Properties and Application of Multifunctional Composite Polypropylene-Based Films Incorporating a Combination of BHT, BHA and Sorbic Acid in Extending Donut Shelf-Life
Abstract
:1. Introduction
2. Results and Discussion
2.1. Properties of PP-Based Composite Films
2.1.1. Water Vapour Permeability
2.1.2. Antioxidant Properties
2.1.3. Antimicrobial Properties
2.1.4. Migration Test
2.1.5. Oxygen Permeability
2.2. Chemical and Microbiological Quality of Donuts during Shelf-Life
2.2.1. Donut Moisture Content
2.2.2. Donut Peroxide Value
2.2.3. Donut Acidity
2.2.4. Microbial Shelf-Life
3. Materials and Methods
3.1. Active Film Preparation
3.2. Determination of Film Properties
3.2.1. Water Vapour Permeability (WVP)
3.2.2. Antioxidant Properties
3.2.3. In Vitro Antimicrobial Properties
3.2.4. Migration Test
3.2.5. Oxygen Permeability
3.3. Donut Preparation
3.4. Donut Chemical Analyses
3.4.1. Moisture Measurement
3.4.2. Fat Extraction
3.4.3. Peroxide Value
3.4.4. Fat Acidity (Free Fatty Acids)
3.5. In-Vivo Antimicrobial Properties of Active Films
3.6. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kang, K.; Chang, Y.; Choi, J.C.; Park, S.; Han, J. Migration study of butylated hydroxytoluene and Irganox 1010 from polypropylene treated with severe processing conditions. J. Food Sci. 2018, 83, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- Fasihnia, S.H.; Peighambardoust, S.H.; Peighambardoust, S.J.; Oromiehie, A. Development of novel active polypropylene based packaging films containing different concentrations of sorbic acid. Food Packag. Shelf Life 2018, 18, 87–94. [Google Scholar] [CrossRef]
- Domínguez, R.; Barba, F.J.; Gómez, B.; Putnik, P.; Kovačević, D.B.; Pateiro, M.; Santos, E.M.; Lorenzo, J.M. Active packaging films with natural antioxidants to be used in meat industry: A review. Food Res. Int. 2018, 113, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Rezvani, M.; Hesari, J.; Peighambardoust, S.H.; Manconi, M.; Hamishehkar, H.; Escribano-Ferrer, E. Potential application of nanovesicles (niosomes and liposomes) for fortification of functional beverages with Isoleucine-Proline-Proline: A comparative study with central composite design approach. Food Chem. 2019, 293, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, S.; Peighambardoust, S.; Peighambardoust, S.J.; Fasihnia, S.H.; Karimian-Khosrowshahi, N.; Gullón, B.; Lorenzo, J.M. Optimization of the Amount of ZnO, CuO, and Ag Nanoparticles on Antibacterial Properties of Low-Density Polyethylene (LDPE) Films Using the Response Surface Method. Food Anal. Methods 2020, 1–10. [Google Scholar] [CrossRef]
- Fasihnia, S.H.; Peighambardoust, S.H.; Peighambardoust, S.J.; Oromiehie, A.; Soltanzadeh, M.; Peressini, D. Migration analysis, antioxidant and mechanical characterization of polypropylene-based active food packaging films loaded with BHA, BHT and TBHQ. J. Food Sci. 2020, 85, 2317–2328. [Google Scholar] [CrossRef]
- Nottagh, S.; Hesari, J.; Peighambardoust, S.H.; Rezaei-Mokarram, R.; Jafarizadeh-Malmiri, H. Development of a biodegradable coating formulation based on the biological characteristics of the Iranian Ultra-filtrated cheese. Biologia 2018, 73, 403–413. [Google Scholar] [CrossRef]
