Tetrapodal Anion Transporters †
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Crystallography
2.3. Anion-Binding Studies
2.4. Transport Studies
2.4.1. Chloride/Nitrate Exchange Assay
2.4.2. Cationophore-Coupled Assay
2.4.3. 8-Hydroxypyrene-1,3,6-Trisulfonic Acid (HPTS) Transport Selectivity Assay
3. Materials and Methods
3.1. General Experimental
3.1.1. Chemicals and Consumables
- N-tosylaziridine (CAS No: 3634-89-7) was purchased from Combi-Blocks, Inc, San Diego, CA, USA.
- Glacial acetic acid (CAS No: 64-19-7) was purchased from Thermo Fisher Scientific, North Ryde, NSW, Australia.
- 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) (CAS No: 26853-31-6) was purchased from Avanti Polar Lipids, Inc, Alabaster, AL, USA.
- Monensin sodium salt (Mon) (CAS No: 22373-78-0) was purchased Cayman Chemical, Ann Arbor, MI, USA.
- Bovine serum albumin (BSA) (CAS No: 9048-46-8)—USA.
- Valinomycin (Potassium ionophore I) (CAS No: 2001-95-8)—Australia.
- 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (CAS No: 7365-45-9)—Australia.
- Gramicidin D (GRA) (CAS No: 1405-97-6)—Australia.
- N-methyl-d-glucamine (NMDG) (CAS No: 6284-40-8)—Australia.
- 8-Hydroxypyrene-1,3,6-Trisulfonic Acid (HPTS) (CAS No: 6358-69-6)—Australia.
- Ethylenediamine (CAS No: 107-15-3)—Australia.
- Hydrobromic acid (48%) (CAS No: 10035-10-6)—USA.
- Phenyl isocyanate (CAS No: 103-71-9)—Australia.
- Phenyl isothiocyanate (CAS No: 103-72-0)—Australia.
- tert-Butyl isocyanate (CAS No: 1609-86-5)—Australia.
- tert-Butyl isothiocyanate (CAS No: 590-42-1)—USA.
3.1.2. Investigation and Characterization
3.2. Synthesis
3.2.1. General Methods
3.2.2. Synthesis of Previously Reported Compounds
3.2.3. Synthesis of Transporters 1–4
3.3. 1H-NMR Binding Studies
3.3.1. Anion-Binding Studies
3.3.2. 1H-NMR Dilution Studies
3.4. Transport Studies
3.4.1. Vesicle Preparation
3.4.2. Chloride/Nitrate Exchange Assay
3.4.3. Cationophore-Coupled Assay
3.4.4. 8-Hydroxypyrene-1,3,6-Trisulfonic Acid (HPTS) Transport Selectivity Assay
3.4.5. Hill Analysis
3.4.6. Initial Rate
3.4.7. The Partition Coefficient
3.5. Single Crystal X-ray Diffraction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Davis, J.T.; Gale, P.A.; Quesada, R. Advances in anion transport and supramolecular medicinal chemistry. Chem. Soc. Rev. 2020, 49, 6056–6086. [Google Scholar] [CrossRef] [PubMed]
- Lee, L.M.; Tsemperouli, M.; Poblador-Bahamonde, A.I.; Benz, S.; Sakai, N.; Sugihara, K.; Matile, S. Anion transport with pnictogen bonds in direct comparison with chalcogen and halogen bonds. J. Am. Chem. Soc. 2019, 141, 810–814. [Google Scholar] [CrossRef] [PubMed]
- Valkenier, H.; Akrawi, O.; Jurček, P.; Sleziaková, K.; Lízal, T.; Bartik, K.; Šindelář, V. Fluorinated bambusurils as highly effective and selective transmembrane Cl−/HCO3− antiporters. Chem 2019, 5, 429–444. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.P.; Li, Y.H.; Jiang, J.J.; van der Lee, A.; Dumitrescu, D.; Barboiu, M. Self-Assembled Columnar Triazole Quartets: An Example of Synergistic Hydrogen-Bonding/Anion–π Interactions. Angew. Chem. Int. Ed. 2019, 131, 12165–12170. [Google Scholar] [CrossRef] [Green Version]
