Role of Daucus carota in Enhancing Antiulcer Profile of Pantoprazole in Experimental Animals
Abstract
:1. Introduction
2. Results
2.1. Phytochemical Investigation
2.2. Antioxidant Effect of Carrot
2.3. Acetic Acid Induced Gastric Ulcers
2.4. Pylorus Ligated Rats
2.5. Ethanol and Stress Induced Ulcers
2.6. Cysteamine Induced Duodenal Ulcers
2.7. Indomethacin Induced Gastric Ulcers
3. Discussion
4. Materials and Methods
4.1. Experimental Animals
4.2. Method to Prepare Carrot Solution and Selection of Dose
4.3. Phytochemical Studies
4.4. Antioxidant Test (DPPH Free Radical Scavenging Activity)
4.5. Grouping of Experimental Animals and Animal Models
4.5.1. Acetic Acid Induced Chronic Gastric Ulcers
4.5.2. Pylorus Ligation Induced Ulcers
4.5.3. Ethanol Induced Ulcers
4.5.4. Cold Restraint Stress Induced Ulcers
4.5.5. Healing of Indomethacin-Induced Gastric Ulcers
4.5.6. Cysteamine Induced Duodenal Ulcers
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Farzaei, M.H.; Abdollahi, M.; Rahimi, R. Role of dietary polyphenols in the management of peptic ulcer. World J. Gastroenterol. 2015, 21, 6499–6517. [Google Scholar] [CrossRef] [PubMed]
- Rosales-Mendoza, S.; Tello-Olea, M.A. Carrot Cells: A Pioneering Platform for Biopharmaceuticals Production. Mol. Biotechnol. 2015, 57, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Gurley, B.J.; Tonsing-Carter, A.; Thomas, S.L.; Fifer, E.K. Clinically Relevant Herb-Micronutrient Interactions: When Botanicals, Minerals, and Vitamins Collide. Adv. Nutr. 2018, 9, 524S–532S. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Huang, Y.; Li, H.; Sun, W.; Liu, J. Proton-pump inhibitors and risk of fractures: An update meta-analysis. Osteoporos. Int. 2016, 27, 339–347. [Google Scholar] [CrossRef]
- Lam, J.R.; Schneider, J.L.; Zhao, W.; Corley, D.A. Proton Pump Inhibitor and Histamine 2 Receptor Antagonist Use and Vitamin B12Deficiency. JAMA 2013, 310, 2435–2442. [Google Scholar] [CrossRef] [Green Version]
- Janarthanan, S.; Ditah, I.; Adler, D.G.; Ehrinpreis, M.N. Clostridium difficile-Associated Diarrhea and Proton Pump Inhibitor Therapy: A Meta-Analysis. Am. J. Gastroenterol. 2012, 107, 1001–1010. [Google Scholar] [CrossRef]
- Zirk-Sadowski, J.; Masoli, J.A.; Delgado, J.; Hamilton, W.; Strain, W.D.; Henley, W.; Melzer, D.; Ble, A. Proton-Pump Inhibitors and Long-Term Risk of Community-Acquired Pneumonia in Older Adults. J. Am. Geriatr. Soc. 2018, 66, 1332–1338. [Google Scholar] [CrossRef] [Green Version]
- Haenisch, B.; Von Holt, K.; Wiese, B.; Prokein, J.; Lange, C.; Ernst, A.; Brettschneider, C.; König, H.-H.; Werle, J.; Weyerer, S.; et al. Risk of dementia in elderly patients with the use of proton pump inhibitors. Eur. Arch. Psychiatry Clin. Neurosci. 2015, 265, 419–428. [Google Scholar] [CrossRef]
- Cheung, K.S.; Chan, E.W.; Wong, A.Y.S.; Chen, L.; Wong, I.C.K.; Leung, W.K. Long-term proton pump inhibitors and risk of gastric cancer development after treatment for Helicobacter pylori: A population-based study. Gut 2017, 67, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Lazarus, B.; Chen, Y.; Wilson, F.P.; Sang, Y.; Chang, A.R.; Coresh, J.; Grams, M.E. Proton Pump Inhibitor Use and the Risk of Chronic Kidney Disease. JAMA Intern. Med. 2016, 176, 238–246. [Google Scholar] [CrossRef] [Green Version]
- Centers for Medicare and Medicaid Services. Proton pump inhibitors: Food and Drug Administration-Approved Indications and Dosages for Use in Adults. Department of Health and Human Services. 2013. Available online: www.cms.gov/Medicare-Medicaid-Coordination/Fraud-Prevention/Medicaid-Integrity-Education/Pharmacy-Education-aterials/Downloads/ppi-adult-dosingchart11-14.pdf (accessed on 13 August 2017).
