Botanical and Genetic Identification Followed by Investigation of Chemical Composition and Biological Activities on the Scabiosa atropurpurea L. Stem from Tunisian Flora
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of Plant Material
2.2. Extraction of Second Metabolites
2.3. Identification of Volatile Compounds
2.4. Determination of the Phenolic Compounds in S. atropurpurea L. Stem
2.5. Identification of the Pigment Compounds in S. atropurpurea L.
2.6. Antioxidant Activity
2.7. Antibacterial and Antifungal Activities
2.8. Allelopathic Activity
3. Materials and Methods
3.1. Sample Collection and Identification of Plant Material
3.2. Chemicals and Reagents
3.3. Preparation of Plant Volatile Fractions and Extracts from Stems of S. atropurpurea L.
3.4. Analysis of Volatile Compounds
3.5. Analysis of Phenolic Compounds
3.6. Analysis of Carotenoids
3.7. Antioxidant Activity
3.8. Antibacterial and Antifungal Activities
3.9. Allelopathic Activities
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barone, R.P.; Knittel, D.K.; Ooka, J.K.; Porter, L.N.; Smith, N.T.; Owens, D.K. The production of plant natural products beneficial to humanity by metabolic engineering. Curr. Plant. Biol. 2019. [Google Scholar] [CrossRef]
- Tholl, D.; Boland, W.; Hansel, A.; Loreto, F.; Roese, U.; Schnitzler, J.-P. Practical approaches to plant volatile analysis. Plant J. 2006, 45, 540–560. [Google Scholar] [CrossRef] [PubMed]
- Debnath, B.; Singh, S.; Das, M.; Goswami, S. Role of plant alkaloids on human health: A review of biological activities. Mat. Today Chem. 2018, 9, 56–72. [Google Scholar] [CrossRef]
- Pangestuti, R.; Kim, S.-K. Biological activities and health benefit effects of natural pigments derived from marine algae. J. Funct. Foods 2011, 3, 255–266. [Google Scholar] [CrossRef]
- Jurikova, T.; Skrovankova, S.; Mlcek, J.; Balla, S.; Snopek, L. Bioactive Compounds, Antioxidant Activity, and Biological Effects of European Cranberry (Vaccinium oxycoccos). Molecules 2018, 24, 24. [Google Scholar] [CrossRef] [Green Version]
- Savic Gajic, I.; Savic, I.; Boskov, I.; Žerajić, S.; Markovic, I.; Gajic, D. Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds from Black Locust (Robiniae Pseudoacaciae) Flowers and Comparison with Conventional Methods. Antioxidants 2019, 8, 248. [Google Scholar] [CrossRef] [Green Version]
- Gam, D.H.; Kim, S.Y.; Kim, J.W. Optimization of Ultrasound-Assisted Extraction Condition for Phenolic Compounds, Antioxidant Activity, and Epigallocatechin Gallate in Lipid-Extracted Microalgae. Molecules 2020, 25, 454. [Google Scholar] [CrossRef] [Green Version]
- Savic, I.M.; Savic Gajic, I.M. Optimization of ultrasound-assisted extraction of polyphenols from wheatgrass (Triticum aestivum L). J. Food Sci. Technol. 2020, 57, 2809–2818. [Google Scholar] [CrossRef]
- Carlson, S.; Linder, H.; Donoghue, M.; Ladiges, P. The historical biogeography of Scabiosa (Dipsacaceae): Implications for Old World plant disjunctions. J. Biogeogr. 2012, 39, 1086–1100. [Google Scholar] [CrossRef]
- Floc’h, E.; Boulos, L.; Véla, E. Catalogue Synonymique Commenté De La Flore De Tunisie. Simpact. 2010. Available online: https://www.academia.edu/1857395/Catalogue_synonymique_comment%C3%A9_de_la_Flore_de_Tunisie (accessed on 10 June 2020).