- Tomich, J.M.; Bukovnik, U.; Layman, J.; Schultz, B.D. Channel Replacement Therapy for Cystic Fibrosis, Cystic Fibrosis—Renewed Hopes through Research; Sriramulu, D.D., Ed.; IntechOpen: London, UK, 2012. [Google Scholar]
- Li, H.; Valkenier, H.; Thorne, A.G.; Dias, C.M.; Cooper, J.A.; Kieffer, M.; Busschaert, N.; Gale, P.A.; Sheppard, D.N.; Davis, A.P. Anion carriers as potential treatments for cystic fibrosis: Transport in cystic fibrosis cells, and additivity to channel-targeting drugs. Chem. Sci. 2019, 10, 9663–9672. [Google Scholar] [CrossRef] [PubMed]
- Malla, J.A.; Umesh, R.M.; Vijay, A.; Mukherjee, A.; Lahiri, M.; Talukdar, P. Apoptosis-inducing activity of a fluorescent barrel-rosette M+/Cl− channel. Chem. Sci. 2020, 11, 2420–2428. [Google Scholar] [CrossRef] [Green Version]
- Soto-Cerrato, V.; Manuel-Manresa, P.; Hernando, E.; Calabuig-Farinas, S.; Martinez-Romero, A.; Fernandez-Duenas, V.; Sahlholm, K.; Knöpfel, T.; Garcia-Valverde, M.; Rodilla, A.M. Facilitated anion transport induces hyperpolarization of the cell membrane that triggers differentiation and cell death in cancer stem cells. J. Am. Chem. Soc. 2015, 137, 15892–15898. [Google Scholar] [CrossRef] [PubMed]
- Ko, S.-K.; Kim, S.K.; Share, A.; Lynch, V.M.; Park, J.; Namkung, W.; Van Rossom, W.; Busschaert, N.; Gale, P.A.; Sessler, J.L. Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells. Nat. Chem. 2014, 6, 885–892. [Google Scholar] [CrossRef]
- Busschaert, N.; Park, S.-H.; Baek, K.-H.; Choi, Y.P.; Park, J.; Howe, E.N.W.; Hiscock, J.R.; Karagiannidis, L.E.; Marques, I.; Félix, V.; et al. A synthetic ion transporter that disrupts autophagy and induces apoptosis by perturbing cellular chloride concentrations. Nat. Chem. 2017, 9, 667–675. [Google Scholar] [CrossRef]
- Hong, X.-Q.; He, X.-Y.; Tam, K.Y.; Chen, W.-H. Synthesis and biological effect of lysosome-targeting fluorescent anion transporters with enhanced anionophoric activity. Bioorg. Med. Chem. Lett. 2020, 30, 127461. [Google Scholar] [CrossRef]
- Park, S.-H.; Park, S.-H.; Howe, E.N.; Hyun, J.Y.; Chen, L.-J.; Hwang, I.; Vargas-Zuñiga, G.; Busschaert, N.; Gale, P.A.; Sessler, J.L. Determinants of ion-transporter cancer cell death. Chem 2019, 5, 2079–2098. [Google Scholar] [CrossRef]
- Wu, X.; Judd, L.W.; Howe, E.N.W.; Withecombe, A.M.; Soto-Cerrato, V.; Li, H.; Busschaert, N.; Valkenier, H.; Pérez-Tomás, R.; Sheppard, D.N.; et al. Nonprotonophoric electrogenic Cl− transport mediated by valinomycin-like carriers. Chem 2016, 1, 127–146. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Gale, P.A. Small-molecule uncoupling protein mimics: Synthetic anion receptors as fatty acid-activated proton transporters. J. Am. Chem. Soc. 2016, 138, 16508–16514. [Google Scholar] [CrossRef] [PubMed]