- Khatib, N.; Angel, G.; Nayna, H.; Joshi, R. Gastroprotective activity of the aqueous extract from the roots of Daucus carota L in rats. Int. J. Res. Ayurveda Pharm. (IJRAP) 2010, 1, 112–119. [Google Scholar]
- Wehbe, K.; Mroueh, M.; Daher, C.F. The Potential Role of Daucus carota Aqueous and Methanolic Extracts on Inflammation and Gastric Ulcers in Rats. J. Complement. Integr. Med. 2009, 6. [Google Scholar] [CrossRef]
- Smith, A.; Contreras, C.; Ko, K.H.; Chow, J.; Dong, X.; Tuo, B.; Zhang, H.-H.; Chen, D.-B.; Dong, H. Gender-Specific Protection of Estrogen against Gastric Acid-Induced Duodenal Injury: Stimulation of Duodenal Mucosal Bicarbonate Secretion. Endocrinology 2008, 149, 4554–4566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boeing, T.; Da Silva, L.M.; Somensi, L.B.; Cury, B.J.; Costa, A.P.M.; Petreanu, M.; Niero, R.; De Andrade, S.F. Antiulcer mechanisms of Vernonia condensata Baker: A medicinal plant used in the treatment of gastritis and gastric ulcer. J. Ethnopharmacol. 2016, 184, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Viana, A.F.S.; Lopes, M.T.P.; Oliveira, F.T.B.; Nunes, P.I.G.; Santos, V.G.; Braga, A.D.; Silva, A.C.A.; Sousa, D.P.; Viana, D.A.; Rao, V.S.; et al. (−)-Myrtenol accelerates healing of acetic acid-induced gastric ulcers in rats and in human gastric adenocarcinoma cells. Eur. J. Pharmacol. 2019, 854, 139–148. [Google Scholar] [CrossRef]
- Asad, M.; Alhomoud, M. Proulcerogenic effect of water extract of Boswellia sacra oleo gum resin in rats. Pharm. Biol. 2015, 54, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Shebaby, W.N.; Mroueh, M.A.; Boukamp, P.; Taleb, R.I.; Bodman-Smith, K.; El-Sibai, M.; Daher, C.F. Wild carrot pentane-based fractions suppress proliferation of human HaCaT keratinocytes and protect against chemically-induced skin cancer. BMC Complement. Altern. Med. 2017, 17, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Shebaby, W.N.; Daher, C.F.; El-Sibai, M.; Bodman-Smith, K.; Mansour, A.; Karam, M.C.; Mroueh, M. Antioxidant and hepatoprotective activities of the oil fractions from wild carrot (Daucus carotassp.carota). Pharm. Biol. 2015, 53, 1285–1294. [Google Scholar] [CrossRef]
- Natarajmurthy, S.H.; Askari, M.; Pullabhatla, S.; Dharmesh, S.M.; Puillabhatla, S. A novel β-carotene–associated carrot (Daucus carota L.) pectic polysaccharide. Nutrition 2016, 32, 818–826. [Google Scholar] [CrossRef]
- Dawid, C.; Dunemann, F.; Eschwab, W.; Nothnagel, T.; Hofmann, T. Bioactive C17-Polyacetylenes in Carrots (Daucus carotaL.): Current Knowledge and Future Perspectives. J. Agric. Food Chem. 2015, 63, 9211–9222. [Google Scholar] [CrossRef]
