Assessing the Impact of Oil Types and Grades on Tocopherol and Tocotrienol Contents in Vegetable Oils with Chemometric Methods
Abstract
:1. Introduction
2. Results and Discussion
2.1. Validation of Analytical Method
2.2. Influence of Oil Types on Tocopherol and Tocotrienol Contents in Vegetable Oils
2.2.1. Influence of Oil Types on the Tocopherol and Tocotrienol Contents in First-Grade Traditional Edible Oils
2.2.2. Influence of Oil Types on Tocopherol and Tocotrienol Contents in New Types of Vegetable Oil
2.3. Influence of Oil Grades on Tocopherol and Tocotrienol Contents in Vegetable Oils
2.3.1. Influence of Refining on Tocopherol and Tocotrienol Contents in Vegetable Oils
2.3.2. Influence of Oil Grades on Tocopherol and Tocotrienol Contents in different Grades Traditional Edible Oils
3. Materials and Methods
3.1. Standards and Reagents
3.2. Collection of Traditional Edible Oils
3.3. Preparation of New Types of Vegetable Oil
3.3.1. Collection of Raw Oil Seed Samples
3.3.2. Extraction of New Types of Vegetable Oil
3.3.3. Refining of New Types of Vegetable Oil
3.4. Analytical Methods of Tocopherols and Tocotrienols
3.4.1. Sample Preparation
3.4.2. Determination of Tocopherols and Tocotrienols
3.4.3. Method Validation
3.5. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Malekbala, M.R.; Soltani, S.M.; Hosseini, S.; Babadi, F.E.; Malekbala, R.; Darajeh, N. Current Technologies in the Extraction, Enrichment and Analytical Detection of Tocopherols and Tocotrienols: A Review. Crit. Rev. Food Sci. Nutr. 2015, 57, 2935–2942. [Google Scholar] [CrossRef] [PubMed]
- Viñas, P.; Bravo-Bravo, M.; Lopez-Garcia, I.; Pastor-Belda, M.; Hernández-Córdoba, M. Pressurized liquid extraction and dispersive liquid–liquid microextraction for determination of tocopherols and tocotrienols in plant foods by liquid chromatography with fluorescence and atmospheric pressure chemical ionization-mass spectrometry detection. Talanta 2014, 119, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Traber, M.G. Vitamin E—Food Chemistry, Composition, and Analysis. Am. J. Clin. Nutr. 2005, 82, 204. [Google Scholar] [CrossRef]
- Andrés, M.P.S.; Otero, J.; Vera, S. High performance liquid chromatography method for the simultaneous determination of α-, γ- and δ-tocopherol in vegetable oils in presence of hexadecyltrimethylammonium bromide/n-propanol in mobile phase. Food Chem. 2011, 126, 1470–1474. [Google Scholar] [CrossRef]
- Senesi, E.; Rizzolo, A.; Colombo, C.; Testoni, A. Influence of pre-processing: Storage conditions on peeled almond quality. Ital. J. Food Sci. 1996, 8, 115–125. [Google Scholar]
- Seppanen, C.M.; Song, Q.; Csallany, A.S. The Antioxidant Functions of Tocopherol and Tocotrienol Homologues in Oils, Fats, and Food Systems. J. Am. Oil Chem. Soc. 2010, 87, 469–481. [Google Scholar] [CrossRef]
- Boukandoul, S.; Santos, C.S.; Casal, S.; Zaidi, F. Oxidation delay of sunflower oil under frying by moringa oil addition: More than just a blend. J. Sci. Food Agric. 2019, 99, 5483–5490. [Google Scholar] [CrossRef]
