Evaluation of Antioxidant and Anti-α-glucosidase Activities of Various Solvent Extracts and Major Bioactive Components from the Seeds of Myristica fragrans
Abstract
:1. Introduction
2. Results and Discussion
2.1. Determination of Total Phenolic Content (TPC) and Yields in Each Solvent Extract
2.2. 2,2-Diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH) Free-Radical Scavenging Activity
2.3. 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) Free-Radical Scavenging Activity
2.4. Superoxide Radical Scavenging Activity
2.5. Hydroxyl Radical Scavenging Activity
2.6. Anti-α-glucosidase Activity Assay
2.7. Quantification of Components
2.8. Quantitation of Active Components in Different Solvent Extracts
2.9. Antioxidant Activities of Isolated Components
2.10. Anti-α-glucosidase Activities of Isolated Component
3. Materials and Methods
3.1. Chemicals and Antibodies
3.2. Preparation of M. fragrans Extract
3.3. Preparation of Active Components
3.4. Normal-Phase HPLC
3.5. Reverse-Phase HPLC
3.6. Determination of Total Phenolic Content
3.7. DPPH Radical Scavenging Activity
3.8. ABTS Anion Radical Scavenging Activity
3.9. Superoxide Radical Scavenging Activity
3.10. Hydroxyl Radical Scavenging Activity
3.11. α-Glucosidase Inhibitory Activity Assay
3.12. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Wiseman, H.; Halliwell, B. Damage to DNA by reactive oxygen and nitrogen species: Role in inflammatory disease and progression to cancer. Biochem. J. 1996, 313, 17–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.X.; Kennedy, J.F. Antioxidant activities of different polysaccharide conjugates (CRPs) isolated from the fruiting bodies of Chroogomphis rutilus (Schaeff.: Fr.) O. K. Miller. Carbohydr. Polym. 2010, 82, 510–514. [Google Scholar] [CrossRef]
- Kaur, C.; Kapoor, H.C. Antioxidants in fruits and vegetables-the millennium’s health. Int. J. Food Sci. Technol. 2001, 36, 703–725. [Google Scholar] [CrossRef]
- Gulcin, I.; Oktay, M.; Kirecci, E.; Kufrevioglu, O.I. Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chem. 2003, 83, 371–382. [Google Scholar] [CrossRef]
- Kubola, J.; Siriamornpun, S. Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro. Food Chem. 2008, 110, 881–890. [Google Scholar] [CrossRef]
- Silva, B.A.; Malva, J.O.; Dias, A.C.P. St. John’s Wort (Hypericum perforatum) extracts and isolated phenolic compounds are effective antioxidants in several in vitro models of oxidative stress. Food Chem. 2008, 110, 611–619. [Google Scholar] [CrossRef]
- Guo, J.M.; Weng, X.C.; Wu, H.; Li, Q.H.; Bi, K.S. Antioxidants from a Chinese medicinal herb—Psoralea corylifolia L. Food Chem. 2005, 91, 287–292. [Google Scholar]
- Han, H.; Weng, X.C.; Bi, K.S. Antioxidants from a Chinese medicinal herb-Lithospermum erythrorhizon. Food Chem. 2008, 106, 2–10. [Google Scholar] [CrossRef]
- Zhu, Y.Z.; Huang, S.H.; Tan, B.K.H.; Sun, J.; Whiteman, M.; Zhu, Y.C. Antioxidants in Chinese herbal medicines: A biochemical Perspective. Nat. Prod. Rep. 2004, 21, 478–489. [Google Scholar] [CrossRef]
- Van Der Zwan, L.P.; Scheffer, P.G.; Dekker, J.M.; Stehouwer, C.D.A.; Heine, R.J.; Teerlink, T. Hyperglycemia and oxidative stress strengthen the association between myeloperoxidase and blood pressure. Hypertension 2010, 55, 1366–1372. [Google Scholar] [CrossRef]
