AGS3 and Gαi3 Are Concomitantly Upregulated as Part of the Spindle Orientation Complex during Differentiation of Human Neural Progenitor Cells
Abstract
:1. Introduction
2. Results
2.1. Expression Profile of ACD-Related Proteins during Differentiation
2.2. Interaction between Gαi Subunits and AGS3
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Cell Culture
4.3. Transfection of HEK293 Cell
4.4. Differentiation of ENStem-A Cell and ReNcell VM
4.5. Immunohistochemistry
4.6. Co-Immunoprecipitation Assays
4.7. Western Blot Analysis
4.8. RT-PCR
4.9. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Taverna, E.; Gotz, M.; Huttner, W.B. The cell biology of neurogenesis: Toward an understanding of the development and evolution of the neocortex. Annu. Rev. Cell Dev. Biol. 2014, 30, 465–502. [Google Scholar] [CrossRef] [PubMed]
- Shen, Q.; Zhong, W.; Jan, Y.N.; Temple, S. Asymmetric Numb distribution is critical for asymmetric cell division of mouse cerebral cortical stem cells and neuroblasts. Development 2002, 129, 4843–4853. [Google Scholar] [PubMed]
- Shitamukai, A.; Matsuzaki, F. Control of asymmetric cell division of mammalian neural progenitors. Dev. Growth Differ. 2012, 54, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, A.; Ohno, S. The PAR-aPKC system: Lessons in polarity. J. Cell Sci. 2006, 119, 979–987. [Google Scholar] [CrossRef] [Green Version]
- Bowman, S.K.; Neumuller, R.A.; Novatchkova, M.; Du, Q.; Knoblich, J.A. The Drosophila NuMA homolog Mud regulates spindle orientation in asymmetric cell division. Dev. Cell 2006, 10, 731–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siller, K.H.; Doe, C.Q. Spindle orientation during asymmetric cell division. Nat. Cell Biol. 2009, 11, 365–374. [Google Scholar] [CrossRef]
- Roubinet, C.; Cabernard, C. Control of asymmetric cell division. Curr. Opin. Cell Biol. 2014, 31, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Macara, I.G. Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell 2004, 119, 503–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konno, D.; Shioi, G.; Shitamukai, A.; Mori, A.; Kiyonari, H.; Miyata, T.; Matsuzaki, F. Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renewability during mammalian neurogenesis. Nat. Cell Biol. 2008, 10, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Woodard, G.E.; Huang, N.N.; Cho, H.; Miki, T.; Tall, G.G.; Kehrl, J.H. Ric-8A and Giα recruit LGN, NuMA, and dynein to the cell cortex to help orient the mitotic spindle. Mol. Cell. Biol. 2010, 30, 3519–3530. [Google Scholar] [CrossRef] [Green Version]
- Doze, V.A.; Perez, D.M. G-protein-coupled receptors in adult neurogenesis. Pharmacol. Rev. 2012, 64, 645–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tse, M.K.; Wong, Y.H. Neuronal functions of activators of G protein signaling. Neurosignals 2013, 21, 259–271. [Google Scholar] [CrossRef]
- Shin, S.; Mitalipova, M.; Noggle, S.; Tibbitts, D.; Venable, A.; Rao, R.; Stice, S.L. Long-term proliferation of human embryonic stem cell derived neuroepithelial cellsing defined adherent culture conditions. Stem Cells 2006, 24, 125–138. [Google Scholar] [CrossRef] [Green Version]