- Domínguez, R.; Pateiro, M.; Gagaoua, M.; Barba, F.J.; Zhang, W.; Lorenzo, J.M. A comprehensive review on lipid oxidation in meat and meat products. Antioxidants 2019, 8, 429. [Google Scholar] [CrossRef] [Green Version]
- Dehghan-Manshadi, A.; Peighambardoust, S.H.; Azadmard-Damirchi, S.; Niakousari, M. Effect of infrared-assisted spouted bed drying of flaxseed on the quality characteristics of its oil extracted by different methods. J. Sci. Food Agric. 2020, 100, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Nwakaudu, A.A.; Nwakaudu, M.S.; Owuamanam, C.I.; Iheaturu, N.C. The use of natural antioxidant active polymer packaging for food preservation. Appl. Signals Rep. 2015, 2, 38–50. [Google Scholar]
- Carocho, M.; Morales, P.; Ferreira, I.C.F.R. Antioxidants: Reviewing the chemistry, food applications, legislation and role as preservatives. Trends Food Sci. Technol. 2018, 71, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Barbosa-Pereira, L.; Cruz, J.M.; Sendón, R.; de Quirós, A.R.B.; Ares, A.; Castro-López, M.; Abad, M.J.; Maroto, J.; Paseiro-Losada, P. Development of antioxidant active films containing tocopherols to extend the shelf life of fish. Food Control. 2013, 31, 236–243. [Google Scholar] [CrossRef]
- Ortiz-Vazquez, H.; Shin, J.; Soto-Valdez, H.; Auras, R. Release of butylated hydroxytoluene (BHT) from Poly(lactic acid) films. Polym. Test. 2011, 30, 463–471. [Google Scholar] [CrossRef]
- Torres-Arreola, W.; Soto-Valdez, H.; Peralta, E.; Cárdenas-López, J.L.; Ezquerra-Brauer, J.M. Effect of a low-density polyethylene film containing butylated hydroxytoluene on lipid oxidation and protein quality of sierra fish (Scomberomorus sierra) muscle during frozen storage. J. Agric. Food Chem. 2007, 55, 6140–6146. [Google Scholar] [CrossRef]
- Byun, Y.; Kim, Y.T.; Whiteside, S. Characterization of an antioxidant polylactic acid (PLA) film prepared with α-tocopherol, BHT and polyethylene glycol using film cast extruder. J. Food Eng. 2010, 100, 239–244. [Google Scholar] [CrossRef]
- Wessling, C.; Nielsen, T.; Giacin, J.R. Antioxidant ability of BHT-and α-tocopherol-impregnated LDPE film in packaging of oatmeal. J. Sci. Food Agric. 2001, 81, 194–201. [Google Scholar] [CrossRef]
- Wessling, C.; Nielsen, T.; Leufvén, A. The influence of α-tocopherol concentration on the stability of linoleic acid and the properties of low-density polyethylene. Packag. Technol. Sci. 2000, 13, 19–28. [Google Scholar] [CrossRef]
- Dong, Z.; Luo, C.; Guo, Y.; Ahmed, I.; Pavase, T.R.; Lv, L.; Li, Z.; Lin, H. Characterization of new active packaging based on PP/LDPE composite films containing attapulgite loaded with Allium sativum essence oil and its application for large yellow croaker (Pseudosciaena crocea) fillets. Food Packag. Shelf Life 2019, 20, 100320. [Google Scholar] [CrossRef]
- Soto-Cantú, C.D.; Graciano-Verdugo, A.Z.; Peralta, E.; Islas-Rubio, A.R.; González-Córdova, A.; González-León, A.; Soto-Valdez, H. Release of butylated hydroxytoluene from an active film packaging to asadero cheese and its effect on oxidation and odor stability. J. Dairy Sci. 2008, 91, 11–19. [Google Scholar] [CrossRef]