- Thiele, J.J.; Hsieh, S.N.; Ekanayake-Mudiyanselage, S. Vitamin E: Critical Review of Its Current Use in Cosmetic and Clinical Dermatology. Dermatol. Surg. 2006, 31, 805–813. [Google Scholar] [CrossRef]
- Wong, S.K.; Kamisah, Y.; Mohamed, N.; Muhammad, N.; Masbah, N.; Fahami, N.A.M.; Naina-Mohamed, I.; Shuid, A.N.; Saad, Q.M.; Abdullah, A.; et al. Potential Role of Tocotrienols on Non-Communicable Diseases: A Review of Current Evidence. Nutrition 2020, 12, 259. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Q. Natural forms of vitamin E: Metabolism, antioxidant, and anti-inflammatory activities and their role in disease prevention and therapy. Free. Radic. Biol. Med. 2014, 72, 76–90. [Google Scholar] [CrossRef] [Green Version]
- Pérez, A.G.; León, L.; Pascual, M.; De La Rosa, R.; Belaj, A.; Sanz, C. Analysis of Olive (Olea Europaea L.) Genetic Resources in Relation to the Content of Vitamin E in Virgin Olive Oil. Antioxidants 2019, 8, 242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Constantinou, C.; Papas, A.; Constantinou, A. Vitamin E and cancer: An insight into the anticancer activities of vitamin E isomers and analogs. Int. J. Cancer 2008, 123, 739–752. [Google Scholar] [CrossRef]
- Shammugasamy, B.; Ramakrishnan, Y.; Ghazali, H.; Muhammad, K. Tocopherol and tocotrienol contents of different varieties of rice in Malaysia. J. Sci. Food Agric. 2014, 95, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Grilo, E.C.; Costa, P.N.; Gurgel, C.S.S.; Beserra, A.F.D.L.; Almeida, F.N.D.S.; Dimenstein, R. Alpha-tocopherol and gamma-tocopherol concentration in vegetable oils. Food Sci. Technol. 2014, 34, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Pandya, J.K.; DeBonee, M.; Corradini, M.G.; Camire, M.E.; McClements, D.J.; Kinchla, A.J. Development of vitamin E-enriched functional foods: Stability of tocotrienols in food systems. Int. J. Food Sci. Technol. 2019, 54, 3196–3204. [Google Scholar] [CrossRef]
- Mène-Saffrané, L. Vitamin E Biosynthesis and Its Regulation in Plants. Antioxidants 2017, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Alberdi-Cedeño, J.; Ibargoitia, M.L.; Guillén, M.D. Effect of the Enrichment of Corn Oil With alpha- or gamma-Tocopherol on Its In Vitro Digestion Studied by 1H NMR and SPME-GC/MS; Formation of Hydroperoxy-, Hydroxy-, Keto-Dienes and Keto-E-epoxy-E-Monoenes in the More alpha-Tocopherol Enriched Samples. Antioxidants 2020, 9, 246. [Google Scholar] [CrossRef] [Green Version]
- Kua, Y.L.; Gan, S.; Morris, A.; Ng, H.K. A validated, rapid, simple and economical high-performance liquid-chromatography method to quantify palm tocopherol and tocotrienols. J. Food Compos. Anal. 2016, 53, 22–29. [Google Scholar] [CrossRef]
- Flakelar, C.L.; Prenzler, P.D.; Luckett, D.J.; Howitt, J.A.; Doran, G. A rapid method for the simultaneous quantification of the major tocopherols, carotenoids, free and esterified sterols in canola (Brassica napus) oil using normal phase liquid chromatography. Food Chem. 2017, 214, 147–155. [Google Scholar] [CrossRef]