- Ceriello, A.; Davidson, J.; Hanefeld, M.; Leiter, L.; Monnier, L.; Owens, D.; Tajima, N.; Tuomilehto, J. Postprandial hyperglycaemia and cardiovascular complications of diabetes: An update. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 453–456. [Google Scholar] [CrossRef]
- O’Keefe, J.H.; Bell, D.S.H. Postprandial Hyperglycemia/Hyperlipidemia (Postprandial Dysmetabolism) Is a Cardiovascular Risk Factor. Am. J. Cardiol. 2007, 100, 375, 899–904. [Google Scholar] [CrossRef]
- Szablewski, L. Glucose Homeostasis—Mechanism and Defects. In Diabetes—Damages and Treatments; Rigobelo, E., Ed.; InTech Publishing Inc.: Rijeka, Croatia, 2011; Volume 12, pp. 227–256. [Google Scholar]
- Kim, K.Y.; Nguyen, T.H.; Kurihara, H.; Kim, S.M. α-Glucosidase inhibitory activity of bromophenol purified from the red alga Polyopes lancifolia. J. Food Sci. 2010, 75, H145–H150. [Google Scholar] [CrossRef]
- Etxeberria, U.; de la Garza, A.L.; Campión, J.; Martínez, J.A.; Milagro, F.I. Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase. Expert Opin. Ther. Targets 2012, 16, 269–297. [Google Scholar] [CrossRef] [Green Version]
- Van De Laar, F.A. Alpha-glucosidase inhibitors in the early treatment of type 2 diabetes. Vasc. Health Risk Manag. 2008, 4, 1189–1195. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, P.; Kumar, P.; Singh, V.K.; Singh, D.K. Biological Effects of Myristica fragrans. Annu. Rev. Biomed. Sci. 2009, 11, 21–29. [Google Scholar] [CrossRef]
- Grover, J.K.; Khandkar, S.; Vats, V.; Dhunnoo, Y. Pharmacological studies on Myristica fragrans—Antidiarrheal, hypnotic, analgesic and hemodynamic (blood pressure) parameters. Meth. Find. Exp. Clin. Pharmacol. 2003, 24, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Morita, T.; Jinno, K.; Kawagishi, H.; Arimoto, Y.; Suganuma, H.; Inakuma, T.; Sugiyama, K. Hepatoprotective effect of myristicin from nutmeg (Myristica fragrans) on lipopolysaccharide/d-galactosamine-induced liver injury. J. Agric. Food Chem. 2003, 51, 1560–1565. [Google Scholar] [CrossRef]
- Sonavane, G.S.; Sarveiya, V.P.; Kasture, V.S.; Kasture, S.B. Anxiogenic activity of Myristica fragrans seeds. Pharmacol. Biochem. Behav. 2002, 71, 239–244. [Google Scholar] [CrossRef]
- Capasso, R.; Pinto, L.; Vuotto, M.L.; Di Carlo, G. Preventive effect of eugenol on PAF and ethanol-induced gastric mucosal damage. Fitoterapia 2000, 71 (Suppl. 1), S131–S137. [Google Scholar] [CrossRef]
- Park, S.; Lee, D.K.; Yang, C.H. Inhibition of fos-jun-DNA complex formation by dihydroguaiaretic acid and in vitro cytotoxic effects on cancer cells. Cancer Lett. 1998, 127, 23–28. [Google Scholar] [CrossRef]
- Ozaki, Y.; Soedigdo, S.; Wattimena, Y.R.; Suganda, A.G. Anti-inflammatory effect of mace, aril of Myristica fragrans Houtt., and its active principles. Jpn. J. Pharmacol. 1989, 49, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Herchi, W.; Kallel, H.; Boukhchina, S. Physicochemical properties and antioxidant activity of Tunisian date palm (Phoenix dactylifera L.) oil as affected by different extraction methods. J. Food Sci. Technol. 2014, 34, 464–470. [Google Scholar] [CrossRef] [Green Version]