- Hauser, C.; Wunderlich, J. Antimicrobial packaging films with a sorbic acid based coating. Procedia Food Sci. 2011, 1, 197–202. [Google Scholar] [CrossRef]
- Fernández-Álvarez, L.; del Valle, P.; de Arriaga, D.; García-Armesto, M.R.; Rúa, J. Binary combinations of BHA and other natural and synthetic phenolics: Antimicrobial activity against Staphylococcus aureus and antioxidant capacity. Food Control. 2014, 42, 303–309. [Google Scholar] [CrossRef]
- Zolfaghari, Z.S.; Mohebbi, M.; Khodaparast, M.H.H. Quality changes of donuts as influenced by leavening agent and hydrocolloid changes. J. Food Process. Preserv. 2013, 37, 34–45. [Google Scholar] [CrossRef]
- Hatae, K.; Miyamoto, T.; Shimada, Y.; Munekata, Y.; Sawa, K.; Hasegawa, K.; Kasai, M. Effect of the type of frying oil on the consumer preference for doughnuts. J. Food Sci. 2003, 68, 1038–1042. [Google Scholar] [CrossRef]
- Ashkezari, M.H.; Salehifar, M. Inhibitory effects of pomegranate flower extract and vitamin B3 on the formation of acrylamide during the donut making process. J. Food Meas. Charact. 2019, 13, 735–744. [Google Scholar] [CrossRef] [Green Version]
- Budryn, G.; Żyżelewicz, D.; Nebesny, E.; Oracz, J.; Krysiak, W. Influence of addition of green tea and green coffee extracts on the properties of fine yeast pastry fried products. Food Res. Int. 2013, 50, 149–160. [Google Scholar] [CrossRef]
- Arshad, H.; Ali, T.M.; Hasnain, A. Physical and functional properties of fried donuts incorporated with nutmeg microcapsules composed of gum-arabic and sorghum starch as wall materials. J. Food Meas. Charact. 2019, 13, 3060–3068. [Google Scholar] [CrossRef]
- Yazdanseta, P.; Tarzi, B.G.; Gharachorloo, M. Effect of some hydrocolloids on reducing oil uptake and quality factors of fermented donuts. J. Biodivers. Environ. Sci. 2015, 6, 233–241. [Google Scholar]
- Channaiah, L.H.; Michael, M.; Acuff, J.; Lopez, K.; Vega, D.; Milliken, G.; Thippareddi, H.; Phebus, R. Validation of a simulated commercial frying process to control Salmonella in donuts. Foodborne Pathog. Dis. 2018, 15, 763–769. [Google Scholar] [CrossRef]
- Melito, H.; Farkas, B.E. Physical properties of gluten-free donuts. J. Food Qual. 2013, 36, 32–40. [Google Scholar] [CrossRef]
- Sakaino, M.; Yamashita, T.; Tokura, N.; Sano, T.; Watanabe, K.; Hagiri, H.; Sakurama, Y.; Hiroshima, R.; Manabe, Y.; Suzuki, M.; et al. Effect of frying oil on the properties of donut. Nippon Shokuhin Kagaku Kogaku Kaishi 2014, 61, 346–352. [Google Scholar] [CrossRef] [Green Version]
- Peighambardoust, S.H.; Beigmohammadi, F.; Peighambardoust, S.J. Application of Organoclay Nanoparticle in Low-Density Polyethylene Films for Packaging of UF Cheese. Packag. Technol. Sci. 2016, 29, 355–363. [Google Scholar] [CrossRef]
- Beigmohammadi, F.; Peighambardoust, S.H.; Hesari, J.; Azadmard-Damirchi, S.; Peighambardoust, S.J.; Khosrowshahi, N.K. Antibacterial properties of LDPE nanocomposite films in packaging of UF cheese. LWT Food Sci. Technol. 2016, 65, 106–111. [Google Scholar] [CrossRef]
