Sample Preparation Methods for Lipidomics Approaches Used in Studies of Obesity
Abstract
:1. Introduction
2. Methods of Sample Preparation for Lipidomic Studies
2.1. Sample Collection and Storage
2.2. Pre-Extraction Additives
2.3. Sample Stability
2.4. Extraction Methods
2.4.1. Protein Precipitation
2.4.2. Liquid–Liquid Extraction
2.4.3. Solid-Phase Extraction
2.4.4. Other Extraction Methods
3. Preparation of Different Sample Types
3.1. Serum/Plasma Lipids
3.1.1. Serum/Plasma Cholesterol
3.1.2. Triglyceride Profiling
3.1.3. Fatty Acid Profiling
3.1.4. Ceramides and Sphingolipids
3.2. Adipose Tissue
3.3. Liver
3.4. Brain
3.5. Skeletal Muscle
3.6. Heart
3.7. Other Biological Materials
3.7.1. Urine
3.7.2. Saliva
3.7.3. Follicular Fluid
3.7.4. Faecal samples
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Champion, J.D.; Collins, J.L. Retrospective Chart Review for Obesity and Associated Interventions Among Rural Mexican-American Adolescents Accessing Healthcare Services. J. Am. Assoc. Nurse Pract. 2013, 25, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Dogan, U.; Ellidag, H.Y.; Aslaner, A.; Cakir, T.; Oruc, M.T.; Koc, U.; Mayir, B.; Gomceli, I.; Bulbuller, N.; Yılmaz, N. The Impact of Laparoscopic Sleeve Gastrectomy on Plasma Obestatin and Ghrelin Levels. Eur. Rev. Med. Pharmacol. Sci. 2016, 20, 2113–2122. [Google Scholar] [PubMed]
- Blüher, S.; Raschpichler, M.; Hirsch, W.; Till, H. A Case Report and Review of the Literature of Laparoscopic Sleeve Gastrectomy in Morbidly Obese Adolescents: Beyond Metabolic Surgery and Visceral Fat Reduction. Metabolism 2013, 62, 761–767. [Google Scholar] [CrossRef] [PubMed]
- Carswell, K.A.; Belgaumkar, A.P.; Amiel, S.A.; Patel, A.G. A Systematic Review and Meta-Analysis of the Effect of Gastric Bypass Surgery on Plasma Lipid Levels. Obes. Surg. 2016, 26, 843–855. [Google Scholar] [CrossRef]
- Franco, J.V.A.; Ruiz, P.A.; Palermo, M.; Gagner, M. A Review of Studies Comparing Three Laparoscopic Procedures in Bariatric Surgery: Sleeve Gastrectomy, Roux-en-Y Gastric Bypass and Adjustable Gastric Banding. Obes. Surg. 2011, 21, 1458–1468. [Google Scholar] [CrossRef]
- Howard, M.L.; Steuber, T.D.; Nisly, S.A. Glycemic Management in the Bariatric Surgery Population: A Review of the Literature. Pharmacotherapy 2018, 38, 663–673. [Google Scholar] [CrossRef]
- Wijayatunga, N.N.; Sams, V.G.; Dawson, J.A.; Mancini, M.L.; Mancini, G.J.; Moustaid-Moussa, N. Roux-en-Y Gastric Bypass Surgery Alters Serum Metabolites and Fatty Acids in Patients with Morbid Obesity. Diabetes Metab. Res. Rev. 2018, 34, e3045. [Google Scholar] [CrossRef] [Green Version]
- Hansen, D.; Marinus, N.; Remans, M.; Courtois, I.; Cools, F.; Calsius, J.; Massa, G.; Takken, T. Exercise Tolerance in Obese vs. Lean Adolescents: A Systematic Review and Meta-Analysis. Obes. Rev. 2014, 15, 894–904. [Google Scholar] [CrossRef]
- Supariwala, A.; Makani, H.; Kahan, J.; Pierce, M.; Bajwa, F.; Dukkipati, S.S.; Teixeira, J.; Chaudhry, F.A. Feasibility and Prognostic Value of Stress Echocardiography in Obese, Morbidly Obese, and Super Obese Patients Referred for Bariatric Surgery. Echocardiography 2013, 31, 879–885. [Google Scholar] [CrossRef]
- Sommer, A.; Twig, G. The Impact of Childhood and Adolescent Obesity on Cardiovascular Risk in Adulthood: A Systematic Review. Curr. Diab. Rep. 2018, 18, 91. [Google Scholar] [CrossRef]