- Hoffrogge, R.; Mikkat, S.; Scharf, C.; Beyer, S.; Christoph, H.; Pahnke, J.; Mix, E.; Berth, M.; Uhrmacher, A.; Zubrzycki, I.Z.; et al. 2-DE proteome analysis of a proliferating and differentiating human neuronal stem cell line (ReNcell VM). Proteomics 2006, 6, 1833–1847. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.J.; Oh, S.H.; Lee, N.; Choi, C.; Jeon, I.; Kim, H.S.; Shin, D.A.; Lee, S.E.; Kim, D.; Song, J. Contralaterally transplanted human embryonic stem cell-derived neural precursor cells (ENStem-A) migrate and improve brain functions in stroke-damaged rats. Exp. Mol. Med. 2013, 45, e53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, M.T.; Xie, H.; Zhou, B.; Chia, P.H.; Rizk, P.; Um, M.; Udolph, G.; Yang, H.; Lim, B.; Lodish, H.F. MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Mol. Cell. Biol. 2009, 29, 5290–5305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frohlich, M.; Jaeger, A.; Weiss, D.G.; Kriehuber, R. Inhibition of BCL-2 leads to increased apoptosis and delayed neuronal differentiation in human ReNcell VM cells in vitro. Int. J. Dev. Neurosci. 2016, 48, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Mussmann, C.; Hubner, R.; Trilck, M.; Rolfs, A.; Frech, M.J. HES5 is a key mediator of Wnt-3a-induced neuronal differentiation. Stem Cells Dev. 2014, 23, 1328–1339. [Google Scholar] [CrossRef]
- Williams, S.E.; Ratliff, L.A.; Postiglione, M.P.; Knoblich, J.A.; Fuchs, E. Par3-mInsc and Gαi3 cooperate to promote oriented epidermal cell divisions through LGN. Nat. Cell Biol. 2014, 16, 758–769. [Google Scholar] [CrossRef] [Green Version]
- Jia, M.; Li, J.; Zhu, J.; Wen, W.; Zhang, M.; Wang, W. Crystal structures of the scaffolding protein LGN reveal the general mechanism by which GoLoco binding motifs inhibit the release of GDP from Gαi. J. Biol. Chem. 2012, 287, 36766–36776. [Google Scholar] [CrossRef] [Green Version]
- Pan, Z.; Zhu, J.; Shang, Y.; Wei, Z.; Jia, M.; Xia, C.; Wen, W.; Wang, W.; Zhang, M. An autoinhibited conformation of LGN reveals a distinct interaction mode between GoLoco motifs and TPR motifs. Structure 2013, 21, 1007–1017. [Google Scholar] [CrossRef] [Green Version]
- Baltoumas, F.A.; Theodoropoulou, M.C.; Hamodrakas, S.J. Interactions of the α-subunits of heterotrimeric G-proteins with GPCRs, effectors and RGS proteins: A critical review and analysis of interacting surfaces, conformational shifts, structural diversity and electrostatic potentials. J. Struct. Biol. 2013, 182, 209–218. [Google Scholar] [CrossRef]
- McCaffrey, L.M.; Macara, I.G. Signaling pathways in cell polarity. Cold Spring Harb. Perspect. Biol. 2012, 4, a009654. [Google Scholar] [CrossRef] [Green Version]
- Bergstralh, D.T.; Haack, T.; St Johnston, D. Epithelial polarity and spindle orientation: Intersecting pathways. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2013, 368, 20130291. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.S.; Johnston, C.A. Molecular pathways regulating mitotic spindle orientation in animal cells. Development 2013, 140, 1843–1856. [Google Scholar] [CrossRef] [Green Version]
- Sanada, K.; Tsai, L.H. G protein βγ subunits and AGS3 control spindle orientation and asymmetric cell fate of cerebral cortical progenitors. Cell 2005, 122, 119–131. [Google Scholar] [CrossRef] [Green Version]
- Morin, X.; Jaouen, F.; Durbec, P. Control of planar divisions by the G-protein regulator LGN maintains progenitors in the chick neuroepithelium. Nat. Neurosci. 2007, 10, 1440–1448. [Google Scholar] [CrossRef] [PubMed]
- Blumer, J.B.; Chandler, L.J.; Lanier, S.M. Expression analysis and subcellular distribution of the two G-protein regulators AGS3 and LGN indicate distinct functionality. Localization of LGN to the midbody during cytokinesis. J. Biol. Chem. 2002, 277, 15897–15903. [Google Scholar] [CrossRef] [Green Version]
