanus sativus L. peroxidase): Choice of support/technique and characterization. Molecules 2020, 25, 3668. [Google Scholar] [CrossRef]
- Yi, R.; Zhang, J.; Sun, P.; Qian, Y.; Zhao, X. Protective effects of kuding tea (Ilex kudingcha C. J. Tseng) polyphenols on uvb-induced skin aging in SKH1 hairless mice. Molecules 2019, 24, 1016. [Google Scholar]
- Winters, A.; Heywood, S.; Farrar, K.; Donnison, I.; Thomas, A.; Webb, K.J. Identification of an extensive gene cluster among a family of PPOs in Trifolium pratense L. (red clover) using a large insert BAC library. BMC Plant Biol. 2009, 9, 94. [Google Scholar] [CrossRef] [Green Version]
- Singh, H.; Batish, D.; Kaur, S.; Setia, N.; Kohli, R. Effects of 2-benzoxazolinone on the germination, early growth and morphogenetic response of mung bean (Phaseolus aureus). Ann. Appl. Biol. 2005, 147, 267–274. [Google Scholar] [CrossRef]
- Qian, L.; Qi, S.Z.; Cao, F.J.; Zhang, J.; Li, C.P.; Song, M.; Wang, C.J. Effects of penthiopyrad on the development and behaviour of zebrafish in early-life stages. Chemosphere 2019, 214, 184–194. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Liu, J.; Lin, Z.P.; Chen, X.F.; Yuan, L.L.; Shen, G.M.; Yang, W.B.; Wang, D.H.; Huang, Y.; Pang, S.; et al. Evaluation of the spinal effects of phthalates in a zebrafish embryo assay. Chemosphere 2020, 249, 126144. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.L.; Zheng, W.N.; Zhou, X.M.; Bai, L.Y. The effect of salicylic acid and 20 substituted molecules on alleviating metolachlor herbicide injury in rice (Oryza sativa). Agronomy 2020, 10, 317. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.L.; Zheng, W.N.; Jin, C.; Bai, L.Y. Synthesis of novel 6-aryloxy-4-chloro-2-phenylpyrimidines as fungicides and herbicide safeners. ACS Omega 2020, 5, 23996–24004. [Google Scholar] [CrossRef] [PubMed]
- Li, D.Z.; Xu, L.; Pang, S.; Liu, Z.Q.; Wang, K.; Wang, C.J. Variable levels of glutathione S-transferases are responsible for the differential tolerance to metolachlor between maize (Zea mays) shoots and roots. J. Agric. Food Chem. 2017, 65, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Narula, S.C.; Sharma, R.K.; Tewari, S.; Sehgal, P.K. Vitamin E supplementation, superoxide dismutase status, and outcome of scaling and root planing in patients with chronic periodontitis: A randomized clinical trial. J. Periodont. 2014, 85, 242–249. [Google Scholar] [CrossRef]
- Singh, D.P.; Singh, V.; Shukla, R.; Sahu, P.; Prabha, R.; Gupta, A.; Sarma, B.K.; Gupta, V.K. Stage-dependent concomitant microbial fortification improves soil nutrient status, plant growth, antioxidative defense system and gene expression in rice. Microbiol. Res. 2020, 239, 126538. [Google Scholar] [CrossRef]
- Shen, S.C.; Xu, G.F.; Li, D.Y.; Jin, G.M.; Liu, S.F.; Clements, D.R.; Yang, Y.X.; Rao, J.; Chen, A.D.; Zhang, F.D.; et al. Potential use of sweet potato (Ipomoea batatas (L.) Lam.) to suppress three invasive plant species in agroecosystems (Ageratum conyzoides L., Bidens pilosa L., and Galinsoga parviflora Cav.). Agronomy 2019, 9, 318. [Google Scholar] [CrossRef] [Green Version]