- Kiliçaslan, B.; Tigen, M.K.; Tekin, A.S.; Çiftçi, H. Cardiac Changes with Subclinical Hypothyroidism in Obese Women. Turk Kardiyol Dern Ars. 2013, 41, 471–477. [Google Scholar] [PubMed] [Green Version]
- Hajian-Tilaki, K.; Heidari, B. Variations in the Pattern and Distribution of Non-Obese Components of Metabolic Syndrome across Different Obesity Phenotypes among Iranian Adults’ Population. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 2419–2424. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.S.; Yanagisawa, R.; Kini, S. Insulin Resistance and Bariatric Surgery. Obes. Rev. 2012, 13, 316–328. [Google Scholar] [CrossRef] [PubMed]
- Sejooti, S.S.; Naher, S.; Hoque, M.M.; Zaman, M.S.; Aminur Rashid, H.M. Frequency of Insulin Resistance in Nondiabetic Adult Bangladeshi Individuals of Different Obesity Phenotypes. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Di Vincenzo, A.; Beghetto, M.; Vettor, R.; Rossato, M.; Bond, D.; Pagano, C. SAT-108 Effects of Bariatric and Non-Bariatric Weight Loss on Migraine Headache in Obesity. A Systematic Review and Meta-Analysis. J. Endocr. Soc. 2019, 3. [Google Scholar] [CrossRef]
- Großschädl, F.; Freidl, W.; Rásky, É.; Burkert, N.; Muckenhuber, J.; Stronegger, W.J. A 35-Year Trend Analysis for Back Pain in Austria: The Role of Obesity. PLoS ONE 2014, 9, e107436. [Google Scholar] [CrossRef]
- Chao, H.-L. Body Image Change in Obese and Overweight Persons Enrolled in Weight Loss Intervention Programs: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0124036. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Rukavina, P. A Review on Coping Mechanisms against Obesity Bias in Physical Activity/Education Settings. Obes. Rev. 2009, 10, 87–95. [Google Scholar] [CrossRef]
- Budd, G.M.; Mariotti, M.; Graff, D.; Falkenstein, K. Health Care Professionals’ Attitudes about Obesity: An Integrative Review. Appl. Nurs. Res. 2011, 24, 127–137. [Google Scholar] [CrossRef]
- Devoto, F.; Zapparoli, L.; Bonandrini, R.; Berlingeri, M.; Ferrulli, A.; Luzi, L.; Banfi, G.; Paulesu, E. Hungry Brains: A Meta-Analytical Review of Brain Activation Imaging Studies on Food Perception and Appetite in Obese Individuals. Neurosci. Biobehav. Rev. 2018, 94, 271–285. [Google Scholar] [CrossRef]
- Amiri, S.; Behnezhad, S. Obesity and Anxiety Symptoms: A Systematic Review and Meta-Analysis. Neuropsychiatrie 2019, 33, 72–89. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.K.; Kim, W.; Kwon, H.-S.; Baek, K.-H.; Kim, E.K.; Song, K.-H. Effects of Bariatric Surgery on Metabolic and Nutritional Parameters in Severely Obese Korean Patients with Type 2 Diabetes: A Prospective 2-Year Follow Up. J. Diabetes Investig. 2014, 5, 221–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashad, N.M.; Sayed, S.E.; Sherif, M.H.; Sitohy, M.Z. Effect of a 24-Week Weight Management Program on Serum Leptin Level in Correlation to Anthropometric Measures in Obese Female: A Randomized Controlled Clinical Trial. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 2230–2235. [Google Scholar] [CrossRef] [PubMed]
- Morais, L.C.; Rocha, A.P.R.; Turi-Lynch, B.C.; Ferro, I.S.; Koyama, K.A.K.; Araújo, M.Y.C.; Codogno, J.S. Health Indicators and Costs among Outpatients According to Physical Activity Level and Obesity. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 1375–1379. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.M. Overview of Obesity in Mainland China. Obes. Rev. 2008, 9, 14–21. [Google Scholar] [CrossRef]