- Dong, R.; Yu, Q.; Liao, W.; Liu, S.; He, Z.; Hu, X.; Chen, Y.; Xie, J.; Nie, S.; Xie, M. Composition of bound polyphenols from carrot dietary fiber and its in vivo and in vitro antioxidant activity. Food Chem. 2020, 339, 127879. [Google Scholar] [CrossRef] [PubMed]
- Gaglio, R.; Barbera, M.; Aleo, A.; Lommatzsch, I.; La Mantia, T.; Settanni, L. Inhibitory Activity and Chemical Characterization ofDaucus carotasubsp.maximusEssential Oils. Chem. Biodivers. 2017, 14, e1600477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, T.; Kajla, P. Comparative nutritional and microbiological quality of ready to cook mixed vegetable curry. J. Food Sci. Technol. 2020, 57, 2099–2106. [Google Scholar] [CrossRef]
- Nair, A.B.; Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic Clin. Pharm. 2016, 7, 27–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukherjee, P.K. Quality Control of Herbal Drugs an Approach to Evaluation of Botanicals; Business Horizons Pharmaceutical Publishers: New Delhi, India, 2002. [Google Scholar]
- Onoabedje, E.A.; Ibezim, A.; Okoro, U.C.; Batra, S. Synthesis, molecular docking, antiplasmodial and antioxidant activities of new sulfonamido-pepetide derivatives. Heliyon 2020, 6. [Google Scholar] [CrossRef] [PubMed]
- Bae, D.-K.; Park, N.; Lee, S.H.; Yang, G.; Yang, Y.-H.; Kim, T.K.; Choi, Y.J.; Kim, J.J.; Jeon, J.H.; Jang, M.-J.; et al. Different Antiulcer Activities of Pantoprazole in Stress, Alcohol and Pylorus Ligation-Induced Ulcer Models. Lab. Anim. Res. 2011, 27, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Alam, S.; Asad, M.; Asdaq, S.M.B.; Prasad, V.S. Antiulcer activity of methanolic extract of Momordica charantia L. in rats. J. Ethnopharmacol. 2009, 123, 464–469. [Google Scholar] [CrossRef]
- Ganguly, A.K. A method for quantitative assessment of experimentally produced ulcers in the stomach of albino rats. Cell. Mol. Life Sci. 1969, 25, 1224. [Google Scholar] [CrossRef]
- Wang, J.Z.; Wu, Y.J.; Rao, C.M.; Gao, M.T.; Li, W.G. Effect of recombinant human basic fibroblast growth factor on stomach ulcers in rats and mice. Acta Pharmacol. Sin. 1999, 20, 763–768. [Google Scholar]
- Kulkarni, S.K. Hand Book of Experimental Pharmacology, 3rd ed.; Vallabh prakashan: New Delhi, India, 1999. [Google Scholar]
- Brzozowski, T.; Konturek, P.C.; Konturek, S.J.; Kwiecien, S.; Pajdo, R.; Brzozowska, I.; Hahn, E.G. Involvement of endogenous cholecystokinin and somatostatin in gastro protection induced by intra duodenal fat. J. Clin. Gastroenterol. 1998, 27, S125–S137. [Google Scholar] [CrossRef]
- Parmar, N.S.; Jagruthi, K.D. A review of the current methodology for the evaluation of gastric and duodenal anti ulcer agents. Indian J. Pharmacol. 1993, 25, 120–135. [Google Scholar]