- Rigat, M.; Bonet, M.À.; Garcia, S.; Garnatje, T.; Vallès, J. Studies on pharmaceutical ethnobotany in the high river Ter valley (Pyrenees, Catalonia, Iberian Peninsula). J. Ethnopharmacol. 2007, 113, 267–277. [Google Scholar] [CrossRef]
- Bammi, J.; Douira, A. Les Plantes Médicinales dans la Forêt de l’Achach (Plateau Central, Maroc). 2002. Available online: https://riuma.uma.es/xmlui/handle/10630/3941 (accessed on 10 June 2020).
- Hlila, M.B.; Mosbah, H.; Majouli, K.; Nejma, A.B.; Jannet, H.B.; Mastouri, M.; Aouni, M.; Selmi, B. Antimicrobial Activity of Scabiosa arenaria Forssk. Extracts and Pure Compounds Using Bioguided Fractionation. Chem. Biodivers. 2016, 13, 1262–1272. [Google Scholar] [CrossRef] [PubMed]
- Christopoulou, C.; Graikou, K.; Chinou, I. Chemosystematic Value of Chemical Constituents from Scabiosa hymettia (Dipsacaceae). Chem. Biodivers. 2008, 5, 318–323. [Google Scholar] [CrossRef]
- Van Vuuren, S.F.; Naidoo, D. An antimicrobial investigation of plants used traditionally in southern Africa to treat sexually transmitted infections. J. Ethnopharmacol. 2010, 130, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Hlila, M.B.; Mosbah, H.; Mssada, K.; Jannet, H.B.; Aouni, M.; Selmi, B. Acetylcholinesterase inhibitory and antioxidant properties of roots extracts from the Tunisian Scabiosa arenaria Forssk. Ind. Crop Prod. 2015, 67, 62–69. [Google Scholar] [CrossRef]
- Wang, J.; Liu, K.; Li, X.; Bi, K.; Zhang, Y.; Huang, J.; Zhang, R. Variation of active constituents and antioxidant activity in Scabiosa tschiliensis Grunning from different stages. J. Food Sci. Technol. 2017, 54, 2288–2295. [Google Scholar] [CrossRef]
- Elhawary, S.S.; Eltantawy, M.E.; Sleem, A.A.; Abdallah, H.; Mohamed, N.M. Investigation of phenolic content and biological activities of Scabiosa atropurpurea L. World Appl. Sci. J. 2011, 15, 311–317. [Google Scholar]
- Polat, E.; Alankus-Caliskan, O.; Karayildirim, T.; Bedir, E. Iridoids from Scabiosa atropurpurea L. subsp. maritima Arc. (L.). Biochem. Syst. Ecol. 2010, 38, 253–255. [Google Scholar] [CrossRef]
- Yeşil, Y.; Erarslan, Z.B. The anatomical properties of Scabiosa atropurpurea L. (Caprifoliaceae). İstanbul J. Pharm. 2018, 48, 1–5. [Google Scholar]
- Bonet, M.À.; Vallès, J. Ethnobotany of Montseny biosphere reserve (Catalonia, Iberian Peninsula): Plants used in veterinary medicine. J. Ethnopharmacol. 2007, 110, 130–147. [Google Scholar] [CrossRef]
- Bussmann, R.W.; Glenn, A. Medicinal plants used in Northern Peru for reproductive problems and female health. J. Ethnobiol. Ethnomed. 2010, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Bonet, M.A.; Parada, M.; Selga, A.; Vallès, J. Studies on Pharmaceutical Ethnobotany in the Regions of L’Alt Empordà and Les Guilleries (Catalonia, Iberian Peninsula). J. Ethnopharmacol. 1999, 8, 145–168. [Google Scholar] [CrossRef]
- Requena, E.M.; Rodriguez, M.T.S.; García-Gimenez, M. A contribution to the pharmacodynamic study of Scabiosa atropurpurea L.I. Analgesic and antipyretic activity. Planta Med. Phytother. 1987, 21, 33–36. [Google Scholar]
- Saenz-Rodrigues, M.T.; García-Gimenez, M.; Marhuenda-Requena, E. Contribution to the pharmacodynamic study of Scabiosa atropurpurea L. II. Anti-inflammatory and antibacterial activity. Plant Med. Phytoter. 1987, 21, 203–208. [Google Scholar]
- Neffati, M.; Ghrabi Gammar, Z.; Akrimi, N.; Henchi, B. Les Plantes Endémiques de la Tunisie. Available online: https://docplayer.fr/22215944-M-neffati-z-ghrabi-gammar-n-akrimi-b-henchi-les-plantes-endemiques-de-la-tunisie-introduction-flora-mediterranea-9-1999-163.html (accessed on 11 September 2020).