- Nishide, R.; Ando, M.; Funabashi, H.; Yoda, Y.; Nakano, M.; Shima, M. Association of Serum Hs-CRP and Lipids with Obesity in School Children in a 12-Month Follow-Up Study in Japan. Environ. Health Prev. Med. 2015, 20, 116–122. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, L.A.; Braz, L.G.; Koga, F.A.; Kakuda, C.M.; Mõdolo, N.S.P.; De Carvalho, L.R.; Vianna, P.T.G.; Braz, J.R.C. Comparison of Peri-Operative Core Temperature in Obese and Non-Obese Patients. Anaesthesia 2012, 67, 1364–1369. [Google Scholar] [CrossRef]
- Pérez-Pérez, R.; García-Santos, E.; Ortega-Delgado, F.J.; López, J.A.; Camafeita, E.; Ricart, W.; Fernández-Real, J.-M.; Peral, B. Attenuated Metabolism is a Hallmark of Obesity as Revealed by Comparative Proteomic Analysis of Human Omental Adipose Tissue. J. Proteomics 2012, 75, 783–795. [Google Scholar] [CrossRef] [Green Version]
- Dolinková, M.; Dostálová, I.; Lacinová, Z.; Michalský, D.; Haluzíková, D.; Mráz, M.; Kasalický, M.; Haluzík, M. The Endocrine Profile of Subcutaneous and Visceral Adipose Tissue of Obese Patients. Mol. Cell. Endocrinol. 2008, 291, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Myung, Y.; Heo, C.-Y. Relationship between Obesity and Surgical Complications after Reduction Mammaplasty: A Systematic Literature Review and Meta-Analysis. Aesthetic Surg. J. 2017, 37, 308–315. [Google Scholar] [CrossRef]
- Faucher, M.; Hastings-Tolsma, M.; Song, J.; Willoughby, D.; Bader, S.G. Gestational Weight Gain and Preterm Birth in Obese Women: A Systematic Review and Meta-Analysis. BJOG 2016, 123, 199–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, C.M.; Woodle, E.S.; Shi, J.; Alexander, J.W.; Leggett, P.L.; Shah, S.A.; Paterno, F.; Cuffy, M.C.; Govil, A.; Mogilishetty, G.; et al. Addressing morbid obesity as a barrier to renal transplantation with laparoscopic sleeve gastrectomy. Am. J. Transplant. 2015, 15, 1360–1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rashad, N.M.; Al-sayed, R.M.; Yousef, M.S.; Saraya, Y.S. Kisspeptin and Body Weight Homeostasis in Relation to Phenotypic Features of Polycystic Ovary Syndrome; Metabolic Regulation of Reproduction. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 2086–2092. [Google Scholar] [CrossRef] [PubMed]
- Nuttall, F.Q. Body Mass Index: Obesity, BMI, and Health: A Critical Review. Nutr. Today 2015, 50, 117–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grier, T.; Canham-Chervak, M.; Sharp, M.; Jones, B.H. Does Body Mass Index Misclassify Physically Active Young Men. Prev. Med. Reports 2015, 2, 483–487. [Google Scholar] [CrossRef] [Green Version]
- Van Marken Lichtenbelt, W.D.; Hartgens, F.; Vollaard, N.B.J.; Ebbing, S.; Kuipers, H. Body Composition Changes in Bodybuilders: A Method Comparison. Med. Sci. Sports Exerc. 2004, 36, 490–497. [Google Scholar] [CrossRef] [Green Version]
- Sweeting, H.N. Measurement and Definitions of Obesity in Childhood and Adolescence: A Field Guide for the Uninitiated. Nutr. J. 2007, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Deurenberg, P.; Yap, M. The Assessment of Obesity: Methods for Measuring Body Fat and Global Prevalence of Obesity. Baillieres Best Pract. Clin. Endocrinol. Metab. 1999, 13, 1–11. [Google Scholar] [CrossRef]