- Pinheiro-Sant’Ana, H.M.; Guinazi, M.; Oliveira, D.D.S.; Della Lucia, C.M.; Reis, B.D.L.; Brandão, S.C.C. Method for simultaneous analysis of eight vitamin E isomers in various foods by high performance liquid chromatography and fluorescence detection. J. Chromatogr. A 2011, 1218, 8496–8502. [Google Scholar] [CrossRef]
- Bartosińska, E.; Buszewska-Forajta, M.; Siluk, D. GC–MS and LC–MS approaches for determination of tocopherols and tocotrienols in biological and food matrices. J. Pharm. Biomed. Anal. 2016, 127, 156–169. [Google Scholar] [CrossRef] [PubMed]
- Barros, J.C.; Munekata, P.E.S.; De Carvalho, F.A.L.; Pateiro, M.; Barba, F.J.; Domínguez, R.; Trindade, M.A.; Lorenzo, J.M. Use of Tiger Nut (Cyperus esculentus L.) Oil Emulsion as Animal Fat Replacement in Beef Burgers. Foods 2020, 9, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chasquibol, N.; Gallardo, G.; Gómez-Coca, R.B.; Trujillo, D.; Moreda, W.; Pérez-Camino, M.C. Glyceridic and Unsaponifiable Components of Microencapsulated Sacha Inchi (Plukenetia huayllabambana L. and Plukenetia volubilis L.) Edible Oils. Foods 2019, 8, 671. [Google Scholar] [CrossRef] [Green Version]
- Cui, G.; Liu, Z.; Wei, M.; Yang, L. Turpentine as an alternative solvent for the extraction of gutta-percha from Eucommia ulmoides barks. Ind. Crop. Prod. 2018, 121, 142–150. [Google Scholar] [CrossRef]
- Gencoglu, H.; Orhan, C.; Tuzcu, M.; Sahin, N.; Juturu, V.; Sahin, K. Effects of walnut oil on metabolic profile and transcription factors in rats fed high-carbohydrate-/-fat diets. J. Food Biochem. 2020, 44, e13235. [Google Scholar] [CrossRef]
- Gu, L.-B.; Zhang, G.-J.; Du, L.; Du, J.; Qi, K.; Zhu, X.-L.; Zhang, X.-Y.; Jiang, Z.-H. Comparative study on the extraction of Xanthoceras sorbifolia Bunge (yellow horn) seed oil using subcritical n-butane, supercritical CO2, and the Soxhlet method. LWT 2019, 111, 548–554. [Google Scholar] [CrossRef]
- Gutiérrez, L.-F.; Sanchez-Reinoso, Z.; Quiñones-Segura, Y. Effects of Dehulling Sacha Inchi (Plukenetia volubilis L.) Seeds on the Physicochemical and Sensory Properties of Oils Extracted by Means of Cold Pressing. J. Am. Oil Chem. Soc. 2019, 96, 1187–1195. [Google Scholar] [CrossRef]
- Huang, Y.; Yin, Z.; Guo, J.; Wang, F.; Zhang, J. Oil Extraction and Evaluation from Yellow Horn Using a Microwave-Assisted Aqueous Saline Process. Molecules 2019, 24, 2598. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Zhang, L.; Xiao, Z.; Liu, R.; Chen, J.; He, Z.; Fu, J. Production of Biodiesel Using a Vegetable Oil from Swida wilsoniana Fruits. Period. Polytech. Chem. Eng. 2015, 59, 283–287. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Zheng, L.; Liu, R.; Chang, M.; Huang, J.; Zhao, C.; Jin, Q.; Wang, X. Potential underutilized oil resources from the fruit and seed of Rhus chinensis Mill. Ind. Crop. Prod. 2019, 129, 339–344. [Google Scholar] [CrossRef]
- Zhang, Z.-S.; Xie, Q.-F.; Che, L. Synergistic effects of ultrasound and extraction solvent on the bioactive compound in kenaf seed oil. J. Food Sci. Technol. 2020, 57, 2118–2128. [Google Scholar] [CrossRef] [PubMed]