- Mayer, V. Dipsacaceae (inclusive Triplostegia). In Flowering Plants. Eudicots; Springer: Cham, Switzerland, 2016; pp. 145–163. [Google Scholar] [CrossRef]
- Suyama, C.; Ueda, K. Taxonomic Revision of Scabiosa jezoensis (Dipsacaceae) in Japan. Kew Bull. 2007, 62, 95–105. [Google Scholar]
- Besbes, M.; Omri, A.; Cheraief, I.; Daami-Remadi, M. Chemical Composition and Antimicrobial Activity of Essential Oils from Scabiosa arenaria Forssk. Growing Wild in Tunisia. Chem. Biodivers. 2012, 9, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Javidnia, K.; Miri, R.; Javidnia, A. Constituents of the essential oil of Scabiosa flavida from Iran. Chem. Nat. Compd. 2006, 42, 529–530. [Google Scholar] [CrossRef]
- Rahmouni, N.; Pinto, D.C.G.A.; Beghidja, N.; Benayache, S.; Silva, A.M.S. Scabiosa stellata L. Phenolic Content Clarifies Its Antioxidant Activity. Molecules 2018, 23, 1285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stojković, D.; Soković, M.; Glamoclja, J.M.; Dzamic, A. Chemical composition and antimicrobial activity of Vitex agnus-castus L. fruits and leaves essential oils. Food Chem. 2011, 128, 1017–1022. [Google Scholar] [CrossRef]
- Yadav, V.R.; Prasad, S.; Kanappan, R.; Ravindran, J.; Chaturvedi, M.M.; Vaahtera, L.; Parkkinene, J.; Aggarwal, B.B. Cyclodextrin-complexed curcumin exhibits anti-inflammatory and antiproliferative activities superior to those of curcumin through higher cellular uptake. Biochem. Pharmacol. 2010, 80, 1021–1032. [Google Scholar] [CrossRef] [Green Version]
- Chudzik, M.; Korzonek-Szlacheta, I.; Król, W. Triterpenes as Potentially Cytotoxic Compounds. Molecules 2015, 20, 1610–1625. [Google Scholar] [CrossRef] [Green Version]
- Araújo, E.C.C.; Silveira, E.R.; Lima, M.A.S.; Neto, M.A.; de Andrade, I.; Lima, M.A.A.; Santiago, G.M.P.; Mesquita, A.L.M. Insecticidal activity and chemical composition of volatile oils from Hyptis martiusii Benth. J. Agric. Food Chem. 2003, 51, 3760–3762. [Google Scholar]
- Szekalska, M.; Sosnowska, K.; Tomczykowa, M.; Winnicka, K.; Kasacka, I.; Tomczyk, M. In vivo anti-inflammatory and anti-allergic activities of cynaroside evaluated by using hydrogel formulations. Biomed. Pharmacother. 2020, 121, 109681. [Google Scholar] [CrossRef] [PubMed]
- Perdetzoglou, D.; Skaltsa, H.; Tzakou, O.; Harvala, C. Comparative phytochemical and morphological study of two species of the Scabiosa L. genus. Feddes Repert. 1994, 105, 157–165. [Google Scholar] [CrossRef]
- Zemtsova, G.N.; Bandyukova, V.A.; Dzhumyrko, S.F. Flavones and phenolic acids of Scabiosa olgae. Chem. Nat. Comp. 1972, 8, 662. [Google Scholar] [CrossRef]
- Marques, V.; Farah, A. Chlorogenic acids and related compounds in medicinal plants and infusions. Food Chem. 2009, 113, 1370–1376. [Google Scholar] [CrossRef]
- Kurilchenko, V.A.; Zemtsova, G.N.; Bandyukova, V.Y. A chemical study of Scabiosa bipinnata. Chem. Nat. Comp. 1971, 7, 519. [Google Scholar] [CrossRef] [Green Version]
