Antioxidant and Anti-Inflammatory Activities of Six Flavonoids from Smilax glabra Roxb
Abstract
:1. Introduction
2. Results
2.1. Isolation of Six Flavonoids in SGF by Preparative High-performance Liquid Chromatography (PHPLC)
2.2. Antioxidant Activity of Six Flavonoids in SGF
2.3. Anti-Inflammatory Activity of Six Flavonoids in SGF
3. Discussion
4. Materials and Methods
4.1. Samples and Chemicals
4.2. Isolation of Six Flavonoids in SGF by Preparative High-Performance Liquid Chromatography (PHPLC)
4.3. The Antioxidant Effect of the Six Flavonoids in SGF
4.3.1. Sample Preparation
4.3.2. DPPH Radical Scavenging Activity
4.3.3. ABTS+ Radical Scavenging Activity
4.3.4. Ferric Reducing Antioxidant Power (FRAP) Assay
4.4. The Anti-Inflammatory Effect of Compounds in TFSG on RAW 264.7 Cells
4.4.1. RAW 264.7 Cells Culture and Treatment
4.4.2. Inflammatory Cytokines Determination by Enzyme Linked Immunosorbent Assay (ELISA)
4.4.3. NF-κB p-p65 Expression Assay by Western Blotting
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hua, S.; Zhang, Y.; Liu, J.; Dong, L.; Huang, J.; Lin, D.; Fu, X. Ethnomedicine, phytochemistry and pharmacology of Smilax glabra: An important traditional Chinese medicine. Am. J. Chin. Med. 2018, 46, 261–297. [Google Scholar] [CrossRef] [PubMed]
- Bao, Y.; Li, H.; Li, Q.Y.; Li, Y.; Li, F.; Zhang, C.F.; Wang, C.Z.; Yuan, C.S. Therapeutic effects of Smilax glabra and Bolbostemma paniculatum on rheumatoid arthritis using a rat paw edema model. Biomed. Pharmacother. 2018, 108, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Feng, H.; He, Y.; La, L.; Hou, C.; Song, L.; Yang, Q.; Wu, F.; Liu, W.; Hou, L.; Li, Y.; et al. The flavonoid-enriched extract from the root of Smilax china L. inhibits inflammatory responses via the TLR-4-mediated signaling pathway. J. Ethnopharmacol. 2020, 256, 112785. [Google Scholar] [CrossRef] [PubMed]
- Xia, D.; Fan, Y.; Zhang, P.; Fu, Y.; Ju, M.; Zhang, X. Protective effects of the flavonoid-rich fraction from rhizomes of Smilax glabra Roxb. on carbon tetrachloride-induced hepatotoxicity in rats. J. Membr. Biol. 2013, 246, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Zhu, W.; Wang, M.; Xu, X.; Lu, C. Antioxidant and anti-inflammatory activities of phenolic-enriched extracts of Smilax glabra. Alternat. Med. 2014, 2014, 1–8. [Google Scholar]
- Huang, L.; Deng, J.; Chen, G.; Zhou, M.; Liang, J.; Yan, B.; Shu, J.; Liang, Y.; Huang, H. The anti-hyperuricemic effect of four astilbin stereoisomers in Smilax glabra on hyperuricemic mice. J. Ethnopharmacol. 2019, 238, 111777. [Google Scholar] [CrossRef] [PubMed]
- Kerimi, A.; Williamson, G. Differential impact of flavonoids on redox modulation, bioenergetics, and cell signaling in normal and tumor cells: A comprehensive review. Antioxid. Redox Signal. 2018, 29, 1633–1659. [Google Scholar] [CrossRef]
- Chen, W.D.; Zhao, Y.L.; Sun, W.J.; He, Y.J.; Liu, Y.P.; Jin, Q.; Yang, X.W.; Luo, X.D. “Kidney Tea” and its bioactive secondary metabolites for treatment of gout. J. Agric. Food Chem. 2020, 68, 9131–9138. [Google Scholar] [CrossRef]