- Majumdar, B.; Chaudhuri, S.G.R.; Ray, A.; Bandyopadhyay, S.K. Effect of ethanol extract of Piper betle Linn leaf on healing of NSAID-induced experimental ulcer—A novel role of free radical scavenging action. Indian J. Exp. Biol. 2003, 41, 311–315. [Google Scholar]
- Szabo, S. Animal model for human disease: Duodenal ulcer disease. Amer. J. Pathol. 1978, 73, 273–276. [Google Scholar]
- Desai, J.K.; Goyal, R.K.; Parmar, N.S. Characterization of Dopamine Receptor Subtypes Involved in Experimentally Induced Gastric and Duodenal Ulcers in Rats. J. Pharm. Pharmacol. 1999, 51, 187–192. [Google Scholar] [CrossRef]
Sl.No | Test Compound | IC50 (µg/mL) | Weight of the Extract (g %, w/v) |
---|---|---|---|
1. | Gallic acid | 6 | 1 |
2. | Carrot fruit (Daucus carota) | 312 | 1 |
Groups | CD | VCC | SE | UI | RGE | US |
---|---|---|---|---|---|---|
Control | 4.30 ± 0.3 | 0.06 ± 0.0 | 133.30 ± 0.8 | 1.16 ± 0.0 | 389 ± 28.5 | 21.33 ± 1.8 |
PZL | 6.30 ± 0.3 * | 0.10 ± 0.0 ** | 155.60 ± 1.2 ** | 0.74 ± 0.0 ** | 499 ± 0.5 ** | 12.33 ± 0.8 ** |
LCE | 4.30 ± 0.3 | 0.06 ± 0.0 | 133.20 ± 0.8 | 1.06 ± 0.0 | 361 ± 18.7 | 14.33 ± 1.4 * |
HCE | 6.30 ± 0.3 * | 0.08 ± 0.0 * | 111.60 ± 3.3 ** | 0.40± 0.0 *** | 389 ± 28.5 | 12.66 ± 1.3 ** |
LCE + PZL | 6.30 ± 0.3 * | 0.09 ± 0.0 ** | 163.00 ± 1.5 *** | 0.42 ±0.0 ***,† | 506 ± 7.0 ** | 5.33 ± 1.4 ***,† |
HCE + PZL | 7.00 ± 0.5 **,† | 0.10 ± 0.0 ** | 173.60 ± 2.0 ***,† | 0.33 ± 0.0 ***,†† | 510 ± 6.9 **,† | 3.00 ± 0.5 ***,†† |
Groups | Ulcer Index | Ulcer Score | Free Acidity (mEq/L) | Total Acidity (mEq/L) | Mucin Content (μg/g) | Pepsin Content (μg/6 h) | Total Protein (mg/mL) |
---|---|---|---|---|---|---|---|
Control | 0.37 ± 0.0 | 17.00 ± 1. | 45.50 ± 3.8 | 56.20 ± 5.8 | 11.20 ± 0.9 | 0.19 ± 0.0 | 44.95 ± 2.5 |
PZL | 0.25 ± 0.0 * | 9 ± 0.5 ** | 5.00 ± 1.0 ** | 10.00 ± 0.9 ** | 30.57 ± 2.6 * | 0.11 ± 0.0 *** | 30.30 ± 1.9 ** |
LCE | 0.27 ± 0.0 | 12.33 ± 1.4 | 21.00 ± 1.7 ** | 36.20 ± 2.4 * | 24.68 ± 2.9 | 0.18 ± 0.0 | 40.80 ± 1.7 |
HCE | 0.15 ± 0.0 *** | 7.30 ± 1.7 *** | 14.00 ± 3.1** | 20.00 ± 2.1 ** | 38.3 ± 5.3 ** | 0.13 ± 0.0 ** | 27.31 ± 0.8 ** |
LCE + PZL | 0.24 ± 0.0 * | 2.33 ± 0.3 ***,† | 2.20 ± 1.0 ***,† | 5.00 ± 0.4 ***,† | 56.60 ± 6.2 ***,†† | 0.06 ± 0.0 ***,†† | 15.90 ± 2.6 ***,†† |
HCE + PZL | 0.11 ± 0.0 ***,†† | 0.60 ± 0.6 ***,†† | 0.90 ± 0.0 ***,† | 1.20 ± 0.0 ***,† | 78.06 ± 2.7 ***,††† | 0.02 ± 0.0 ***,††† | 14.00 ± 1.1 ***,†† |
Treatment | Ulcer Index | Ulcer Score |
---|---|---|
Control | 2.03 ± 0.3 | 16.30 ± 1.3 |
PZL | 0.81 ± 0.0 ** | 7.00 ± 1.1 *** |
LCE | 1.36 ± 0.3 | 13.60 ± 0.3 |
HCE | 1.01 ± 0.0 *** | 11.00 ± 0.5 ** |
LCE + PZL | 0.92 ± 0.0 ***,† | 7.60 ± 0.8 *** |
HCE + PZL | 0.01 ± 0.0 ***,† | 2.60 ± 0.3 ***,† |
Treatment | Ulcer Index | Ulcer Score |