- Yildirim, S.; Röcker, B.; Pettersen, M.K.; Nilsen-Nygaard, J.; Ayhan, Z.; Rutkaite, R.; Radusin, T.; Suminska, P.; Marcos, B.; Coma, V. Active Packaging Applications for Food. Compr. Rev. Food Sci. Food Saf. 2018, 17, 165–199. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi, Y.; Peighambardoust, S.H.J.H.J.; Peighambardoust, S.H.J.H.J.; Karkaj, S.Z.; Zahed-Karkaj, S. Development of antibacterial carboxymethyl cellulose-based nanobiocomposite films containing various metallic nanoparticles for food packaging applications. J. Food Sci. 2019, 84, 2537–2548. [Google Scholar] [CrossRef]
- Hajizadeh, H.; Peighambardoust, S.J.; Peighambardoust, S.H.; Peressini, D. Physical, mechanical, and antibacterial characteristics of bio-nanocomposite films loaded with Ag-modified SiO2 and TiO2 nanoparticles. J. Food Sci. 2020, 85, 1193–1202. [Google Scholar] [CrossRef]
- Khodaeimehr, R.; Peighambardoust, S.J.; Peighambardoust, S.H. Preparation and characterization of corn starch/clay nanocomposite films: Effect of clay content and surface modification. Starch Stärke 2018, 70, 1700251. [Google Scholar] [CrossRef]
- Peighambardoust, S.J.; Peighambardoust, S.H.; Pournasir, N.; Pakdel, P.M. Properties of active starch-based films incorporating a combination of Ag, ZnO and CuO nanoparticles for potential use in food packaging applications. Food Packag. Shelf Life 2019, 22, 100420. [Google Scholar] [CrossRef]
- Nogueira, G.F.; Fakhouri, F.M.; de Oliveira, R.A. Extraction and characterization of arrowroot (Maranta arundinaceae L.) starch and its application in edible films. Carbohydr. Polym. 2018, 186, 64–72. [Google Scholar] [CrossRef]
- Razali, I.; Asimiah, A.N.; Norhaya, H. Determination of antioxidants in palm oil products by high performance liquid chromatography. Elaeis 1997, 9, 25–33. [Google Scholar]
- Jongjareonrak, A.; Benjakul, S.; Visessanguan, W.; Tanaka, M. Antioxidative activity and properties of fish skin gelatin films incorporated with BHT and α-tocopherol. Food Hydrocoll. 2008, 22, 449–458. [Google Scholar] [CrossRef]
- Alirezalu, K.; Pateiro, M.; Yaghoubi, M.; Alirezalu, A.; Peighambardoust, S.H.; Lorenzo, J.M. Phytochemical constituents, advanced extraction technologies and techno-functional properties of selected Mediterranean plants for use in meat products. A comprehensive review. Trends Food Sci. Technol. 2020, 100, 292–306. [Google Scholar] [CrossRef]
- Jamshidian, M.; Tehrany, E.A.; Cleymand, F.; Leconte, S.; Falher, T.; Desobry, S. Effects of synthetic phenolic antioxidants on physical, structural, mechanical and barrier properties of poly lactic acid film. Carbohydr. Polym. 2012, 87, 1763–1773. [Google Scholar] [CrossRef]
- Sanhueza, J.; Nieto, S.; Valenzuela, A. Thermal stability of some commercial synthetic antioxidants. J. Am. Oil Chem. Soc. 2000, 77, 933–936. [Google Scholar] [CrossRef]
- Senanayake, S.N.; Wanasundara, P.J.P.; Shahidi, F. Antioxidants: Science, Technology, and Applications. In Bailey’s Industrial Oil and Fat Products; Shahidi, F., Ed.; Wiley: Hoboken, NJ, USA, 2020; pp. 1–61. [Google Scholar] [CrossRef]