- Pengkumsri, N.; Chaiyasut, C.; Sivamaruthi, B.S.; Saenjum, C.; Sirilun, S.; Peerajan, S.; Suwannalert, P.; Sirisattha, S.; Chaiyasut, K.; Kesika, P. The influence of extraction methods on composition and antioxidant properties of rice bran oil. Food Sci. Technol. 2015, 35, 493–501. [Google Scholar] [CrossRef] [Green Version]
- Górnaś, P.; Rudzińska, M.; Grygier, A.; Lācis, G. Diversity of oil yield, fatty acids, tocopherols, tocotrienols, and sterols in the seeds of 19 interspecific grapes crosses. J. Sci. Food Agric. 2018, 99, 2078–2087. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Ren, Y.; Yang, R.; Zhao, Q.; Zhang, W.; Ruijin, Y. Combination of thermal pretreatment and alcohol-assisted aqueous processing for rapeseed oil extraction. J. Sci. Food Agric. 2019, 99, 3509–3516. [Google Scholar] [CrossRef]
- Holgado, F.; Márquez-Ruiz, G.; Ruiz-Méndez, M.V.; Velasco, J. Effects of the drying method on the oxidative stability of the free and encapsulated fractions of microencapsulated sunflower oil. Int. J. Food Sci. Technol. 2019, 54, 2520–2528. [Google Scholar] [CrossRef]
- Rauf, S.; Jamil, N.; Tariq, S.A.; Khan, M.; Kausar, M.; Kaya, Y. Progress in modification of sunflower oil to expand its industrial value. J. Sci. Food Agric. 2017, 97, 1997–2006. [Google Scholar] [CrossRef]
- Saini, R.K.; Keum, Y.-S. Tocopherols and tocotrienols in plants and their products: A review on methods of extraction, chromatographic separation, and detection. Food Res. Int. 2016, 82, 59–70. [Google Scholar] [CrossRef]
- Adhikari, P.; Hwang, K.T.; Shin, M.K.; Lee, B.K.; Kim, S.K.; Kim, S.Y.; Lee, K.-T.; Zu Kim, S. Tocols in caneberry seed oils. Food Chem. 2008, 111, 687–690. [Google Scholar] [CrossRef]
- Ansolin, M.; De Souza, P.T.; Meirelles, A.J.D.A.; Batista, E.A.C. Tocopherols and Tocotrienols: An Adapted Methodology by UHPLC/MS Without Sample Pretreatment Steps. Food Anal. Methods 2017, 10, 2165–2174. [Google Scholar] [CrossRef]
- Méjean, M.; Brunelle, A.; Touboul, D. Quantification of tocopherols and tocotrienols in soybean oil by supercritical-fluid chromatography coupled to high-resolution mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 5133–5142. [Google Scholar] [CrossRef]
- Ahmed, M.; Daun, J.K.; Przybylski, R. FT-IR based methodology for quantitation of total tocopherols, tocotrienols and plastochromanol-8 in vegetable oils. J. Food Compos. Anal. 2005, 18, 359–364. [Google Scholar] [CrossRef]
- Shi, L.; Zheng, L.; Liu, R.; Chang, M.; Huang, J.; Zhao, C.; Jin, Q.; Wang, X. Physicochemical property, chemical composition and free radical scavenging capacity of cold pressed kernel oils obtained from different Eucommia ulmoides Oliver cultivars. Ind. Crop. Prod. 2018, 124, 912–918. [Google Scholar] [CrossRef]
- Wei, J.; Chen, L.; Qiu, X.; Hu, W.; Sun, H.; Chen, X.; Bai, Y.; Gu, X.; Wang, C.; Chen, H.; et al. Optimizing refining temperatures to reduce the loss of essential fatty acids and bioactive compounds in tea seed oil. Food Bioprod. Process. 2015, 94, 136–146. [Google Scholar] [CrossRef]