- Shu, J.; Li, L.; Zhou, M.; Yu, J.; Peng, C.; Shao, F.; Liu, R.; Zhu, G.; Huang, H. Three new flavonoid glycosides from Smilax glabra and their anti-inflammatory activity. Nat. Prod. Res. 2018, 32, 1760–1768. [Google Scholar] [CrossRef]
- Xu, S.; Shang, M.; Liu, G.; Xu, F.; Wang, X.; Shou, C.; Cai, S. Chemical constituents from the rhizomes of Smilax glabra and their antimicrobial activity. Molecules 2013, 18, 5265–5287. [Google Scholar] [CrossRef] [Green Version]
- Zheng, D.; Zhang, L.; Zhang, Q. Isomerization of astilbin and its application for preparation of the four stereoisomers from Rhizoma Smilacis Glabrae. J. Pharmaceut. Biomed. 2018, 155, 202–209. [Google Scholar] [CrossRef] [PubMed]
- McCord, J.M. The evolution of free radicals and oxidative stress. Am. J. Med. 2000, 108, 652–659. [Google Scholar] [CrossRef]
- Piccolella, S.; Fiorentino, A.; Pacifico, S.; D'Abrosca, B.; Uzzo, P.; Monaco, P. Antioxidant properties of Sour Cherries (Prunus cerasus L.): Role of colorless phytochemicals from the methanolic extract of ripe fruits. J. Agr. Food Chem. 2008, 56, 1928–1935. [Google Scholar] [CrossRef]
- Huang, Z.Q.; Chen, P.; Su, W.W.; Wang, Y.G.; Wu, H.; Peng, W.; Li, P.B. Antioxidant activity and hepatoprotective potential of quercetin 7-rhamnoside in vitro and in vivo. Molecules 2018, 23, 1188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.C.; Kunnumakkara, A.B.; Aggarwal, S.; Aggarwal, B.B. Inflammation, a double-edge sword for cancer and other age-related diseases. Front. Immunol. 2018, 9, 2160. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, E.; Tousoulis, D. Inflammation: A pathogenetic mechanism or a mediator, linking risk factors and cardiovascular disease? Int. J. Cardiol. 2018, 264, 170–171. [Google Scholar] [CrossRef]
- Rozenberg, K.; Wollman, A.; Ben-Shachar, M.; Argaev-Frenkel, L.; Rosenzweig, T. Anti-inflammatory effects of Sarcopoterium spinosum extract. J. Ethnopharmacol. 2019, 249, 112391. [Google Scholar] [CrossRef]
- Chen, Y.C.; Shen, S.C.; Lee, W.R.; Hou, W.C.; Yang, L.L.; Lee, T.J.F. Inhibition of nitric oxide synthase inhibitors and lipopolysaccharide induced inducible NOS and cyclooxygenase-2 gene expressions by rutin, quercetin, and quercetin pentaacetate in RAW 264.7 macrophages. J. Cell. Biochem. 2001, 82, 537–548. [Google Scholar] [CrossRef]
- Dhanasekar, C.; Kalaiselvan, S.; Rasool, M. Morin, a bioflavonoid suppresses monosodium urate crystal-induced inflammatory immune response in RAW 264.7 macrophages through the inhibition of inflammatory mediators, intracellular ROS levels and NF-kappaB activation. PLoS ONE 2015, 10, e145093. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Fang, Y.; Yu, X.; Guo, L.; Zhang, X.; Xia, D. The flavonoid-rich fraction from rhizomes of Smilax glabra Roxb. ameliorates renal oxidative stress and inflammation in uric acid nephropathy rats through promoting uric acid excretion. Biomed. Pharmacother. 2019, 111, 162–168. [Google Scholar] [CrossRef]
- Shi, Y.; Tian, C.; Yu, X.; Fang, Y.; Zhao, X.; Zhang, X.; Xia, D. Protective effects of Smilax glabra Roxb. against lead-induced renal oxidative stress, inflammation and apoptosis in weaning rats and HEK-293 cells. Front. Pharmacol. 2020, 11, 556248. [Google Scholar] [CrossRef] [PubMed]