- Wan, P.; Xie, M.; Chen, G.; Dai, Z.; Hu, B.; Zeng, X.; Sun, Y. Anti-inflammatory effects of dicaffeoylquinic acids from Ilex kudingcha on lipopolysaccharide-treated RAW264.7 macrophages and potential mechanisms. Food Chem. Toxicol. 2019, 126, 332–342. [Google Scholar] [CrossRef]
- Lopez-Lazaro, M. Distribution and Biological Activities of the Flavonoid Luteolin. Mini Rev. Med. Chem. 2009, 9, 31–59. [Google Scholar] [CrossRef] [PubMed]
- Pareek, S.; Alok Sagar, N.; Sharma, S.; Kumar, V. Chlorophylls: Chemistry and Biological Functions. In Fruit and Vegetable Phytochemicals: Chemistry and Human Health, 2nd ed.; Yahia, E.M., Ed.; Wiley Blackwell: Hoboken, NJ, USA, 2017; pp. 269–284. [Google Scholar]
- Lanfer-Marquez, U.M.; Barros, R.M.C.; Sinnecker, P. Antioxidant activity of chlorophylls and their derivatives. Food Res. Int. 2005, 38, 885–891. [Google Scholar] [CrossRef]
- Sytařová, I.; Orsavová, J.; Snopek, L.; Mlček, J.; Byczyński, Ł.; Mišurcová, L. Impact of phenolic compounds and vitamins C and E on antioxidant activity of sea buckthorn (Hippophaë rhamnoides L.) berries and leaves of diverse ripening times. Food Chem. 2020, 310, 125784. [Google Scholar]
- Sharma, V.; Singh, G.; Kaur, H.; Saxena, A.K.; Ishar, M.P.S. Synthesis of β-ionone derived chalcones as potent antimicrobial agents. Bioorg. Med. Chem. Lett. 2012, 22, 6343–6346. [Google Scholar] [CrossRef]
- Naragani, K.; Mangamuri, U.; Muvva, V.; Poda, S.; Munaganti, R.K. Antimicrobial potential of Streptomyces cheonanensis VUK-A from Mangrove origin. Int. J. Pharm. Pharm. Sci. 2016, 8, 53–57. [Google Scholar]
- Şimşek, M.; Duman, R. Investigation of Effect of 1,8-cineole on Antimicrobial Activity of Chlorhexidine Gluconate. Pharmacogn. Res. 2017, 9, 234–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.-H.; Wang, Q.; Ruan, X.; Cunde, P.; Jiang, D.-A. Phenolics and Plant Allelopathy. Molecules 2010, 15, 8933–8952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scognamiglio, M.; Esposito, A.; D’Abrosca, B.; Pacifico, S.; Fiumano, V.; Tsafantakis, N.; Monaco, P.; Fiorentino, A. Isolation, distribution and allelopathic effect of caffeic acid derivatives from Bellis perennis L. Biochem. Syst. Ecol. 2012, 43, 108–113. [Google Scholar] [CrossRef]
- Chen, S.L.; Zhou, B.L.; Lin, S.S.; Li, X. Allelopathic effects of cinnamic acid and vanillin on soil microbes, soil enzymes activities and growth of graft edegg plants. Allelopathy J. 2011, 28, 29–40. [Google Scholar]
- HwangBo, K.; Son, S.H.; Lee, J.S.; Min, S.R.; Ko, S.M.; Liu, J.R.; Choi, D.; Jeong, W.J. Rapid and simple method for DNA extraction from plant and algal species suitable for PCR amplification using a chelating resin Chelex 100. Plant. Biotechnol. Rep. 2010, 4, 49–52. [Google Scholar] [CrossRef]
- Liu, P.-L.; Wen, J.; Duan, L.; Arslan, E.; Ertuğrul, K.; Chang, Z.-Y. Hedysarum L. (Fabaceae: Hedysareae) Is Not Monophyletic-Evidence from Phylogenetic Analyses Based on Five Nuclear and Five Plastid Sequences. PLoS ONE 2017, 12, e0170596. [Google Scholar] [CrossRef] [PubMed]
- Basic Local Alignment Search Tool. Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi (accessed on 23 May 2020).