- Fuja, T.J.; Schwartz, P.H.; Darcy, D.; Bryant, P.J. Asymmetric localization of LGN but not AGS3, two homologs of Drosophila Pins, in dividing human neural progenitor cells. J. Neurosci. Res. 2004, 75, 782–793. [Google Scholar] [CrossRef] [Green Version]
- Ohata, H.; Miyazaki, M.; Otomo, R.; Matsushima-Hibiya, Y.; Otsubo, C.; Nagase, T.; Arakawa, H.; Yokota, J.; Nakagama, H.; Taya, Y.; et al. NuMA is required for the selective induction of p53 target genes. Mol. Cell. Biol. 2013, 33, 2447–2457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, I.W.; Ahn, D.W.; Choi, J.K.; Cha, H.J.; Ock, M.S.; You, E.A.; Rhee, S.M.; Kim, K.C.; Choi, Y.H.; Song, K.S. Regulation of airway inflammation by G-protein regulatory motif peptides of AGS3 protein. Sci. Rep. 2016, 6, 27054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, Y.H.; Conklin, B.R.; Bourne, H.R. Gz-mediated hormonoal inhibition of cyclic AMP accumulation. Science 1992, 255, 339–342. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Ang, S.L.; Bloch, D.B.; Bloch, K.D.; Kawahara, Y.; Tolman, C.; Lee, R.; Seidmant, J.G.; Neer, E.J. Identification of cDNA encoding an additional a subunit of a human GTP-binding protein: Expression of three αi subtypes in human tissues and cell lines. Proc. Natl. Acad. Sci. USA 1988, 85, 4153–4157. [Google Scholar] [CrossRef] [Green Version]
- Strathmann, M.; Wilkie, T.M.; Simon, M.I. Diversity of the G-protein family: Sequences from five additional alpha subunits in the mouse. Proc. Natl. Acad. Sci. USA 1989, 86, 7407–7409. [Google Scholar] [CrossRef] [Green Version]
- Ercolani, L.; Stow, J.L.; Boyle, J.F.; Holtzman, E.J.; Lin, H.; Grove, J.R.; Ausiello, D.A. Membrane localization of the pertussis toxin-sensitive G-protein subunits αi2 and αi3 and expression of a metallothionein-αi2 fusion gene in LLC-PKI cells. Proc. Natl. Acad. Sci. USA 1990, 87, 4637–4639. [Google Scholar] [CrossRef] [Green Version]
- Gohla, A.; Klement, K.; Piekorz, R.P.; Pexa, K.; vom Dahl, S.; Spicher, K.; Dreval, V.; Haussinger, D.; Birnbaumer, L.; Nurnberg, B. An obligatory requirement for the heterotrimeric G protein Gi3 in the antiautophagic action of insulin in the liver. Proc. Natl. Acad. Sci. USA 2007, 104, 3003–3008. [Google Scholar] [CrossRef] [Green Version]
- Lou, X.; Mcquistan, T.; Orlando, R.A.; Farquhar, M.G. GAIP, GIPC and Gαi3 are concentrated in endocytic compartments of proximal tubule cells: Putative role in regulating megalin’s function. J. Am. Soc. Nephrol. 2002, 13, 918–927. [Google Scholar]
- Nagata, K.; Okano, Y.; Nozawa, Y. Identification of heterotrimeric GTP-binding proteins in human megakaryoblastic leukemia cell line, MEG-01, and their alteration during cellular differentiation. Life Sci. 1995, 57, 1675–1681. [Google Scholar] [CrossRef]
- Denis-Henriot, D.; de Mazancourt, P.; Goldsmith, P.K.; Giudicelli, Y. G proteins in adipocytes and preadipocytes: Characterization, subcellular distribution, and potential roles for Gi2 and/or Gi3 in the control of cell proliferation. Cell Signal. 1996, 8, 225–234. [Google Scholar] [CrossRef]