- Wong, Y.F.; Makahleh, A.; Saad, B.; Ibrahim, M.N.M.; Rahim, A.A.; Brosse, N. UPLC method for the determination of vitamin E homologues and derivatives in vegetable oils, margarines and supplement capsules using pentafluorophenyl column. Talanta 2014, 130, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Durmaz, G.; Gökmen, V. Effect of refining on bioactive composition and oxidative stability of hazelnut oil. Food Res. Int. 2019, 116, 586–591. [Google Scholar] [CrossRef]
- Naz, S.; Sherazi, S.T.H.; Talpur, F.N. Changes of Total Tocopherol and Tocopherol Species During Sunflower Oil Processing. J. Am. Oil Chem. Soc. 2010, 88, 127–132. [Google Scholar] [CrossRef]
- Pan, F.; Li, Y.; Luo, X.; Wang, X.; Wang, C.; Wen, B.; Guan, X.; Xu, Y.; Liu, B. Effect of the chemical refining process on composition and oxidative stability of evening primrose oil. J. Food Process. Preserv. 2020, 44, e14800. [Google Scholar] [CrossRef]
- Ergönül, P.G.; Köseoğlu, O. Changes in α-, β-, γ- and δ-tocopherol contents of mostly consumed vegetable oils during refining process. CyTA—J. Food 2013, 12, 199–202. [Google Scholar] [CrossRef]
- Medina-Juárez, L.A.; Gámez-Meza, N.; Ortega-Garcia, J.; Noriega-Rodríguez, J.; Angulo-Guerrero, O. Trans fatty acid composition and tocopherol content in vegetable oils produced in Mexico. J. Am. Oil Chem. Soc. 2000, 77, 721–724. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, T.; Xu, Z.; Liu, R.; Zhang, H.; Wang, X.; Huang, J.; Jin, Q. Comparison of the characteristics and oxidation kinetic parameters of flaxseed (Linum usitatissimum L.) oil products with different refining degree. J. Food Process. Preserv. 2020, 44, e14753. [Google Scholar] [CrossRef]
- Adjonu, R.; Zhou, Z.; Prenzler, P.D.; Ayton, J.; Blanchard, C.L. Different Processing Practices and the Frying Life of Refined Canola Oil. Foods 2019, 8, 527. [Google Scholar] [CrossRef] [Green Version]
- Durante, M.; Ferramosca, A.; Treppiccione, L.; Di Giacomo, M.; Zara, V.; Montefusco, A.; Piro, G.; Mita, G.; Bergamo, P.; Lenucci, M.S. Application of response surface methodology (RSM) for the optimization of supercritical CO2 extraction of oil from patè olive cake: Yield, content of bioactive molecules and biological effects in vivo. Food Chem. 2020, 332, 127405. [Google Scholar] [CrossRef]
- Wu, Y.; Yuan, W.; Han, X.; Hu, J.; Yin, L.; Lv, Z. Integrated analysis of fatty acid, sterol and tocopherol components of seed oils obtained from four varieties of industrial and environmental protection crops. Ind. Crop. Prod. 2020, 154, 112655. [Google Scholar] [CrossRef]
- Xu, L.-L.; Wen, Y.-Q.; Liu, Y.-L.; Ma, Y.-X. Occurrence of deoxynivalenol in maize germs from North China Plain and the distribution of deoxynivalenol in the processed products of maize germs. Food Chem. 2018, 266, 557–562. [Google Scholar] [CrossRef]
- Santori, G.; Di Nicola, G.; Moglie, M.; Polonara, F. A review analyzing the industrial biodiesel production practice starting from vegetable oil refining. Appl. Energy 2012, 92, 109–132. [Google Scholar] [CrossRef] [Green Version]
- Metaboanalyst. Available online: https://www.metaboanalyst.ca/faces/ModuleView.xhtml (accessed on 24 October 2020).