- Davis, A.; Cai, Y.; Davies, A.; Lewis, J. 1H and 13C NMR assignments of some green tea polyphenols. Magn. Reson. Chem. 1996, 34, 887–890. [Google Scholar] [CrossRef]
- Xu, Y.; Capistrano, R.; Dhooghe, L.; Foubert, K.; Lemière, F.; Maregesi, S.; Baldé, A.; Apers, S.; Pieters, L. Herbal medicines and infectious diseases: Characterization by LC-SPE-NMR of some medicinal plant extracts used against malaria. Planta Med. 2011, 77, 1139–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, W.; Li, N.; Leung, E.; Zhou, H.; Yao, X.; Liu, L.; Wu, J. Rapid identification of new minor chemical constituents from Smilacis glabrae Rhizoma by combined use of UHPLC-Q-TOF-MS, preparative HPLC and UHPLC-SPE-NMR-MS techniques: Rapid identification of new minor constituents by LC-MS and LC-SPE-NMR. Phytochem. Anal. 2015, 26, 428–435. [Google Scholar] [CrossRef]
- Guo, W.; Dong, H.; Wang, D.; Yang, B.; Wang, X.; Huang, L. Separation of seven polyphenols from the rhizome of Smilax glabra by Offline Two Dimension Recycling HSCCC with extrusion mode. Molecules 2018, 23, 505. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Xu, Q.; Li, J.; Chen, T. Structural revision of two flavanonol glycosides from Smilax glabra. Planta Med. 2009, 75, 654–655. [Google Scholar] [CrossRef] [Green Version]
- Xin, W.; Huang, H.; Yu, L.; Shi, H.; Sheng, Y.; Wang, T.; Yu, L. Three new flavanonol glycosides from leaves of Engelhardtia roxburghiana, and their anti-inflammation, antiproliferative and antioxidant properties. Food Chem. 2012, 132, 788–798. [Google Scholar] [CrossRef]
- Kehrer, J.P.; Klotz, L.O. Free radicals and related reactive species as mediators of tissue injury and disease: Implications for health. Crit. Rev. Toxicol. 2015, 45, 765–798. [Google Scholar] [CrossRef]
- Lu, C.; Zhu, Y.; Hu, M.; Wang, D.; Xu, X.; Lu, C.; Zhu, W. Optimization of astilbin extraction from the rhizome of Smilax glabra, and evaluation of its anti-inflammatory effect and probable underlying mechanism in lipopolysaccharide-induced RAW264.7 macrophages. Molecules 2015, 20, 625–644. [Google Scholar] [CrossRef]
- Barzegar, A.O.M.; Schiesser, C.H.; Taylor, M.K. New reagents for detecting free radicals and oxidative stress. Org. Biomol. Chem. 2014, 12, 6757–6766. [Google Scholar] [CrossRef]
- Arora, A.; Nair, M.G.; Strasburg, G.M. Structure-activity relationships for antioxidant activities of a series of flavonoids in a liposomal system. Free Radic. Biol. Med. 1998, 24, 1355–1363. [Google Scholar] [CrossRef]
- Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C.J.; Valko, M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci. 2017, 38, 592–607. [Google Scholar] [CrossRef] [PubMed]