- Ogier-Denis, E.; Houri, J.J.; Bauvy, C.; Codogno, P. Guanine nucleotide exchange on heterotrimeric Gi3 protein controls autophagic sequestration in HT-29 cells. J. Biol. Chem. 1996, 271, 28593–28600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krumins, A.M.; Gilman, A.G. Targeted knockdown of G protein subunits selectively prevents receptor-mediated modulation of effectors and reveals complex changes in non-targeted signaling proteins. J. Biol. Chem. 2006, 281, 10250–10262. [Google Scholar] [CrossRef] [Green Version]
- Oner, S.S.; Maher, E.M.; Gabay, M.; Tall, G.G.; Blumer, J.B.; Lanier, S.M. Regulation of the G-protein regulatory-Gαi signaling complex by nonreceptor guanine nucleotide exchange factors. J. Biol. Chem. 2013, 288, 3003–3015. [Google Scholar] [CrossRef] [Green Version]
- Vural, A.; Fadillioglu, E.; Kelesoglu, F.; Ma, D.; Lanier, S.M. Role of G-proteins and phosphorylation in the distribution of AGS3 to cell puncta. J. Cell Sci. 2018, 131, jcs216507. [Google Scholar] [CrossRef] [Green Version]
- Natochin, M.; Lester, B.; Peterson, Y.K.; Bernard, M.L.; Lanier, S.M.; Artemyev, N.O. AGS3 inhibits GDP dissociation from Gα subunits of the Gi family and rhodopsin-dependent activation of transducin. J. Biol. Chem. 2000, 275, 40981–40985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, Y.H.; Demoliou-Mason, C.D.; Barnard, E.A. ADP-ribosylation with pertussis toxin modulates the GTP-sensitive opioid ligand binding in digitonin-soluble extracts of rat brain membranes. J. Neurochem. 1988, 51, 114–121. [Google Scholar] [CrossRef]
- Branham-O’Connor, M.; Robichaux, W.G., III; Zhang, X.K.; Cho, H.; Kehrl, J.H.; Lanier, S.M.; Blumer, J.B. Defective chemokine signal integration in leukocytes lacking activator of G protein signaling 3 (AGS3). J. Biol. Chem. 2014, 289, 10738–10747. [Google Scholar] [CrossRef] [Green Version]
- Robichaux, W.G., III; Oner, S.S.; Lanier, S.M.; Blumer, J.B. Direct coupling of a seven-transmembrane-span receptor to a Gαi G-protein regulatory motif complex. Mol. Pharmacol. 2015, 88, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Conley, J.M.; Watts, V.J. Differential effects of AGS3 expression on D2L dopamine receptor-mediated adenylyl cyclase signaling. Cell. Mol. Neurobiol. 2013, 33, 551–558. [Google Scholar] [CrossRef] [Green Version]
- Callihan, P.; Mumaw, J.; Machacek, D.W.; Stice, S.L.; Hooks, S.B. Regulation of stem cell pluripotency and differentiation by G protein coupled receptors. Pharmacol. Ther. 2011, 129, 290–306. [Google Scholar] [CrossRef]
- Thomas, C.J.; Tall, G.G.; Adhikari, A.; Sprang, S.R. Ric-8A catalyzes guanine nucleotide exchange on Gαi1 bound to the GPR/GoLoco exchange inhibitor AGS3. J. Biol. Chem. 2008, 283, 23150–23160. [Google Scholar] [CrossRef] [Green Version]
- Tall, G.G. Ric-8 regulation of heterotrimeric G proteins. J. Recept. Signal. Transduct. Res. 2013, 33, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Tse, M.K.; Morris, C.J.; Zhang, M.; Wong, Y.H. Activator of G protein signaling 3 forms a complex with resistance to inhibitors of cholinesterase-8A without promoting nucleotide exchange on Gαi3. Mol. Cell. Biochem. 2015, 401, 27–38. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Kogan, J.H.; Gross, A.K.; Zhou, Y.; Walton, N.M.; Shin, R.; Heusner, C.L.; Miyake, S.; Tajinda, K.; Tamura, K.; et al. SREB2/GPR85, a schizophrenia risk factor, negatively regulates hippocampal adult neurogenesis and neurogenesis-dependent learning and memory. Eur. J. Neurosci. 