- Reda, S.Y. Evaluation of antioxidants stability by thermal analysis and its protective effect in heated edible vegetable oil. Food Sci. Technol. 2011, 31, 475–480. [Google Scholar] [CrossRef] [Green Version]
- Jipa, I.M.; Stoica-Guzun, A.; Stroescu, M. Controlled release of sorbic acid from bacterial cellulose based mono and multilayer antimicrobial films. LWT Food Sci. Technol. 2012, 47, 400–406. [Google Scholar] [CrossRef]
- de Fátima Pocas, M.; Hogg, T. Exposure assessment of chemicals from packaging materials in foods: A review. Trends Food Sci. Technol. 2007, 18, 219–230. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.S.; Kotsanopoulos, K.V. Migration phenomenon in food packaging. Food-package interactions, mechanisms, types of migrants, testing and relative legislation—A review. Food Bioprocess Technol. 2014, 7, 21–36. [Google Scholar] [CrossRef]
- BSI, UNE-EN 1186-1:2002. Materials and articles in contact with foodstuffs-Plastics. In Part 1: Guide to the Selection of Conditions and Test Methods for Overall Migration; British Standards Institution: London, UK, 2002. [Google Scholar]
- Granda-Restrepo, D.; Peralta, E.; Troncoso-Rojas, R.; Soto-Valdez, H. Release of antioxidants from co-extruded active packaging developed for whole milk powder. Int. Dairy J. 2009, 19, 481–488. [Google Scholar] [CrossRef]
- Baluja, S.; Bhesaniya, K.; Bhalodia, R.; Chanda, S. Solubility of butylated hydroxytoluene (BHT) in aqueous and alcohol sulutions from 293.15 to 313.15 K. Int. Lett. Chem. Phys. Astron. 2014, 9, 48–58. [Google Scholar] [CrossRef]
- Siracusa, V. Food packaging permeability behaviour: A report. Int. J. Polym. Sci. 2012, 302029, 1–11. [Google Scholar] [CrossRef]
- Oh, H.; Choi, B.B.; Kim, Y.S. Changes on the quality of donuts using psyllium husk as powder and edible coatings. J. Korean Soc. Food Sci. Nutr. 2019, 48, 1127–1134. [Google Scholar] [CrossRef]
- Nouri, M.; Nasehi, B.; Samavati, V.; Mehdizadeh, S.A. Optimizing the effects of Persian gum and carrot pomace powder for development of low-fat donut with high fibre content. Bioact. Carbohydr. Diet. Fibre 2017, 9, 39–45. [Google Scholar] [CrossRef]
- Kuplennik, N.; Tchoudakov, R.; Zelas, Z.B.-B.; Sadovski, A.; Fishman, A.; Narkis, M. Antimicrobial packaging based on linear low-density polyethylene compounded with potassium sorbate. LWT Food Sci. Technol. 2015, 62, 278–286. [Google Scholar] [CrossRef]
- Baldevraj, R.S.M.; Jagadish, R.S. Incorporation of chemical antimicrobial agents into polymeric films for food packaging. In Multifunctional and Nanoreinforced Polymers for Food Packaging; Lagarón, J.M., Ed.; Woodhead Publishing Ltd.: Cambridge, UK, 2011; pp. 368–420. [Google Scholar] [CrossRef]
- Dutta, P.; Dey, J.; Shome, A.; Das, P.K. Nanostructure formation in aqueous solution of amphiphilic copolymers of 2-(N,N-dimethylaminoethyl)methacrylate and alkylacrylate: Characterization, antimicrobial activity, DNA binding, and cytotoxicity studies. Int. J. Pharm. 2011, 414, 298–311. [Google Scholar] [CrossRef] [PubMed]