- Hrichi, S.; Chaabane-Banaoues, R.; Giuffrida, D.; Mangraviti, D.; Oulad El Majdoub, Y.; Rigano, F.; Mondello, L.; Babba, H.; Mighri, Z.; Cacciola, F. Effect of seasonal variation on the chemical composition and antioxidant and antifungal activities of Convolvulus althaeoides L. leaf extracts. Arab. J. Chem. 2020, 13, 5651–5668. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas: Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Davies, N.W. Gas chromatographic retention indices of monoterpenes and sesquiterpenes on methyl silicon and Carbowax 20M phases. J. Chromatogr. A 1990, 503, 1–24. [Google Scholar] [CrossRef]
- Haoujar, I.; Cacciola, F.; Abrini, J.; Mangraviti, D.; Giuffrida, D.; Oulad El Majdoub, Y.; Kounnoun, A.; Miceli, N.; Taviano, M.F.; Mondello, L.; et al. The Contribution of Carotenoids, Phenolic Compounds, and Flavonoids to the Antioxidative Properties of Marine Microalgae Isolated from Mediterranean Morocco. Molecules 2019, 24, 4037. [Google Scholar] [CrossRef] [Green Version]
- Teerarak, M.; Laosinwattana, C.; Charoenying, P. Evaluation of allelopathic, decomposition and cytogenetic activities of Jasminum officinale L. f. var. grandiflorum (L.) Kob. on bioassay plants. Biores. Technol. 2010, 101, 5677–5684. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Name | Extraction Method | Solvent | wt% ± SD |
---|---|---|---|
VF1 | Hydro-distillation | Hexane | 0.032 ± 0.002 |
VF2 | Hydro-distillation | Chloroform | 0.012 ± 0.001 |
E1 | Hot-extraction | Dichloromethane | 1.036 ± 0.021 |
E2 | Hot-extraction | Chloroform | 0.972 ± 0.008 |
E3 | Hot-extraction | Ethyl acetate | 0.834 ± 0.015 |
E4 | Hot-extraction | Ethanol | 1.132 ± 0.062 |
Compound | L.R.I. | Concentration (%) | |
---|---|---|---|
VF1 | VF2 | ||
1,8-cineole | 1034 | 8.1 | 33.8 |
cis-linalool oxide (furanoid) | 1076 | 1.6 | 3.0 |
trans-linalool oxide (furanoid) | 1090 | n.d. | 2.4 |
Linalool | 1101 | 4.9 | 3.3 |
α-terpineol | 1191 | 2.3 | n.d. |
Dihydrolinalylacetate | 1275 | n.d. | 2.5 |
2-hydroxy-5-methylacetophenone | 1315 | 4.4 | 2.9 |
Eugenol | 1358 | 3.6 | n.d. |
(E)-β-damascenone | 1382 | 6.4 | 3.0 |
Tetradecene | 1393 | 24.1 | 5.7 |
(Z)-jasmone | 1395 | 5.6 | n.d. |
β-caryophyllene | 1419 | n.d. | 2.2 |
(E)-geranylacetone | 1455 | 9.1 | 3.0 |
(E)-β-ionone | 1488 | 20.7 | 5.9 |
Dihydroactinidiolide | 1536 | n.d. | 26.1 |
Oxygenated monoterpenes | - | 16.9 | 45.0 |
Sesquiterpene hydrocarbons | - | 0.0 | 2.2 |
Apocarotenes | - | 36.2 | 38.0 |
Phenyl propanoids | - | 3.6 | 0.0 |
Other derivatives | - | 34.1 | 8.6 |
% peaks identified | - | 90.8 | 93.8 |