2012, 36, 2597–2608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurabayashi, N.; Nguyen, M.D.; Sanada, K. The G protein-coupled receptor GPRC5B contributes to neurogenesis in the developing mouse neocortex. Development 2013, 140, 4335–4346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshiura, S.; Ohta, N.; Matsuzaki, F. Tre1 GPCR signaling orients stem cell divisions in the Drosophila central nervous system. Dev. Cell 2012, 22, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Shinohara, H.; Udagawa, J.; Morishita, R.; Ueda, H.; Otani, H.; Semba, R.; Kato, K.; Asano, T. Gi2 signaling enhances proliferation of neural progenitor cells in the developing brain. J. Biol. Chem. 2004, 279, 41141–41148. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Huang, Y.; Rose, J.; Erichsen, D.; Herek, S.; Fujii, N.; Tamamura, H.; Zheng, J. Stromal cell-derived factor 1-mediated CXCR4 signaling in rat and human cortical neural progenitor cells. J. Neurosci Res. 2004, 76, 35–50. [Google Scholar] [CrossRef]
- Tso, P.H.; Wang, Y.; Yung, L.Y.; Tong, Y.; Lee, M.M.; Wong, Y.H. RGS19 inhibits Ras signaling through Nm23H1/2-mediated phosphorylation of the kinase suppressor of Ras. Cell Signal. 2013, 25, 1064–1074. [Google Scholar] [CrossRef]
- Lee, M.M.; Chui, R.K.; Tam, I.Y.; Lau, A.H.; Wong, Y.H. CCR1-mediated STAT3 tyrosine phosphorylation and CXCL8 expression in THP-1 macrophage-like cells involve pertussis toxin-insensitive Gα14/16 signaling and IL-6 release. J. Immunol. 2012, 189, 5266–5276. [Google Scholar] [CrossRef] [Green Version]
Gene | Sequence |
---|---|
Gαi1 | Sense: 5′-GGA GTA AGA TGA TCG ACC GCA-3′ Antisence: 5′-AAG CTG GTA CTC TCG GGA TCT-3′ |
Gαi2 | Sense: 5′-GAA GTT GCT GCT GTT GGG TG-3′ Antisnese: 5′-GAA GTT GCT GCT GTT GGG TG-3′ |
Gαi3 | Sense: 5′-GAG CCA TGG GAC GGC TAA AG-3′ Antisnese: 5′-TGG CCA CCT ACA TCA AAC ATC T-3′ |
LGN | Sense: 5′-GCT GTC TGA CAT TGA CCT CCT-3′ Antisnese: 5′-ACC ACT AGC TTT CGC TTC CC-3′ |
AGS3 | Sense: 5′-ATC TGA GCA TCG CCC AAG AG-3′ Antisnese: 5′-CTC CTT GTG GAA GGT CGT GG-3′ |
NuMA | Sense: 5′-GGA ACT GGC GAA GAT GAC CA-3′ Antisnese: 5′-AGA TGA CTG GCA AAC TCC CG-3′ |
GAPDH | Sense: 5′-GGC GTC TTC ACC ACC ATG GAG-3′ Antisnese: 5′-AAG TTG TCA TGG ATG ACC TTG GC-3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yip, J.L.K.; Lee, M.M.K.; Leung, C.C.Y.; Tse, M.K.; Cheung, A.S.T.; Wong, Y.H. AGS3 and Gαi3 Are Concomitantly Upregulated as Part of the Spindle Orientation Complex during Differentiation of Human Neural Progenitor Cells. Molecules 2020, 25, 5169. https://doi.org/10.3390/molecules25215169
Yip JLK, Lee MMK, Leung CCY, Tse MK, Cheung AST, Wong YH. AGS3 and Gαi3 Are Concomitantly Upregulated as Part of the Spindle Orientation Complex during Differentiation of Human Neural Progenitor Cells. Molecules. 2020; 25(21):5169. https://doi.org/10.3390/molecules25215169
Chicago/Turabian StyleYip, Jackson L. K., Maggie M. K. Lee, Crystal C. Y. Leung, Man K. Tse, Annie S. T. Cheung, and Yung H. Wong. 2020. "AGS3 and Gαi3 Are Concomitantly Upregulated as Part of the Spindle Orientation Complex during Differentiation of Human Neural Progenitor Cells" Molecules 25, no. 21: 5169. https://doi.org/10.3390/molecules25215169
APA StyleYip, J. L. K., Lee, M. M. K., Leung, C. C. Y., Tse, M. K., Cheung, A. S. T., & Wong, Y. H. (2020). AGS3 and Gαi3 Are Concomitantly Upregulated as Part of the Spindle Orientation Complex during Differentiation of Human Neural Progenitor Cells. Molecules, 25(21), 5169. https://doi.org/10.3390/molecules25215169