- Saborowski, R.; Schatte, J. Catalytic properties and polymorphism of serine endopeptidases from the midgut gland of the brown shrimp Crangon crangon (Decapoda, Caridea). Mar. Biol. 2012, 159, 1107–1118. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.Y.; Li, N.J.; Cheng, F.Y.; Hsueh, J.F.; Huang, C.C.; Lu, F.I.; Fu, T.F.; Yan, S.J.; Lee, Y.H.; Wang, Y.J. The effect of the chorion on size-dependent acute toxicity and underlying mechanisms of amine-modified 643 silver nanoparticles in zebrafish embryos. Int. J. Mol. Sci. 2020, 21, 2864. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.F.; Fu, Y.J.; Huang, Z.W.; Shangguang, X.C.; Guo, Y.X. Aqueous stability of astilbin: Effects of pH, temperature, and solvent. J. Agric. Food Chem. 2013, 61, 12085–12091. [Google Scholar] [CrossRef]
- Zheng, D.; Ruan, Y.T.; Yin, Z.P.; Zhang, Q.F. A comparison of solubility, stability, and bioavailability between astilbin and neoastilbin isolated from Smilax glabra Rhizoma. Molecules 2020, 25, 4728. [Google Scholar] [CrossRef]
Compound | Safening Effect (% of Non-Treated Control) | ||
---|---|---|---|
Plant Height | Root Length | Fresh Weight | |
D | 93.1 ± 1.0 | 89.5 ± 2.0 | 93.4 ± 0.6 |
2a | 90.3 ± 0.5 | 97.8 ± 0.5 | 91.3 ± 0.5 |
2b | 95.9 ± 0.8 | 90.7 ± 0.6 | 95.1 ± 0.6 |
2c | 88.3 ± 0.7 | 79.9 ± 0.4 | 89.2 ± 0.8 |
2d | 95.8 ± 0.5 | 81.1 ± 0.4 | 88.7 ± 1.1 |
2e | 95.6 ± 0.2 | 83.8 ± 0.2 | 90.8 ± 0.7 |
2f | 96.9 ± 1.2 | 81.9 ± 0.6 | 92.9 ± 0.2 |
2g | 97.5 ± 0.6 | 88.4 ± 0.2 | 91.2 ± 0.6 |
2h | 95.2 ± 0.4 | 86.3 ± 1.0 | 84.0 ± 0.7 |
2i | 99.4 ± 0.3 | 87.5 ± 2.4 | 96.5 ± 0.3 |
2j | 97.0 ± 0.3 | 84.6 ± 0.5 | 84.4 ± 0.8 |
2k | 97.6 ± 0.8 | 85.2 ± 0.8 | 93.6 ± 1.1 |
3a | 98.3 ± 0.7 | 92.8 ± 0.3 | 97.4 ± 0.7 |
3b | 91.6 ± 0.8 | 98.8 ± 0.2 | 90.4 ± 0.2 |
3c | 98.9 ± 0.2 | 78.2 ± 0.9 | 96.5 ± 0.3 |
3d | 83.2 ± 0.5 | 96.0 ± 0.5 | 93.1 ± 0.6 |
3e | 92.8 ± 1.0 | 86.5 ± 0.8 | 87.4 ± 0.8 |
3f | 89.3 ± 0.6 | 91.2 ± 0.7 | 86.4 ± 0.6 |
3g | 98.9± 0.9 | 98.5 ± 1.0 | 96.7 ± 0.6 |
3h | 94.7 ± 0.8 | 95.6 ± 0.4 | 96.7 ± 1.1 |
3i | 81.7 ± 0.2 | 91.5 ± 0.9 | 84.2 ± 0.9 |
3j | 97.2 ± 0.4 | 91.1 ± 0.6 | 96.6 ± 0.3 |
3k | 91.7 ± 0.5 | 87.1 ± 0.4 | 88.5 ± 0.7 |
4a | 90.3 ± 0.1 | 94.8 ± 0.7 | 95.3 ± 1.1 |
4b | 90.6 ± 0.3 | 90.0 ± 0.8 | 91.2 ± 0.8 |
4c | 97.4 ± 0.8 | 67.4 ± 0.9 | 87.4 ± 1.1 |
4d | 82.4 ± 0.4 | 81.7 ± 0.9 | 87.4 ± 0.5 |
4e | 98.1 ± 1.1 | 90.2 ± 1.0 | 96.6 ± 0.2 |
4f | 90.5 ± 0.3 | 92.4 ± 1.1 | 95.0 ± 0.7 |
4g | 96.8 ± 0.5 | 89.3 ± 0.8 | 87.7 ± 0.7 |
4h | 95.9 ± 0.7 | 97.4 ± 0.7 | 93.5 ± 1.2 |
4i | 91.2 ± 0.3 | 91.7 ± 0.2 | 89.0 ± 0.7 |
4j | 98.5 ± 0.4 | 87.5 ± 0.3 | 87.8 ± 0.5 |
4k | 96.9 ± 0.2 | 99.2 ± 0.7 | 94.1 ± 0.4 |
Compound | Compared to the Blank Control (%) | ||
---|---|---|---|
Relative Plant Height | Relative Root Length | Relative Fresh Weight | |
Mcl | 43.6 ± 0.4 | 56.1 ± 2.0 | 75.0 ± 2.2 |