- Silveira, M.F.A.; Soares, N.F.F.; Geraldine, R.M.; Andrade, N.J.; Botrel, D.A.; Goncalves, M.P.J. Active film incorporated with sorbic acid on pastry dough conservation. Food Control. 2007, 18, 1063–1067. [Google Scholar] [CrossRef]
- ASTM, ASTM E96/E96M-16. Standard test methods for water vapor transmission of materials. In Annual Book of ASTM Standards; American Society for Testing and Materials: West Conshohocken, PA, USA, 2016; pp. 719–725. [Google Scholar] [CrossRef]
- Sandoval, D.C.G.; Sosa, B.L.; Martínez-Ávila, G.C.G.; Fuentes, H.R.; Abarca, V.H.A.; Rojas, R. Formulation and characterization of edible films based on organic mucilage from Mexican Opuntia ficus-indica. Coatings 2019, 9, 506. [Google Scholar] [CrossRef] [Green Version]
- Pezo, D.; Salafranca, J.; Nerín, C. Determination of the antioxidant capacity of active food packagings by in situ gas-phase hydroxyl radical generation and high-performance liquid chromatography–fluorescence detection. J. Chromatogr. A 2008, 1178, 126–133. [Google Scholar] [CrossRef]
- AOAC. AOAC. AOAC official method 965.33, Peroxide value of oils and fats. In Official Methods Annual AOAC International, 17th ed.; AOAC International: Gaithersberg, MD, USA, 2002. [Google Scholar]
- Ou, S.; Wang, Y.; Tang, S.; Huang, C.; Jackson, M.G. Role of ferulic acid in preparing edible films from soy protein isolate. J. Food Eng. 2005, 70, 205–210. [Google Scholar] [CrossRef]
- Tafti, A.G.; Peighambardoust, S.H.; Hesari, J.; Bahrami, A.; Bonab, E.S. Physico-chemical and functional properties of spray-dried sourdough in breadmaking. Food Sci. Technol. Int. 2013, 19, 271–278. [Google Scholar] [CrossRef]
- Funami, T.; Funami, M.; Tawada, T.; Nakao, Y. Decreasing oil uptake of doughnuts during deep-fat frying using Curdlan. J. Food Sci. 1999, 64, 883–888. [Google Scholar] [CrossRef]
- Lim, S.M.; Kim, J.; Shim, J.Y.; Imm, B.Y.; Sung, M.H.; Imm, J.Y. Effect of poly-γ-glutamic acids (PGA) on oil uptake and sensory quality in doughnuts. Food Sci. Biotechnol. 2012, 21, 247–252. [Google Scholar] [CrossRef]
Film Samples | E. coli (Log cfu·mL−1) | S. aureus (Log cfu·mL−1) | A. niger (Inhibition Area) | |
---|---|---|---|---|
T1 | Control | 8.70 ± 0.02 a | 8.61 ± 0.00 a | 0 |
T2 | PP-BHT1%-SA2% | 8.41 ± 0.01 b | 8.40 ± 0.01 b | 0 |
T3 | PP-BHA3%-SA2% | 8.38 ± 0.01 bc | 8.38 ± 0.00 b | 0 |
T4 | PP-BHT1%-BHA1%-SA2% | 8.35 ± 0.01 c | 8.20 ± 0.01 c | 0 |
Film Samples | Aqueous Foods (pH > 4.5) | Acidic Foods (pH ≤ 4.5) | Fatty Foods | |
---|---|---|---|---|
T1 | Control (pure PP-film) | 1.32 ± 0.37 bA | 1.32 ± 0.37 bA | 1.66 ± 0.35 bA |
T2 | PP-BHT1%-SA2% | 2.32 ± 0.39 aB | 2.12 ± 0.63 abB | 6.07 ± 0.40 aA |
T3 | PP-BHA3%-SA2% | 2.84 ± 0.44 aB | 3.66 ± 0.56 aB | 7.82 ± 0.97 aA |
T4 | PP-BHT1%-BHA1%-SA2% | 2.43 ± 0.50 aC | 3.96 ± 0.48 aB | 6.64 ± 0.56 aA |
Analysis | Treatments | Storage Time | |||
---|---|---|---|---|---|
Day 1 | Day 25 | Day 50 | Day 75 | ||
Moisture (%) | Fresh donut (not packed) | 11.6 ± 0.52 | - | - | - |
Control (pure PP) film (T1) | - | 5.48 ± 0.18 Ab | 4.30 ± 0.06 Bb | 1.87 ± 0.81 Cb | |
PP-BHT1%-SA2% film (T2) | - | 7.00 ± 0.37 Aa | 6.23 ± 0.55 Aa | 4.61 ± 0.34 Ba | |