Total yield% (mg 100 g−1) | - | 0.032 | 0.012 |
Peak No | Rt (min) | λmax (nm) | [M − H]− m/z | Identification | Formula | Quantification (µg g−1 Extract (ppm) | Ref | |||
---|---|---|---|---|---|---|---|---|---|---|
DCM | Chl | EtOAc | EtOH | |||||||
1 | 15.56 | 243, 325 | 353, 191 | Chlorogenic acid | C16H18O9 | 14.81 | 6.08 | 87.99 | 657.78 | [1,2,3] |
2 | 16.73 | 240, 321 | 179 | Caffeic acid | C9H8O4 | 2.57 | 5.92 | 130.16 | 45.98 | [4] |
3 | 19.42 | 208, 227, 279, 309 | 151 | Vanillin | C8H8O3 | 64.67 | 104.11 | n.d. | n.d. | [5] |
4 | 19.86 | 235, 279, 375 | 163 | p-coumaric acid | C9H8O3 | n.d. | n.d. | 16.49 | n.d. | [6,7] |
5 | 21.98 | 235, 309 | 163 | p-hydroxycinnamic acid | C9H8O3 | 4.37 | 14.50 | 24.23 | 8.33 | [8] |
6 | 22.43 | 212, 270, 336 | 609, 367, 179 | Unknown | - | n.d. | n.d. | n.d. | - | - |
7 | 23.52 | 237, 285 | 485, 453, 403 | Unknown | - | n.d. | n.d. | - | n.d. | - |
8 | 25.45 | 231, 258, 268, 349 | 285, 447 | Cynaroside | C21H20O11 | 39.79 | 71.22 | 199.97 | 741.60 | [8] |
9 | 25.98 | 243,348 | 464 | Isoquercitrin | C21H20O12 | n.d. | n.d. | 108.72 | 205.57 | [8] |
10 | 28.59 | 240, 340 | 431 | Hyperoside | C21H20O12 | n.d. | n.d. | 37.58 | 36.13 | [8] |
11 | 28.88 | 214, 273, 339 | 579, 455 | Unknown | - | n.d. | n.d. | n.d. | - | |
12 | 29.36 | 254, 345 | 463 | Quercimeritrin | C21H20O12 | n.d. | n.d. | 36.05 | 81.36 | [8] |
13 | 29.64 | 253, 347 | 447 | Luteolin-hexoside | C21H20O11 | n.d. | n.d. | 467.06 | 564.58 | [8] |
14 | 32.57 | 269 | 579 | Syringaresinol hexoside | C28H36O13 | LOQ | LOQ | n.d. | n.d. | [9] |
15 | 32.68 | 215, 326 | 515 | Dicaffeoylquinic acid isomer 1 | C25H24O12 | n.d. | n.d. | 46.18 | 224.38 | [4,8] |
16 | 34.21 | 214, 335 | 615, 555, 447 | Unknown | - | n.d. | n.d. | n.d. | - | - |
17 | 34.65 | 218, 327 | 515 | Dicaffeoylquinic acid isomer 2 | C25H24O12 | n.d. | n.d. | 31.22 | 213.63 | [4,8] |
18 | 39.51 | 241, 347 | 285 | Luteolin | C15H10O6 | n.d. | n.d. | 113.66 | 11.14 | [7,8] |
19 | 49.15 | 242, 268, 334 | 537, 329, 141 | Unknown | - | n.d. | n.d. | - | n.d. | - |
Total of phenolic compounds (µg g−1) | 129.15 | 201.83 | 1299.31 | 2790.47 |
N° | Rt (min) | λ max(nm) | [M + H]+ m/z | [M − H]- m/z | Compounds | Formula | Ref |
---|---|---|---|---|---|---|---|
1 | 3.3 | 268 | 409 | - | 4,4′-diapophytoene | C30H48 | [10] |
2 | 3.5 | 530, 604, 658, | 617 | - | Chlorophyllide a | C35H34MgN4O5 | [11] |
3 | 6.4 | 281, 314, 421,434, 658 | 613 | - | Chlorophyll c | C35H32MgN4O5 | - |
4 | 7.3 | 229, 279, 407, 504, 667 | 696, 609 | 712, 607 | Unknown | - | - |