- Peltz, G.; Aguirre, M.T.; Sanderson, M.; Fadden, M.K. The Role of Fat Mass Index in Determining Obesity. Am. J. Hum. Biol. 2010, 22, 639–647. [Google Scholar] [CrossRef] [Green Version]
- Butte, N.F.; Brandt, M.L.; Wong, W.W.; Liu, Y.; Mehta, N.R.; Wilson, T.A.; Adolph, A.L.; Puyau, M.R.; Vohra, F.A.; Shypailo, R.J.; et al. Energetic Adaptations Persist after Bariatric Surgery in Severely Obese Adolescents. Obesity 2015, 23, 591–601. [Google Scholar] [CrossRef] [Green Version]
- Sartorio, A.; Malavolti, M.; Agosti, F.; Marinone, P.G.; Caiti, O.; Battistini, N.; Bedogni, G. Body Water Distribution in Severe Obesity and Its Assessment from Eight-Polar Bioelectrical Impedance Analysis. Eur. J. Clin. Nutr. 2005, 59, 155–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vekic, J.; Zeljkovic, A.; Stefanovic, A.; Jelic-Ivanovic, Z.; Spasojevic-Kalimanovska, V. Obesity and Dyslipidemia. Metabolism 2019, 92, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Erion, K.A.; Corkey, B.E. Hyperinsulinemia: A Cause of Obesity? Curr. Obes. Rep. 2017, 6, 178–186. [Google Scholar] [CrossRef] [Green Version]
- Mika, A.; Sledzinski, T. Alterations of Specific Lipid Groups in Serum of Obese Humans: A Review. Obes. Rev. 2017, 18, 247–272. [Google Scholar] [CrossRef] [PubMed]
- Apryatin, S.A.; Sidorova, Y.S.; Shipelin, V.A.; Balakina, A.; Trusov, N.V.; Mazo, V.K. Neuromotor Activity, Anxiety and Cognitive Function in the In Vivo Model of Alimentary Hyperlipidemia and Obesity. Bull. Exp. Biol. Med. 2017, 163, 37–41. [Google Scholar] [CrossRef]
- Burla, B.; Arita, M.; Arita, M.; Bendt, A.K.; Cazenave-Gassiot, A.; Dennis, E.A.; Ekroos, K.; Han, X.; Ikeda, K.; Liebisch, G.; et al. MS-Based Lipidomics of Human Blood Plasma: A Community-Initiated Position Paper to Develop Accepted Guidelines. J. Lipid Res. 2018, 59, 2001–2017. [Google Scholar] [CrossRef] [Green Version]
- Jørgenrud, B.; Jäntti, S.; Mattila, I.; Pöhö, P.; Rønningen, K.S.; Yki-Järvinen, H.; Orešič, M.; Hyötyläinen, T. The Influence of Sample Collection Methodology and Sample Preprocessing on the Blood Metabolic Profile. Bioanalysis 2015, 7, 991–1006. [Google Scholar] [CrossRef]
- Ishikawa, M.; Maekawa, K.; Saito, K.; Senoo, Y.; Urata, M.; Murayama, M.; Tajima, Y.; Kumagai, Y.; Saito, Y. Plasma and Serum Lipidomics of Healthy White Adults Shows Characteristic Profiles by Subjects’ Gender and Age. PLoS ONE 2014, 9, e91806. [Google Scholar] [CrossRef] [Green Version]
- Kawano, Y.; Ohta, M.; Hirashita, T.; Masuda, T.; Inomata, M.; Kitano, S. Effects of Sleeve Gastrectomy on Lipid Metabolism in an Obese Diabetic Rat Model. Obes. Surg. 2013, 23, 1947–1956. [Google Scholar] [CrossRef]
- Im, S.-S.S.; Park, H.Y.; Shon, J.C.; Chung, I.-S.S.; Cho, H.C.; Liu, K.-H.H.; Song, D.-K.K. Plasma Sphingomyelins Increase in Pre-Diabetic Korean Men with Abdominal Obesity. PLoS ONE 2019, 14, e0213285. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, L.; Xiao, R.; Li, Y.; Liao, S.; Zhang, Z.; Yang, W.; Liang, B. Plasma Lipidomic Signatures of Spontaneous Obese Rhesus Monkeys. Lipids Health Dis. 2019, 18, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez-Carretero, A.; Weber, N.; La Frano, M.R.; Ying, W.; Lantero Rodriguez, J.; Sears, D.D.; Wallenius, V.; Börgeson, E.; Newman, J.W.; Osborn, O. Obesity-Induced Changes in Lipid Mediators Persist after Weight Loss. Int. J. Obes. 2018, 42, 728–736. [Google Scholar] [CrossRef] [PubMed]