Vegetable Oils | Minimum Content–Maximun Content (mg/kg) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Medium Content (mg/kg) | |||||||||||
α-T | β-T | γ-T | δ-T | α-T3 | β-T3 | γ-T3 | δ-T3 | ΣT a | ΣT3 b | Total Tocols | |
Peanut oil (n = 15) | 133.2–366.4 200.8 | ND c | 113.3–314.5 183.2 | 22.8–38.3 29.6 | ND | ND | NQ | ND | 282.5–719.3 413.5 | NQ | 282.5–719.3 413.5 |
Rice bran oil (n = 7) | 5.9–503.0 151.8 | NQ-5.3 1.0 | NQ-190.4 64.4 | NQ-84.9 16.1 | NQ-275.8 71.9 | ND | 39.2–231.5 107.6 | NQ-22.1 5.4 | 32.3–621.7 233.2 | 39.2–504.8 184.9 | 85.0–1126.5 418.2 |
Corn oil (n = 12) | 130.9–235.8 183.9 | NQ d | 425.4–759.9 623.9 | 43.5–64.8 52.2 | ND | ND | 40.8–59.7 53.4 | NQ | 643.7–1042.5 860.0 | 40.8–59.7 53.4 | 684.6–1097.7 913.4 |
Sunflower oil (n = 8) | 542.1–870.5 718.4 | ND | ND-67.4 21.5 | ND-22.0 2.7 | ND | ND | NQ | ND | 555.3–914.6 743.1 | NQ | 555.3–914.6 743.1 |
Cottonseed oil (n = 3) | 449.3–634.0 553.1 | ND | 284.5–518.0 402.5 | 24.0–29.5 26.9 | ND-84.5 28.2 | ND | NQ | ND | 761.1–1118.1 982.5 | NQ-84.5 28.2 | 845.7–1118.1 1010.7 |
Camellia oil (n = 6) | NQ-123.4 59.6 | ND | NQ-20.3 6.2 | ND | ND | ND | ND | ND | 5.9–123.4 65.7 | ND | 5.9–123.4 65.7 |
Sesame oil (n = 14) | ND | ND | 214.0–417.0 320.0 | ND | ND | ND | ND | ND | 214.0–417.0 320.0 | ND | 214.0–417.0 320.0 |
Soybean oil (n = 23) | 69.6–172.6 115.3 | NQ | 495.2–799.1 675.5 | 212.8–305.6 261.6 | ND | ND | NQ | NQ | 804.5–1246.6 1052.6 | NQ | 804.5–1246.6 1052.6 |
Rapeseed oil (n = 13) | 132.7–248.2 181.0 | NQ | 303.5–460.7 383.5 | 26.8–39.9 31.0 | ND | ND | ND | ND | 498.0–691.7 595.5 | ND | 498.0–691.7 595.5 |
Oil Types | Tocols Content (mg/kg) | Reference | ||
---|---|---|---|---|
Total Tocols | α-T | γ-T | ||
Soybean oil | 958 | /a | / | [1] |
999 | / | / | [38] | |
1026.1 | / | / | [20] | |
1135.8 | / | / | [39] | |
1886 | / | / | [40] | |
/ | / | 642.7 | [20] | |
/ | / | 823.1 | [39] | |
/ | / | 390–690 | [41] | |
Sunflower oil | 768 | / | / | [38] |
/ | 714.9 | / | [4] | |
/ | 604.6 | / | [4] | |
/ | 720 | / | [4] | |
Peanut oil | 367 | / | / | [1] |
259.6 | / | / | [40] | |
Rapeseed oil | 649.1 | / | / | [20] |
555.2 | / | / | [39] | |
Corn oil | 808.3 | / | / | [39] |
Rice bran oil | 867.2 | / | / | [39] |
Eucommia ulmoides seed oil | 1218.24 | / | / | [30] |
Sumac fruit oil | 876.95 | / | / | [30] |
Kenaf seed oil | 531.5 | / | / | [42] |
Vegetable Oil | α-T | β-T | γ-T | δ-T | α-T3 | β-T3 | γ-T3 | δ-T3 | ΣT l | ΣT3 m | Total Tocols |