- Du, G.R. Study on the Total Antioxidant Capacity and Bioactive Compounds of Kiwi, Persimmon and Apple Fruits; Northwest Agriculture and Forestry University: Xianyang, China, 2009. [Google Scholar]
- Saputri, F.A.; Lestari, K.; Levita, J. Determination of safrole in ethanol extract of Nutmeg (Myristica fragrans Houtt) using reversed-phase high performance liquid chromatography. Int. J. Chem. 2014, 6, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Chiu, S.; Wang, T.; Belski, M.; Abourashed, E.A. HPLC-guided isolation, purification and characterization of phenylpropanoid and phenolic constituents of nutmeg kernel (Myristica fragrans). Nat. Prod. Commun. 2016, 11, 483–488. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.; Choi, A.H.; Kwon, M.; Joung, E.J.; Shin, T.; Lee, S.G.; Kim, N.G.; Kim, H.R. Evaluation of antioxidant activities of various solvent extract from Sargassum serratifolium and its major antioxidant components. Food chem. 2019, 278, 178–184. [Google Scholar] [CrossRef]
- Kim, S.M.; Kang, S.W.; Jeon, J.S.; Jung, Y.J.; Kim, W.R.; Kim, C.Y.; Um, B.H. Determination of major phlorotannins in Eisenia bicyclis using hydrophilic interaction chromatography: Seasonal variation and extraction characteristics. Food Chem. 2013, 138, 2399–2406. [Google Scholar] [CrossRef]
- Koivikko, R.; Loponen, J.; Honkanen, T.; Jormalainen, V. Contents of soluble, cell-wall-bound and exuded phlorotannins in the brown alga Fucus vesiculosus, with implications on their ecological functions. J. Chem. Ecol. 2005, 31, 195–212. [Google Scholar] [CrossRef] [Green Version]
- Takao, T.; Watanabe, N.; Yagi, I.; Sakata, K. A simple screening method for antioxidants and isolation of several antioxidants produced by marine bacteria from fish and shellfish. Biosci. Biotechnol. Biochem. 1994, 58, 1780–1783. [Google Scholar] [CrossRef] [Green Version]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Zhang, Q.-F.; Zhang, Z.-R.; Cheung, H.-Y. Antioxidant activity of Rhizoma Smilacis Glabrae extracts and its key constituent-astilbin. Food Chem. 2009, 115, 297–303. [Google Scholar] [CrossRef]
- Mathew, S.; Abraham, T.E. Studies on the antioxidant activities of cinnamon (Cinnamomum verum) bark extracts, through various in vitro models. Food Chem. 2006, 94, 520–528. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, Y.; Cheng, Y.; Wang, Y. Rapid screening and identification of α-glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR. Biomed. Chromatogr. 2013, 27, 148–155. [Google Scholar] [CrossRef]
Extracting Solvents | Relative Polarity | TPC (mg/g) a (GAE) | Yields (%) b |
---|---|---|---|
n-Hexane | 0.009 | 16.82 ± 0.62 *** | 27.3 ± 1.67 |
Chloroform | 0.259 | 18.65 ± 0.53 *** | 29.2 ± 0.79 |
Dichloromethane | 0.269 | 18.97 ± 1.22 ** | 30.7 ± 1.49 |
Ethyl acetate | 0.288 | 32.93 ± 0.85 *** | 24.5 ± 1.13 |
Acetone | 0.355 | 70.07 ± 2.28 *** | 21.1 ± 0.23 |
Methanol | 0.762 | 107.83 ± 0.66 *** | 18.2 ± 0.75 |
Ethanol | 0.654 | 98.01 ± 2.99 *** | 15.6 ± 1.21 |
Extracting Solvents | DPPH IC50 (μg/mL) | ABTS IC50 (μg/mL) | Superoxide IC50 (μg/mL) | Hydroxyl IC50 (μg/mL) |
---|---|---|---|---|