---|---|---|
Control | 0.97 ± 0.0 | 14.00 ± 1.1 |
PZL | 0.35 ± 0.0 *** | 6.60 ± 0.8 ** |
LCE | 0.72 ± 0.0 | 6.60 ± 2.4 ** |
HCE | 0.45 ± 0.0 *** | 5.30 ± 0.3 *** |
LCE + PZL | 0.57 ± 0.0 ** | 1.30 ± 0.3 ***,† |
HCE + PZL | 0.06 ± 0.0 ***,† | 0.30 ± 0.3 ***,†† |
Treatment | Ulcer Area | Ulcer Index | Ulcer Score |
---|---|---|---|
Control | 10.60 ± 1.7 | 2.40 | 11.00 ± 1.5 |
PZL | 5.00 ± 0.5 ** | 1.48 | 6.00 ± 0.5 ** |
LCE | 6.30 ± 0.8 * | 2.24 | 7.33 ± 0.6 |
HCE | 1.00 ± 1.0 *** | 0.71 | 5.66 ± 0.3 ** |
LCE + PZL | 4.60 ± 0.8 ** | 1.49 | 5.66 ± 0.8 ** |
HCE + PZL | 0.60 ± 0.3 ***,† | 0.73 | 1.00 ± 0.5 ***,†† |
Treatment | Mucin Content (µg/g) | Ulcer Index | Ulcer Score | Total Proteins (mg/mL) | SOD (Units/mg of Proteins) |
---|---|---|---|---|---|
Control | 0.50 ± 0.0 | 0.76 ± 0.1 | 12.66 ± 2.4 | 19.63 ± 0.5 | 2.70 ± 0.2 |
PZL | 1.50 ± 0.1 ** | 0.36 ± 0.0 ** | 6.00 ± 1.0 ** | 30.39 ± 1.6 ** | 5.49 ± 0.9 ** |
LCE | 1.00 ± 0.0 | 0.74 ± 0.0 | 6.00 ± 0.5 ** | 22.20 ± 1.6 | 2.60 ± 0.3 * |
HCE | 1.10 ± 0.7 * | 0.15 ± 0.0 *** | 3.33 ± 0.6 *** | 34.04 ± 1.6 *** | 4.00 ± 0.3 ** |
LCE + PZL | 1.60 ± 0.3 ** | 0.04 ± 0.0 ***,† | 0.66 ± 0.3 ***,† | 38.75 ± 0.3 ***,† | 9.10 ± 0.2 *** |
HCE + PZL | 2.00 ± 0.5 ***,† | 0.01 ± 0.0 ***,† | 0.33 ± 0.3 ***,† | 39.03 ± 2.60 ***,†† | 13.60 ± 0.7 ***,† |
Sample Availability: Not available. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asdaq, S.M.B.; Swathi, E.; Dhamanigi, S.S.; Asad, M.; Ali Mohzari, Y.; Alrashed, A.A.; Alotaibi, A.S.; Mohammed Alhassan, B.; Nagaraja, S. Role of Daucus carota in Enhancing Antiulcer Profile of Pantoprazole in Experimental Animals. Molecules 2020, 25, 5287. https://doi.org/10.3390/molecules25225287
Asdaq SMB, Swathi E, Dhamanigi SS, Asad M, Ali Mohzari Y, Alrashed AA, Alotaibi AS, Mohammed Alhassan B, Nagaraja S. Role of Daucus carota in Enhancing Antiulcer Profile of Pantoprazole in Experimental Animals. Molecules. 2020; 25(22):5287. https://doi.org/10.3390/molecules25225287
Chicago/Turabian StyleAsdaq, Syed Mohammed Basheeruddin, Earla Swathi, Sunil S Dhamanigi, Mohammed Asad, Yahya Ali Mohzari, Ahmed A. Alrashed, Abdulrahman S. Alotaibi, Batool Mohammed Alhassan, and Sreeharsha Nagaraja. 2020. "Role of Daucus carota in Enhancing Antiulcer Profile of Pantoprazole in Experimental Animals" Molecules 25, no. 22: 5287. https://doi.org/10.3390/molecules25225287
APA StyleAsdaq, S. M. B., Swathi, E., Dhamanigi, S. S., Asad, M., Ali Mohzari, Y., Alrashed, A. A., Alotaibi, A. S., Mohammed Alhassan, B., & Nagaraja, S. (2020). Role of Daucus carota in Enhancing Antiulcer Profile of Pantoprazole in Experimental Animals. Molecules, 25(22), 5287. https://doi.org/10.3390/molecules25225287