---|---|---|---|---|---|---|---|---|---|---|---|
yellow horn seed oil | 54.2 ± 1.2 a | ND n | 463.3 ± 12.3 e | 56.2 ± 1.4 c | NQ | ND | 43.8 ± 1.0 c | NQ | 573.6 ± 14.8 d | 43.8 ± 1.0 d | 617.4 ± 15.7 d |
Walnut oil | 74.2 ± 3.1 b | ND | 300.8 ± 1.8 c | 83.0 ± 2.1 d | NQ | ND | NQ | NQ | 458.1 ± 3.9 b,c | ND | 458.1 ± 3.9 b |
Sumac fruit oil | 72.7 ± 1.4 b | 70.6 ± 1.1 c | 175.6 ± 1.6 b | 285.5 ± 5.4 e | NQ | 6.6 ± 1.1 a | 101.8 ± 3.1 e | 124.6 ± 5.2 b | 604.3 ± 7.9 e | 233.0 ± 9.2 g | 837.3 ± 15.8 f |
Sacha inchi oil | NQ o | ND | 1016.0 ± 5.2 h | 708.6 ± 4.1 f | ND | ND | 55.5 ± 0.4 d | ND | 1724.6 ± 9.2 i | 55.5 ± 0.4 e | 1780.1 ± 9.6 i |
Tigernut oil | 173.1 ± 2.8 e | 44.7 ± 0.4 b | NQ | ND | ND | ND | ND | ND | 217.8 ± 3.2 a | ND | 217.8 ± 3.2 a |
Hazelnut oil | 358.4 ± 2.4 g | ND | 102.0 ± 3.1 a | 10.8 ± 0.4 a | NQ | ND | 29.8 ± 0.5 b | 6.1 ± 0.2 a | 471.2 ± 5.5 c | 36.0 ± 0.3 c | 507.2 ± 5.2 c |
Swida wilsoniana oil | 792.4 ± 3.6 h | ND | NQ | NQ | ND | ND | 139.8 ± 1.2 g | ND | 792.4 ± 3.6 g | 139.8 ± 1.2 f | 932.2 ± 4.8 g |
Suaeda salsa seed oil | 146.4 ± 2.6 d | ND | 568.8 ± 16.2 f | 30.8 ± 0.7 b | NQ | ND | 22.5 ± 0.5 a | NQ | 746.1 ± 19.2 f | 22.5 ± 0.5 b | 768.6 ± 18.6 e |
Kenaf seed oil | 295.4 ± 4.6 f | ND | 425.1 ± 5.1 d | 10.2 ± 0.3 a | NQ | ND | 20.7 ± 0.7 a | NQ | 730.6 ± 9.4 f | 20.7 ± 0.7 b | 751.3 ± 8.7 e |
Eucommia ulmoides seed oil | 107.7 ± 2.5 c | 25.6 ± 0.7 a | 851.1 ± 9.3 g | 288.6 ± 6.9 e | 3.2 ± 0.2 a | ND | ND | NQ | 1273.0 ± 19.3 h | 3.2 ± 0.2 a | 1276.2 ± 19.4 h |
Vegetable Oils | Minimum Content-Maximum Content (mg/kg) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Medium Content (mg/kg) | ||||||||||||
α-T | β-T | γ-T | δ-T | α-T3 | β-T3 | γ-T3 | δ-T3 | ΣT a | ΣT3 b | Total tocols | ||
Peanut oil | G1 e (n = 15) | 133.2–366.4 200.8 | ND c | 113.3–314.5 183.2 | 22.8–38.3 29.6 | ND | ND | ND | ND | 282.5–719.3 413.5 | ND | 282.5–719.3 413.5 |
G2 f (n = 4) | 183.2–233.9 213.5 | NQ d | 128.5–219.0 176.4 | 22.3–33.6 29.9 | ND | ND | NQ | ND | 334.0–465.4 419.9 | NQ | 334.0–465.4 419.9 | |
Rice bran oil | G1 (n = 7) | 5.9–503.0 151.8 | ND- 5.3 1.0 | ND- 190.4 64.4 | ND -84.9 16.1 | ND -275.8 71.9 | ND | 39.2–231.5 107.6 | ND- 22.1 5.4 | 32.3–621.7 233.2 | 39.2–504.8 184.9 | 85.0–1126.5 418.2 |
G2 (n = 4) | 483.0–593.3 528.3 | ND-11.3 3.8 | 59.3–86.0 74.5 | ND-29.6 13.4 | 237.0–284.9 258.3 | ND-13.2 3.3 | 216.1–369.3 279.9 | 21.0–29.8 25.3 | 542.2–720.3 620.0 | 490.2–684.0 566.7 | 1112.7–1279.0 1186.7 | |