- Pickens, C.A.; Sordillo, L.M.; Zhang, C.; Fenton, J.I.; Austin, C.; Sordillo, L.M.; Zhang, C.; Fenton, J.I. Obesity is Positively Associated with Arachidonic Acid-Derived 5-and 11-Hydroxyeicosatetraenoic Acid (HETE). Metabolism 2017, 70, 177–191. [Google Scholar] [CrossRef] [PubMed]
- Fan, R.; Kim, J.; You, M.; Giraud, D.; Toney, A.M.; Shin, S.H.; Kim, S.Y.; Borkowski, K.; Newman, J.W.; Chung, S. α-Linolenic Acid-Enriched Butter Attenuated High Fat Diet-Induced Insulin Resistance and Inflammation by Promoting Bioconversion of n-3 PUFA and Subsequent Oxylipin Formation. J. Nutr. Biochem. 2020, 76, 108285. [Google Scholar] [CrossRef] [PubMed]
- Rupasinghe, T.W.T. Lipidomics: Extraction Protocols for Biological Matrices; Humana Press Inc: Totowa, NJ, USA, 2013; Volume 1055, pp. 71–80. ISBN 9781627035767. [Google Scholar]
- Jiang, H.; Hsu, F.F.; Farmer, M.S.; Peterson, L.R.; Schaffer, J.E.; Ory, D.S.; Jiang, X. Development and Validation of LC-MS/MS Method for Determination of Very Long Acyl Chain (C22:0 and C24:0) Ceramides in Human Plasma. Anal. Bioanal. Chem. 2013, 405, 7357–7365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreiro-Vera, C.; Priego-Capote, F.; Mata-Granados, J.M.; Luque De Castro, M.D. Short-Term Comparative Study of the Influence of Fried Edible Oils Intake on the Metabolism of Essential Fatty Acids in Obese Individuals. Food Chem. 2013, 136, 576–584. [Google Scholar] [CrossRef]
- Zeng, M.; Cao, H. Fast Quantification of Short Chain Fatty Acids and Ketone Bodies by Liquid Chromatography-Tandem Mass Spectrometry after Facile Derivatization Coupled with Liquid-Liquid Extraction. J. Chromatogr. B 2018, 1083, 137–145. [Google Scholar] [CrossRef]
- Klawitter, J.J.; Bek, S.; Zakaria, M.; Zeng, C.; Hornberger, A.; Gilbert, R.; Shokati, T.; Klawitter, J.J.; Christians, U.; Boernsen, K.O. Fatty Acid Desaturation Index in Human Plasma: Comparison of Different Analytical Methodologies for the Evaluation of Diet Effects. Anal. Bioanal. Chem. 2014, 406, 6399–6408. [Google Scholar] [CrossRef]
- Liakh, I.; Pakiet, A.; Sledzinski, T.; Mika, A. Modern Methods of Sample Preparation for the Analysis of Oxylipins in Biological Samples. Molecules 2019, 24, 1639. [Google Scholar] [CrossRef] [Green Version]
- Colas, R.A.; Shinohara, M.; Dalli, J.; Chiang, N.; Serhan, C.N. Identification and Signature Profiles for Pro-Resolving and Inflammatory Lipid Mediators in Human Tissue. Am. J. Physiol. Cell Physiol. 2014, 307, C39–C54. [Google Scholar] [CrossRef] [Green Version]
- Golovko, M.Y.; Murphy, E.J. An Improved LC-MS/MS Procedure for Brain Prostanoid Analysis Using Brain Fixation with Head-Focused Microwave Irradiation and Liquid-Liquid Extraction. J. Lipid Res. 2008, 49, 893–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuckovic, D. Current Trends and Challenges in Sample Preparation for Global Metabolomics Using Liquid Chromatography-Mass Spectrometry. Anal. Bioanal. Chem. 2012, 403, 1523–1548. [Google Scholar] [CrossRef] [PubMed]