- Napetschnig, J.; Wu, H. Molecular basis of NF-κB signaling. Annu. Rev. Biophys. 2013, 42, 443–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, S.; Vargas, J.; Hoffmann, A. Signaling via the NF-κB system. Wiley Interdiscip. Rev. Syst. Biol. Med. 2016, 8, 227–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Li, C.; Surayot, U.; Yelithao, K.; Lee, S.; Park, W.; Tabarsa, M.; You, S. Molecular structures, chemical properties and biological activities of polysaccharide from Smilax glabra rhizome. Int. J. Biol. Macromol. 2018, 120, 1726–1733. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Xie, Y.; Xu, Y.; Hu, Z.; Wan, X.; Huang, H.; Huang, D. Protective effect of epicatechin on APAP-induced acute liver injury of mice through anti-inflammation and apoptosis inhibition. Nat. Prod. Res. 2020, 34, 855–858. [Google Scholar] [CrossRef] [PubMed]
- Fraga, C.; Oteiza, P.; Galleano, M. Plant bioactives and redox signaling: (-)-Epicatechin as a paradigm. Mol. Aspects Med. 2018, 61, 31–40. [Google Scholar] [CrossRef]
- Shi, J.Y.; Gong, J.Y.; Liu, J.E.; Wu, X.Q.; Zhang, Y. Antioxidant capacity of extract from edible flowers of Prunus mume in China and its active components. LWT Food Sci. Technol. 2009, 42, 477–482. [Google Scholar] [CrossRef]
- Xia, D.Z.; Yu, X.F.; Zhu, Z.Y.; Zou, Z.D. Antioxidant and antibacterial activity of six edible wild plants (Sonchus spp.) in China. Nat. Prod. Res. 2011, 25, 1893–1901. [Google Scholar] [CrossRef]
- Gong, G.; Xie, F.; Zheng, Y.; Hu, W.; Qi, B.; He, H.; Dong, T.T.; Tsim, K.W. The effect of methanol extract from Saussurea involucrata in the lipopolysaccharide-stimulated inflammation in cultured RAW 264.7 cells. J. Ethnopharmacol. 2020, 251, 112532. [Google Scholar] [CrossRef]
- Lee, S.G.; Brownmiller, C.R.; Lee, S.O.; Kang, H.W. Anti-inflammatory and antioxidant effects of anthocyanins of Trifolium pratense (Red Clover) in lipopolysaccharide-stimulated RAW-267.4 macrophages. Nutrients 2020, 12, 1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ascorbic Acid | (−)-Epicatechin | Astilbin | Neoastilbin | Isoastilbin | Neoisoastilbin | Engeletin | |
---|---|---|---|---|---|---|---|
IC50 of DPPH radical (μg/mL) | 1.90 ± 0.14 | 1.86 ± 0.22 | 7.34 ± 0.22 | 9.14 ± 0.23 | 4.01 ± 0.18 | 5.48 ± 0.22 | >100 |
IC50 of ABTS+ radical (μg/mL) | 7.26 ± 0.18 | 1.51 ± 0.13 | 6.48 ± 1.13 | 6.84 ± 0.55 | 3.11 ± 0.90 | 1.41 ± 0.55 | 18.1 ± 1.7 |
FRAP values (µM FeSO4 equivalent amount) | 713 ± 31 | 499 ± 12 | 148 ± 16 | 224 ± 26 | 400 ± 23 | 421 ± 4 | 16.0 ± 2.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Chen, R.; Shi, Y.; Zhang, X.; Tian, C.; Xia, D. Antioxidant and Anti-Inflammatory Activities of Six Flavonoids from Smilax glabra Roxb. Molecules 2020, 25, 5295. https://doi.org/10.3390/molecules25225295
Zhao X, Chen R, Shi Y, Zhang X, Tian C, Xia D. Antioxidant and Anti-Inflammatory Activities of Six Flavonoids from Smilax glabra Roxb. Molecules. 2020; 25(22):5295. https://doi.org/10.3390/molecules25225295
Chicago/Turabian StyleZhao, Xinyu, Ruyi Chen, Yueyue Shi, Xiaoxi Zhang, Chongmei Tian, and Daozong Xia. 2020. "Antioxidant and Anti-Inflammatory Activities of Six Flavonoids from Smilax glabra Roxb" Molecules 25, no. 22: 5295. https://doi.org/10.3390/molecules25225295
APA StyleZhao, X., Chen, R., Shi, Y., Zhang, X., Tian, C., & Xia, D. (2020). Antioxidant and Anti-Inflammatory Activities of Six Flavonoids from Smilax glabra Roxb. Molecules, 25(22), 5295. https://doi.org/10.3390/molecules25225295