- Clarke, H.J.; Howe, E.N.W.; Wu, X.; Sommer, F.; Yano, M.; Light, M.E.; Kubik, S.; Gale, P.A. Transmembrane fluoride transport: Direct measurement and selectivity studies. J. Am. Chem. Soc. 2016, 138, 16515–16522. [Google Scholar] [CrossRef] [PubMed]
- Busschaert, N.; Gale, P.A.; Haynes, C.J.; Light, M.E.; Moore, S.J.; Tong, C.C.; Davis, J.T.; Harrell Jr, W.A. Tripodal transmembrane transporters for bicarbonate. Chem. Commun. 2010, 46, 6252–6254. [Google Scholar] [CrossRef] [Green Version]
- Busschaert, N.; Wenzel, M.; Light, M.E.; Iglesias-Hernández, P.; Pérez-Tomás, R.; Gale, P.A. Structure-activity relationships in tripodal transmembrane anion transporters: The effect of fluorination. J. Am. Chem. Soc. 2011, 133, 14136–14148. [Google Scholar] [CrossRef]
- Jowett, L.A.; Howe, E.N.W.; Wu, X.; Busschaert, N.; Gale, P.A. New Insights into the Anion Transport Selectivity and Mechanism of Tren-based Tris-(thio) ureas. Chem. Eur. J. 2018, 24, 10475–10487. [Google Scholar] [CrossRef] [Green Version]
- Jowett, L.A.; Ricci, A.; Wu, X.; Howe, E.N.W.; Gale, P.A. Investigating the influence of steric hindrance on selective anion transport. Molecules 2019, 24, 1278. [Google Scholar] [CrossRef] [Green Version]
- Avval, M.M.; Murthy, V.; Shashikanth, S. Synthesis and antimicrobial activity evaluation of poly ethylene imine (PEI) dendrimer modified with 1,3,4 oxadiazole derivatives. Res. J. Pharm. Biol. Chem. Sci. 2014, 5, 441–447. [Google Scholar]
- Keypour, H.; Khanmohammadi, H.; Wainwright, K.P.; Taylor, M.R. Synthesis, crystal structures and ab initio studies of some heptaaza manganese (II) macrocyclic Schiff-base complexes with two 2-aminoethyl pendant arms. Inorg. Chim. Acta 2005, 358, 247–256. [Google Scholar] [CrossRef]
- Macreadie, L.K.; Edwards, A.J.; Chesman, A.S.; Turner, D.R. Hydrogen Bonding of O-Ethylxanthate Compounds and Neutron Structural Determination of C–H⋯S Interactions. Aust. J. Chem. 2014, 67, 1829–1839. [Google Scholar] [CrossRef]
- Bindfit-Fit Data to 1:1, 1:2 and 2:1 Host-Guest Equilibria. Available online: http://supramolecular.org (accessed on 23 October 2019).
- Gale, P.A.; Hiscock, J.R.; Moore, S.J.; Caltagirone, C.; Hursthouse, M.B.; Light, M.E. Anion–Anion Proton Transfer in Hydrogen Bonded Complexes. Chem. Asian. J. 2010, 5, 555–561. [Google Scholar] [CrossRef]
- Valkenier, H.; Dias, C.M.; Butts, C.P.; Davis, A.P. A folding decalin tetra-urea for transmembrane anion transport. Tetrahedron 2017, 73, 4955–4962. [Google Scholar] [CrossRef] [Green Version]
- Jowett, L.A.; Gale, P.A. Supramolecular methods: The chloride/nitrate transmembrane exchange assay. Supramol. Chem. 2019, 31, 297–312. [Google Scholar] [CrossRef]
- Tetko, I.V.; Gasteiger, J.; Todeschini, R.; Mauri, A.; Livingstone, D.; Ertl, P.; Palyulin, V.A.; Radchenko, E.V.; Zefirov, N.S.; Makarenko, A.S. Virtual computational chemistry laboratory–design and description. J. Comput. Aid. Mol. Des. 2005, 19, 453–463. [Google Scholar] [CrossRef] [PubMed]
- VCCLAB. Virtual Computational Chemistry Laboratory. Available online: https://www.vvclabs.org (accessed on 26 October 2020).