- Bellissimo, M.P.; Cai, Q.; Ziegler, T.R.; Liu, K.H.; Tran, P.H.; Vos, M.B.; Martin, G.S.; Jones, D.P.; Yu, T.; Alvarez, J.A. Plasma High-Resolution Metabolomics Differentiates Adults with Normal Weight Obesity from Lean Individuals. Obesity 2019, 27, 1729–1737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drotleff, B.; Illison, J.; Schlotterbeck, J.; Lukowski, R.; Lämmerhofer, M. Comprehensive Lipidomics of Mouse Plasma Using Class-Specific Surrogate Calibrants and SWATH Acquisition for Large-Scale Lipid Quantification in Untargeted Analysis. Anal. Chim. Acta 2019, 1086, 90–102. [Google Scholar] [CrossRef] [PubMed]
- Söder, J.; Wernersson, S.; Dicksved, J.; Hagman, R.; Östman, J.R.; Moazzami, A.A.; Höglund, K. Indication of Metabolic Inflexibility to Food Intake in Spontaneously Overweight Labrador Retriever Dogs. BMC Vet. Res. 2019, 15, 96. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [PubMed]
- Bligh, E.G.; Dyer, W.J. A Rapid Method of Total Lipid Extraction and Purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Pizarro, C.; Arenzana-Rámila, I.; Pérez-del-Notario, N.; Pérez-Matute, P.; González-Sáiz, J.-M. Plasma Lipidomic Profiling Method Based on Ultrasound Extraction and Liquid Chromatography Mass Spectrometry. Anal. Chem. 2013, 85, 12085–12092. [Google Scholar] [CrossRef]
- Wang, C.; Wang, M.; Han, X. Comprehensive and Quantitative Analysis of Lysophospholipid Molecular Species Present in Obese Mouse Liver by Shotgun Lipidomics. Anal. Chem. 2015, 87, 4879–4887. [Google Scholar] [CrossRef] [Green Version]
- Al-Sulaiti, H.; Diboun, I.; Banu, S.; Al-Emadi, M.; Amani, P.; Harvey, T.M.; Dömling, A.S.; Latiff, A.; Elrayess, M.A. Triglyceride Profiling in Adipose Tissues from Obese Insulin Sensitive, Insulin Resistant and Type 2 Diabetes Mellitus Individuals. J. Transl. Med. 2018, 16, 175. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Arroyo, S.; Hernández-Aguilera, A.; de Vries, M.A.; Burggraaf, B.; van der Zwan, E.; Pouw, N.; Joven, J.; Castro Cabezas, M. Effect of Vitamin D3 on the Postprandial Lipid Profile in Obese Patients: A Non-Targeted Lipidomics Study. Nutrients 2019, 11, 1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yore, M.M.; Syed, I.; Moraes-Vieira, P.M.; Zhang, T.; Herman, M.A.; Homan, E.A.; Patel, R.T.; Lee, J.; Chen, S.; Peroni, O.D.; et al. Discovery of a Class of Endogenous Mammalian Lipids with Anti-Diabetic and Anti-Inflammatory Effects. Cell 2014, 159, 318–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choromańska, B.; Myśliwiec, P.; Razak Hady, H.; Dadan, J.; Myśliwiec, H.; Chabowski, A.; Mikłosz, A. Metabolic Syndrome is Associated with Ceramide Accumulation in Visceral Adipose Tissue of Women with Morbid Obesity. Obesity 2019, 27, 444–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serbulea, V.; Upchurch, C.M.; Schappe, M.S.; Voigt, P.; DeWeese, D.E.; Desai, B.N.; Meher, A.K.; Leitinger, N. Macrophage Phenotype and Bioenergetics are Controlled by Oxidized Phospholipids Identified in Lean and Obese Adipose Tissue. Proc. Natl. Acad. Sci. USA 2018, 115, E6254–E6263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- León-Aguilar, L.F.; Croyal, M.; Ferchaud-Roucher, V.; Huang, F.; Marchat, L.A.; Barraza-Villarreal, A.; Romieu, I.; Ramakrishnan, U.; Krempf, M.; Ouguerram, K.; et al. Maternal Obesity Leads to Long-Term Altered Levels of Plasma Ceramides in the Offspring as Revealed by a Longitudinal Lipidomic Study in Children. Int. J. Obes. 2019, 43, 1231–1243. [Google Scholar] [CrossRef] [PubMed]