PP-BHA3%-SA2% film (T3) | - | 7.15 ± 0.85 Aa | 6.07 ± 0.21 Aa | 4.53 ± 0.21 Ba | |
PP-BHT1%-BHA1%-SA2% film (T4) | - | 6.81 ± 0.03 Aa | 3.26 ± 0.18 Bc | 3.21 ± 0.10 Bb | |
Peroxide value (mEq. active O2/kg oil) | Fresh donut (not packed) | 0.45 ± 0.04 | - | - | - |
Control (pure PP) film (T1) | - | 0.42 ± 0.11 Ca | 0.68 ± 0.07 Bc | 1.62 ± 0.40 Ab | |
PP-BHT1%-SA2% film (T2) | - | 0.43 ± 0.07 Ca | 1.94 ± 0.15 Bab | 2.80 ± 0.25 Aa | |
PP-BHA3%-SA2% film (T3) | - | 0.39 ± 0.11 Ba | 2.39 ± 0.29 Aa | 2.60 ± 0.27 Aa | |
PP-BHT1%-BHA1%-SA2% film (T4) | - | 0.49 ± 0.13 Ca | 1.75 ± 0.21 Bb | 2.60 ± 0.24 Aa | |
Free fatty acids (wt%, oleic acid-based) | Fresh donut (not packed) | 0.20 ± 0.02 | - | - | - |
Control (pure PP) film (T1) | - | 0.19 ± 0.03 Ba | 0.22 ± 0.02 Ba | 0.25 ± 0.03 Aa | |
PP-BHT1%-SA2% film (T2) | - | 0.16 ± 0.02 Ab | 0.15 ± 0.02 Ab | 0.12 ± 0.03 Ab | |
PP-BHA3%-SA2% film (T3) | - | 0.15 ± 0.02 Ab | 0.13 ± 0.03 Ab | 0.09 ± 0.02 Ab | |
PP-BHT1%-BHA1%-SA2% film (T4) | - | 0.16 ± 0.02 Ab | 0.12 ± 0.01 Bb | 0.11 ± 0.02 Bb |
Film Samples | PP | BHA | BHT | SA | |
---|---|---|---|---|---|
T1 | Control | 100 | - | - | - |
T2 | PP-BHT1%-SA2% | 97 | - | 1 | 2 |
T3 | PP-BHA3%-SA2% | 95 | 3 | - | 2 |
T4 | PP-BHT1%-BHA1%-SA2% | 96 | 1 | 1 | 2 |
Ingredients | Amount (g) | Amount (%) |
---|---|---|
Wheat flour | 670 | 53 |
Water | 57 | 4.5 |
Milk | 210 | 16.5 |
Sugar | 55 | 4.5 |
Whole egg | 170 | 13 |
butter | 100 | 8.0 |
Instant yeast | 5.5 | 0.5 |
Sample Availability: Samples of active films (T1–T4) are available from the authors upon request. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fasihnia, S.H.; Peighambardoust, S.H.; Peighambardoust, S.J.; Oromiehie, A.; Soltanzadeh, M.; Pateiro, M.; Lorenzo, J.M. Properties and Application of Multifunctional Composite Polypropylene-Based Films Incorporating a Combination of BHT, BHA and Sorbic Acid in Extending Donut Shelf-Life. Molecules 2020, 25, 5197. https://doi.org/10.3390/molecules25215197
Fasihnia SH, Peighambardoust SH, Peighambardoust SJ, Oromiehie A, Soltanzadeh M, Pateiro M, Lorenzo JM. Properties and Application of Multifunctional Composite Polypropylene-Based Films Incorporating a Combination of BHT, BHA and Sorbic Acid in Extending Donut Shelf-Life. Molecules. 2020; 25(21):5197. https://doi.org/10.3390/molecules25215197
Chicago/Turabian StyleFasihnia, Seyedeh Homa, Seyed Hadi Peighambardoust, Seyed Jamaleddin Peighambardoust, Abdulrasoul Oromiehie, Maral Soltanzadeh, Mirian Pateiro, and Jose M. Lorenzo. 2020. "Properties and Application of Multifunctional Composite Polypropylene-Based Films Incorporating a Combination of BHT, BHA and Sorbic Acid in Extending Donut Shelf-Life" Molecules 25, no. 21: 5197. https://doi.org/10.3390/molecules25215197
APA StyleFasihnia, S. H., Peighambardoust, S. H., Peighambardoust, S. J., Oromiehie, A., Soltanzadeh, M., Pateiro, M., & Lorenzo, J. M. (2020). Properties and Application of Multifunctional Composite Polypropylene-Based Films Incorporating a Combination of BHT, BHA and Sorbic Acid in Extending Donut Shelf-Life. Molecules, 25(21), 5197. https://doi.org/10.3390/molecules25215197