n-Hexane | 126.57 ± 6.23 * | 103.05 ± 2.41 * | >400 | 51.94 ± 0.79 * |
Chloroform | 167.17 ± 7.13 | 93.70 ± 5.06 * | >400 | 82.39 ± 2.62 * |
Dichloromethane | 96.90 ± 7.68 | 82.31 ± 2.15 * | >400 | 88.19 ± 2.09 * |
Ethyl acetate | 95.12 ± 2.63 * | 91.19 ± 0.88 * | >400 | 55.25 ± 1.25 * |
Acetone | 65.08 ± 1.44 * | 64.35 ± 1.58 * | >400 | 42.99 ± 0.19 * |
Methanol | 22.42 ± 0.99 ** | 34.41 ± 0.78 ** | 117.66 ± 2.56 * | 37.81 ± 1.56 * |
Ethanol | 39.65 ± 0.83 * | 27.68 ± 0.31 ** | >400 | 56.05 ± 2.52 * |
BHT a | 36.94 ± 0.49 ** | 11.05 ± 0.26 ** | N.A. b | 61.51 ± 2.46 * |
Extracting Solvents | α-Glucosidase IC50 (μg/mL) |
---|---|
n-Hexane | >200 |
Chloroform | >200 |
Dichloromethane | >200 |
Ethyl acetate | 185.36 ± 5.21 |
Acetone | 29.07 ± 2.30 * |
Methanol | 4.08 ± 0.12 ** |
Ethanol | 11.92 ± 0.39 * |
Quercetin a | 14.99 ± 0.81 ** |
Extracting Solvents | Malabaricone B (mg/g) | Malabaricone C (mg/g) | Dehydrodiisoeugenol (mg/g) | Total Amount (mg/g) |
---|---|---|---|---|
Methanol | 6.17 ± 0.51 | 31.67 ± 1.49 | 13.59 ± 0.50 | 51.43 ± 1.18 |
Ethanol | 4.65 ± 0.54 | 27.54 ± 1.16 | 10.61 ± 0.59 | 42.80 ± 1.17 |
Acetone | 2.72 ± 0.13 | 16.41 ± 0.91 | 6.62 ± 0.19 | 25.75 ± 0.67 |
Ethyl acetate | 2.29 ± 0.28 | 15.12 ± 0.67 | 5.86 ± 0.89 | 23.27 ± 1.72 |
Chloroform | 2.50 ± 0.05 | 4.48 ± 0.27 | 11.27 ± 0.54 | 18.25 ± 0.65 |
Dichloromethane | 2.58 ± 0.08 | 3.89 ± 0.59 | 10.18 ± 0.42 | 16.65 ± 0.92 |
n-Hexane | 1.10 ± 0.13 | N.D. a | 14.40 ± 0.36 | 15.52 ± 0.26 |
Compounds | DPPH IC50 (μg/mL) | ABTS IC50 (μg/mL) | Superoxide IC50 (μg/mL) | Hydroxyl IC50 (μg/mL) |
---|---|---|---|---|
Dehydrodiisoeu-genol | 66.02 ± 2.85 * | 8.43 ± 0.42 *** | >200 | 68.29 ± 0.70 |
Malabaricone B | >200 | 7.05 ± 0.72 *** | >200 | 95.22 ± 4.20 |
Malabaricone C | 8.35 ± 2.20 ** | 5.36 ± 0.19 ** | >200 | 72.81 ± 2.58 * |
BHT a | 34.28 ± 1.40 * | 10.67 ± 0.41 ** | N.A. b | 69.96 ± 4.66 * |
Sample Availability: Samples of the compounds are available from the authors. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.-W.; Chu, Y.-C.; Huang, C.-Y.; Fu, S.-L.; Chen, J.-J. Evaluation of Antioxidant and Anti-α-glucosidase Activities of Various Solvent Extracts and Major Bioactive Components from the Seeds of Myristica fragrans. Molecules 2020, 25, 5198. https://doi.org/10.3390/molecules25215198
Li C-W, Chu Y-C, Huang C-Y, Fu S-L, Chen J-J. Evaluation of Antioxidant and Anti-α-glucosidase Activities of Various Solvent Extracts and Major Bioactive Components from the Seeds of Myristica fragrans. Molecules. 2020; 25(21):5198. https://doi.org/10.3390/molecules25215198
Chicago/Turabian StyleLi, Cai-Wei, Yi-Cheng Chu, Chun-Yi Huang, Shu-Ling Fu, and Jih-Jung Chen. 2020. "Evaluation of Antioxidant and Anti-α-glucosidase Activities of Various Solvent Extracts and Major Bioactive Components from the Seeds of Myristica fragrans" Molecules 25, no. 21: 5198. https://doi.org/10.3390/molecules25215198
APA StyleLi, C. -W., Chu, Y. -C., Huang, C. -Y., Fu, S. -L., & Chen, J. -J. (2020). Evaluation of Antioxidant and Anti-α-glucosidase Activities of Various Solvent Extracts and Major Bioactive Components from the Seeds of Myristica fragrans. Molecules, 25(21), 5198. https://doi.org/10.3390/molecules25215198