5 | 8.1 | 238, 266, 401, 498, 667 | 625 | - | Actinioerythrin | C40H48O6 | [12] |
6 | 9.05 | 232, 322, 407, 504, 666 | 637, 619 | 635, 389 | Unknown | - | - |
7 | 10.6 | 232, 331, 372, 437, 657 | 607 | 605 | Pheophorbide b | C35H34 N4O6 | [11,13] |
8 | 11.6 | 415, 437, 464 | 551 | 568 | Isomer lutein | C40H56O2 | [14] |
9 | 12.3 | 274, 340, 425, 507, 658 | 593 | 592 | Pheophorbide a | C35H36N4O5 | [15] |
10 | 14.0 | 422, 444, 473 | 551 | 568 | Lutein | C40H56O2 | [16] |
11 | 16.7 | 231, 409, 448, 467, 668 | 622 | 620 | Unknown | - | - |
12 | 19.0 | 416, 438, 467, | 551 | - | Echinenone | C40H54O | [15] |
13 | 23.5 | 233, 269, 415, 438, 468 | 873, 765, 654 | 763, 652 | Unknown | - | - |
14 | 26.4 | 409, 507, 667 | 535 | 534 | Torulene | C40H54 | [17] |
15 | 33.5 | 297, 326, 370, 436, 661 | 893 | - | Chlorophyll a | C55H72MgN4O5 | [11] |
16 | 37.7 | 227, 279, 407, 504, 667 | 908, 887, 682 | 886, 680 | Chlorophyll b | C55H70MgN4O6 | [11,13] |
18 17 | 39.9 | 282, 279, 407, 499, 504, 667 | 903 | 902 | Unknown | - | - |
18 | 43.14 | 331, 373, 437, 529, 661 | 885, 827 | 884, 826 | Pheophytin b | C55H72N4O6 | [11] |
19 | 45.77 | 331, 371, 432, 441, 657 | 885, 827 | 884, 826 | Pheophytin b | C55H72N4O6 | [11] |
20 | 47.5 | 276, 408, 507, 538, 667 | - | 870 | Pheophytin a | C55H74N4O5 | [11] |
21 | 48.9 | 275, 340, 425, 507, 658 | 872 | 870 | Pheophytin a | C55H74N4O5 | [11] |
22 | 53.4 | 428, 452, 478 | 537 | - | β-carotene | C40H56 | [15,18] |
23 | 55. 8 | 417, 444, 472 | 537 | - | 9-Z-β -carotene | C40H56 | [15,18] |
24 | 58.15 | 412, 436, 507, 544, 663 | 827 | 826 | Unknown | - | - |
Compounds | µg g−1Extract (ppm) | |||
---|---|---|---|---|
Dichloromethane | Chloroform | Ethyl Acetate | Ethanol | |
4,4′-diapophytoene | 19.75 | 19.45 | 96.31 | 476.31 |
Actinioerythrin | 18.85 | 14.28 | n.d. | n.d. |
Isomer lutein | 27.55 | 16.78 | n.d. | n.d. |
Lutein | 447.74 | 247.58 | 35.77 | n.d. |
Echinenone | 32.20 | 17.90 | 3.90 | n.d. |
Torulene | 11.22 | 6.70 | n.d. | n.d. |
β-carotene | 64.35 | 14.63 | 4.56 | n.d. |
9-Z-β –carotene | 15.52 | 5.61 | 2.55 | n.d. |
Total | 637.19 | 342.93 | 143.10 | 476.31 |
Sample | IC50 mg mL−1 |
---|---|
Dichloromethane extract | 2.7085 ± 0.4296 |
Chloroform extract | 2.0951 ± 0.3750 |
Ethyl acetate extract | 0.4806 ± 0.0487 |
Ethanol extract | 0.1383 ± 0.0789 |
VF 1 | 0.4798 ± 0.0897 |
VF 2 | 1.2944 ± 0.2067 |
Ascorbic acid | 0.0840 ± 0.0103 |
Test Sample and Standard | Gram-Negative Bacteria | Gram-Positive Bacteria | Yeasts | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S. enteric | E. coli | S. aureus | E. faecalis | C. albicans | C. tropicalis | C. glabrata | ||||||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MFC | MIC | MFC | MIC | MFC | |