D + Mcl | 92.6 ± 0.9 | 83.2 ± 2.5 | 92.7 ± 1.3 |
2a + Mcl | 53.8 ± 2.3 | 65.9 ± 2.0 | 85.6 ± 3.1 |
2b + Mcl | 62.1 ± 2.3 | 59.8 ± 3.0 | 81.6 ± 1.0 |
2c + Mcl | 56.3 ± 1.9 | 64.7 ± 1.5 | 79.6 ± 2.8 |
2d + Mcl | 54.8 ± 2.8 | 67.1 ± 2.7 | 83.3 ± 3.3 |
2e + Mcl | 52.7 ± 0.8 | 63.9 ± 2.1 | 82.7 ± 1.6 |
2f + Mcl | 58.5 ± 2.9 | 74.6 ± 0.7 | 79.0 ± 0.2 |
2g + Mcl | 62.2 ± 1.2 | 68.1 ± 1.7 | 83.1 ± 1.8 |
2h + Mcl | 64.4 ± 2.2 | 73.4 ± 2.5 | 85.8 ± 2.3 |
2i + Mcl | 54.8 ± 2.8 | 67.1 ± 2.7 | 83.3 ± 3.3 |
2j + Mcl | 70.1 ± 1.7 | 71.0 ± 0.7 | 81.4 ± 0.7 |
2k + Mcl | 84.3 ± 2.0 | 81.1 ± 1.1 | 81.3 ± 1.3 |
3a + Mcl | 52.0 ± 0.9 | 64.4 ± 1.9 | 82.7 ± 2.1 |
3b + Mcl | 50.0 ± 1.2 | 76.2 ± 0.6 | 85.3 ± 3.1 |
3c + Mcl | 56.3 ± 1.9 | 64.7 ± 1.5 | 79.6 ± 2.8 |
3d + Mcl | 50.1 ± 2.2 | 60.8 ± 4.4 | 85.2 ± 2.8 |
3e + Mcl | 53.9 ± 0.9 | 65.8 ± 2.6 | 83.1 ± 2.3 |
3f + Mcl | 47.2 ± 1.5 | 64.6 ± 3.0 | 79.8 ± 3.2 |
3g + Mcl | 53.2 ± 0.7 | 71.0 ± 1.5 | 86.3 ± 2.4 |
3h + Mcl | 43.2 ± 1.5 | 83.0 ± 3.9 | 87.9 ± 0.8 |
3i + Mcl | 48.0 ± 0.9 | 60.2 ± 2.4 | 82.6 ± 2.6 |
3j + Mcl | 50.5 ± 0.8 | 70.5 ± 1.1 | 84.3 ± 3.1 |
3k + Mcl | 50.2 ± 1.7 | 59.4 ± 1.0 | 81.8 ± 2.9 |
4a + Mcl | 45.0 ± 2.9 | 57.3 ± 3.1 | 79.5 ± 2.7 |
4b + Mcl | 49.8 ± 1.2 | 66.5 ± 3.1 | 83.5 ± 2.3 |
4c + Mcl | 44.3 ± 1.6 | 56.4 ± 1.0 | 82.2 ± 3.1 |
4d + Mcl | 56.3 ± 2.3 | 63.6 ± 2.2 | 81.1 ± 2.6 |
4e + Mcl | 42.8 ± 0.3 | 56.8 ± 1.3 | 78.9 ± 1.4 |
4f + Mcl | 53.7 ± 1.6 | 67.4 ± 1.3 | 78.3 ± 1.7 |
4g + Mcl | 49.8 ± 0.9 | 60.4 ± 1.2 | 77.5 ± 3.3 |
4h + Mcl | 64.4 ± 1.7 | 64.8 ± 4.0 | 84.7 ± 3.5 |
4i + Mcl | 49.2 ± 1.1 | 63.1 ± 1.2 | 84.8 ± 2.9 |
4j + Mcl | 63.5 ± 0.4 | 60.5 ± 0.4 | 76.8 ± 1.9 |
4k + Mcl | 81.0 ± 0.4 | 82.2 ± 1.0 | 84.9 ± 0.6 |
Compound | LC50 (mg/L) | Regression Equation | R2 |
---|---|---|---|
2k | 38.29 | y = 1.7630 + 4.2719x | 0.9451 |
4k | 39.28 | y = 1.7557 + 4.2376x | 0.9456 |
dichlormid | 7.86 | y = 1.9248 + 3.4345x | 0.8849 |
Sample Availability: Samples of the compounds 2a–k, 3a–k, and 4a–k are available from the authors. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, X.; Zheng, W.; Zhan, Q.; Deng, Y.; Zhou, Y.; Bai, L. New Lead Discovery of Herbicide Safener for Metolachlor Based on a Scaffold-Hopping Strategy. Molecules 2020, 25, 4986. https://doi.org/10.3390/molecules25214986
Deng X, Zheng W, Zhan Q, Deng Y, Zhou Y, Bai L. New Lead Discovery of Herbicide Safener for Metolachlor Based on a Scaffold-Hopping Strategy. Molecules. 2020; 25(21):4986. https://doi.org/10.3390/molecules25214986
Chicago/Turabian StyleDeng, Xile, Wenna Zheng, Qingcai Zhan, Yanan Deng, Yong Zhou, and Lianyang Bai. 2020. "New Lead Discovery of Herbicide Safener for Metolachlor Based on a Scaffold-Hopping Strategy" Molecules 25, no. 21: 4986. https://doi.org/10.3390/molecules25214986
APA StyleDeng, X., Zheng, W., Zhan, Q., Deng, Y., Zhou, Y., & Bai, L. (2020). New Lead Discovery of Herbicide Safener for Metolachlor Based on a Scaffold-Hopping Strategy. Molecules, 25(21), 4986. https://doi.org/10.3390/molecules25214986