Cottonseed oil | G1 (n = 3) | 449.3–634.0 553.1 | ND | 284.5–518.0 402.5 | 24.0–29.5 26.9 | ND-84.5 28.2 | ND | ND | ND | 761.1–1118.1 982.5 | ND-84.5 28.2 | 845.7–1118.1 1010.7 |
G2 (n = 3) | 513.4–631.8 576.4 | ND | 500.1–533.5 516.8 | ND-19.9 13.1 | ND | ND | NQ | ND | 1033.3–1165.3 1106.2 | NQ | 1033.3–1165.3 1106.2 | |
Soybean oil | G1 (n = 23) | 69.6–172.6 115.3 | ND | 495.2–799.1 675.5 | 212.8–305.6 261.6 | ND | ND | ND | ND | 804.5–1246.6 1052.6 | ND | 804.5–1246.6 1052.6 |
G3 g (n = 17) | 34.1–149.5 98.8 | NQ-12.8 2.1 | 534.7–824.2 718.3 | 240.6–443.5 318.9 | NQ | ND | NQ | ND | 815.6–1322.4 1138.1 | NQ | 815.6–1322.4 1138.1 | |
Rapeseed oil | G1 (n = 13) | 132.7–248.2 181.0 | ND | 303.5–460.7 383.5 | 26.8–39.9 31.0 | ND | ND | ND | ND | 498.0–691.7 595.5 | ND | 498.0–691.7 595.5 |
G2 (n = 3) | 95.0–258.4 169.1 | ND | 14.6–431.4 265.8 | 18.5–31.2 25.0 | ND | ND | ND | ND | 128.1–634.9 459.9 | ND | 128.1–634.9 459.9 | |
G3 (n = 8) | 112.6–299.7 220.6 | NQ | 361.6–517.0 443.4 | 30.2–67.8 36.9 | ND | ND | NQ | ND | 506.7–836.8 701.0 | NQ | 506.7–836.8 701.0 | |
G4 h (n = 6) | 157.9–283.7 199.1 | NQ | 417.3–523.0 465.3 | 30.3–58.2 36.6 | ND | ND | NQ | NQ | 617.7–837.8 701.0 | NQ | 617.7–837.8 701.0 |
Sample Availability: Not available. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Y.; Xu, L.; Xue, C.; Jiang, X.; Wei, Z. Assessing the Impact of Oil Types and Grades on Tocopherol and Tocotrienol Contents in Vegetable Oils with Chemometric Methods. Molecules 2020, 25, 5076. https://doi.org/10.3390/molecules25215076
Wen Y, Xu L, Xue C, Jiang X, Wei Z. Assessing the Impact of Oil Types and Grades on Tocopherol and Tocotrienol Contents in Vegetable Oils with Chemometric Methods. Molecules. 2020; 25(21):5076. https://doi.org/10.3390/molecules25215076
Chicago/Turabian StyleWen, Yunqi, Lili Xu, Changhu Xue, Xiaoming Jiang, and Zihao Wei. 2020. "Assessing the Impact of Oil Types and Grades on Tocopherol and Tocotrienol Contents in Vegetable Oils with Chemometric Methods" Molecules 25, no. 21: 5076. https://doi.org/10.3390/molecules25215076
APA StyleWen, Y., Xu, L., Xue, C., Jiang, X., & Wei, Z. (2020). Assessing the Impact of Oil Types and Grades on Tocopherol and Tocotrienol Contents in Vegetable Oils with Chemometric Methods. Molecules, 25(21), 5076. https://doi.org/10.3390/molecules25215076