- Pressman, B.C. Biological applications of ionophores. Annu. Rev. Biochem. 1976, 45, 501–530. [Google Scholar] [CrossRef]
- Mollenhauer, H.H.; Morré, D.J.; Rowe, L.D. Alteration of intracellular traffic by monensin; mechanism, specificity and relationship to toxicity. Biochim. Biophys. Acta Rev. Biomembr. 1990, 1031, 225–246. [Google Scholar] [CrossRef]
- Spooner, M.J.; Gale, P.A. A tripodal tris-selenourea anion transporter matches the activity of its thio-analogue but shows distinct selectivity. Supramol. Chem. 2018, 30, 514–519. [Google Scholar] [CrossRef]
- Marcus, Y. Thermodynamics of solvation of ions. Part 5.—Gibbs free energy of hydration at 298.15 K. J. Chem. Soc. Faraday Trans. 1991, 87, 2995–2999. [Google Scholar] [CrossRef]
- Eller, L.R.; Stȩpień, M.; Fowler, C.J.; Lee, J.T.; Sessler, J.L.; Moyer, B.A. Octamethyl-octaundecylcyclo[8]pyrrole: A promising sulfate anion extractant. J. Am. Chem. Soc. 2007, 129, 11020–11021. [Google Scholar] [CrossRef]
- Kabsch, W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J. Appl. Cryst. 1993, 26, 795–800. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. A: Found. Cryst. 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. C: Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Receptor | Ka Cl− | Ka HCO3− | Ka SO42− | Ka HP2O73− |
---|---|---|---|---|
1 | K11: 458 K12: 30 | 1 | K11: 1000 K21: 56 | 1 |
2 | K11: 447 K12: 28 | 1 | 1 | 2 |
3 | K11: 241 K12: 16 | K11: 1800 K12: 305 | Ka > 104 | 3 |
4 | K11: 305 K12: 7 | K11: 559 K12: 21 | 1 | 4160 |
Receptor | Chloride/Nitrate Exchange Assay | Cationophore Coupled Assay kinitial (s−1) | Ratio 3 | cLogP 6 | ||
---|---|---|---|---|---|---|
1 mol% kinitial (s−1) 1 | EC50 (mol%) 2 | kinitial(VLN)1 | kinitial(MON)1 | |||
1 | 0.074 | n.d. 4 | 0.070 | 0.028 | 2.5 | 4.1 |
2 | 0.020 | 3.92 | 0.087 | 0.130 | 0.67 | 3.1 |
3 | 0.703 | 0.408 | 1.85 | 0.168 | 11 | 3.3 |
4 | 0.0 | n.d. 4 | n.d. 5 | n.d. 5 | n.d. 4,5 | 1.6 |
Tetrapodal Transporters | EC50 (mol%) 1 | F(selectivity) 5 | ||
---|---|---|---|---|
FA 2 | Gra 3 | BSA 4 | ||
1 | 0.26 | 0.32 | 0.72 | 0.81 |
2 | 1.94 | 1.63 | 2.23 | 1.19 |
3 | 0.17 | 0.019 | 0.60 | 9.14 |
4 | n.d. 6 | n.d. 6 | n.d. 6 | n.d. 6 |
Tripodal Transporters | ||||
Tris PhS 7 | 0.0081 8 | 0.0021 8 | 0.21 8 | 3.86 8 |
Tris PhO 7 | 0.78 8 | 0.3 8 | 9.8 8 | 2.60 8 |
Tris t-BuS 7 | 0.012 9 | 0.0048 9 | 0.29 9 | 2.51 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gilchrist, A.M.; Chen, L.; Wu, X.; Lewis, W.; Howe, E.N.W.; Macreadie, L.K.; Gale, P.A. Tetrapodal Anion Transporters. Molecules 2020, 25, 5179. https://doi.org/10.3390/molecules25215179
Gilchrist AM, Chen L, Wu X, Lewis W, Howe ENW, Macreadie LK, Gale PA. Tetrapodal Anion Transporters. Molecules. 2020; 25(21):5179. https://doi.org/10.3390/molecules25215179
Chicago/Turabian StyleGilchrist, Alexander M., Lijun Chen, Xin Wu, William Lewis, Ethan N.W. Howe, Lauren K. Macreadie, and Philip A. Gale. 2020. "Tetrapodal Anion Transporters" Molecules 25, no. 21: 5179. https://doi.org/10.3390/molecules25215179
APA StyleGilchrist, A. M., Chen, L., Wu, X., Lewis, W., Howe, E. N. W., Macreadie, L. K., & Gale, P. A. (2020). Tetrapodal Anion Transporters. Molecules, 25(21), 5179. https://doi.org/10.3390/molecules25215179