E1 | 50 | N.A. | 0.78 | 1.56 | 50 | N.A. | 50 | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. |
E2 | 12.5 | 50 | 0.78 | 3.12 | N.A. | N.A. | 50 | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. |
E3 | 25 | N.A. | 12.25 | 25 | 50 | N.A. | N.A. | N.A. | 50 | N.A. | N.A. | N.A. | N.A. | N.A. |
E4 | 50 | N.A. | 25 | N.A. | N.A. | N.A. | N.A. | N.A. | 6.25 | 25 | N.A. | N.A. | N.A. | N.A. |
VF1 | 1.5 | N.A. | 0.75 | 1.5 | N.A. | N.A. | 3 | 3 | 1 | 1 | 1 | 1 | 1 | 1 |
VF2 | 0.22 | 0.87 | 1.5 | N.A. | 3.5 | 3.5 | 1.75 | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. |
Gentamicin | 0.004 | 0.256 | 0.128 | 0.128 | 0.002 | 0.128 | 0.256 | 0.512 | - | - | - | - | - | - |
Amphotericine B | - | - | - | - | - | - | - | - | 0.005 | 0.005 | 0.005 | 0.005 | 0.0025 | 0.0025 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hrichi, S.; Chaabane-Banaoues, R.; Bayar, S.; Flamini, G.; Oulad El Majdoub, Y.; Mangraviti, D.; Mondello, L.; El Mzoughi, R.; Babba, H.; Mighri, Z.; et al. Botanical and Genetic Identification Followed by Investigation of Chemical Composition and Biological Activities on the Scabiosa atropurpurea L. Stem from Tunisian Flora. Molecules 2020, 25, 5032. https://doi.org/10.3390/molecules25215032
Hrichi S, Chaabane-Banaoues R, Bayar S, Flamini G, Oulad El Majdoub Y, Mangraviti D, Mondello L, El Mzoughi R, Babba H, Mighri Z, et al. Botanical and Genetic Identification Followed by Investigation of Chemical Composition and Biological Activities on the Scabiosa atropurpurea L. Stem from Tunisian Flora. Molecules. 2020; 25(21):5032. https://doi.org/10.3390/molecules25215032
Chicago/Turabian StyleHrichi, Soukaina, Raja Chaabane-Banaoues, Sihem Bayar, Guido Flamini, Yassine Oulad El Majdoub, Domenica Mangraviti, Luigi Mondello, Ridha El Mzoughi, Hamouda Babba, Zine Mighri, and et al. 2020. "Botanical and Genetic Identification Followed by Investigation of Chemical Composition and Biological Activities on the Scabiosa atropurpurea L. Stem from Tunisian Flora" Molecules 25, no. 21: 5032. https://doi.org/10.3390/molecules25215032
APA StyleHrichi, S., Chaabane-Banaoues, R., Bayar, S., Flamini, G., Oulad El Majdoub, Y., Mangraviti, D., Mondello, L., El Mzoughi, R., Babba, H., Mighri, Z., & Cacciola, F. (2020). Botanical and Genetic Identification Followed by Investigation of Chemical Composition and Biological Activities on the Scabiosa atropurpurea L. Stem from Tunisian Flora. Molecules, 25(21), 5032. https://doi.org/10.3390/molecules25215032