- Jaramillo, M.G.; Lytle, K.A.; Spooner, M.H.; Jump, D.B.; García-Jaramillo, M.; Lytle, K.A.; Spooner, M.H.; Jump, D.B. A Lipidomic Analysis of Docosahexaenoic Acid (22:6, ω3) Mediated Attenuation of Western Diet Induced Nonalcoholic Steatohepatitis in Male Ldlr-/-Mice. Metabolites 2019, 9, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eum, J.Y.; Lee, G.B.; Yi, S.S.; Kim, I.Y.; Seong, J.K.; Moon, M.H. Lipid Alterations in the Skeletal Muscle Tissues of Mice after Weight Regain by Feeding a High-Fat Diet Using Nanoflow Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B 2020, 1141, 122022. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Lin, M.; Zhang, D.; Li, M.; Zhang, J. A UPLC/MS/MS Method for Comprehensive Profiling and Quantification of Fatty Acid Esters of Hydroxy Fatty Acids in White Adipose Tissue. Anal. Bioanal. Chem. 2018, 410, 7415–7428. [Google Scholar] [CrossRef]
- Pakiet, A.; Jakubiak, A.; Czumaj, A.; Sledzinski, T.; Mika, A. The Effect of Western Diet on Mice Brain Lipid Composition. Nutr. Metab. 2019, 16, 81. [Google Scholar] [CrossRef]
- Kim, H.; Salem, N. Separation of Lipid Classes by Solid Phase Extraction. J. Lipid Res. 1990, 31, 2285–2289. [Google Scholar]
- Cho, A.R.; Moon, J.Y.; Kim, S.; An, K.Y.; Oh, M.; Jeon, J.Y.; Jung, D.H.; Choi, M.H.; Lee, J.W. Effects of Alternate Day Fasting and Exercise on Cholesterol Metabolism in Overweight or Obese Adults: A Pilot Randomized Controlled Trial. Metabolism 2019, 93, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Mutemberezi, V.; Masquelier, J.; Guillemot-Legris, O.; Muccioli, G.G. Development and Validation of an HPLC-MS Method for the Simultaneous Quantification of Key Oxysterols, Endocannabinoids, and Ceramides: Variations in Metabolic Syndrome. Anal. Bioanal. Chem. 2016, 408, 733–745. [Google Scholar] [CrossRef] [PubMed]
- Ramsden, C.E.; Hennebelle, M.; Schuster, S.; Keyes, G.S.; Johnson, C.D.; Kirpich, I.A.; Dahlen, J.E.; Horowitz, M.S.; Zamora, D.; Feldstein, A.E.; et al. Effects of Diets Enriched in Linoleic Acid and Its Peroxidation Products on Brain Fatty Acids, Oxylipins, and Aldehydes in Mice. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2018, 1863, 1206–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okada, K.; Hosooka, T.; Shinohara, M.; Ogawa, W. Modulation of Lipid Mediator Profile May Contribute to Amelioration of Chronic Inflammation in Adipose Tissue of Obese Mice by Pioglitazone. Biochem. Biophys. Res. Commun. 2018, 505, 29–35. [Google Scholar] [CrossRef]
- Itariu, B.K.; Zeyda, M.; Hochbrugger, E.E.; Neuhofer, A.; Prager, G.; Schindler, K.; Bohdjalian, A.; Mascher, D.; Vangala, S.; Schranz, M.; et al. Long-Chain n−3 PUFAs Reduce Adipose Tissue and Systemic Inflammation in Severely Obese Nondiabetic Patients: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2012, 96, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Bascón, M.A.; Calderón-Santiago, M.; Priego-Capote, F. Confirmatory and Quantitative Analysis of fatty acid esters of hydroxy fatty acids in serum by solid phase extraction coupled to liquid Chromatography Tandem Mass Spectrometry. Anal. Chim. Acta 2016, 943, 82–88. [Google Scholar] [CrossRef]
- Ostermann, A.I.; Willenberg, I.; Schebb, N.H. Comparison of Sample Preparation Methods for the Quantitative Analysis of Eicosanoids and other Oxylipins in Plasma by Means of LC-MS/MS. Anal. Bioanal. Chem. 2015, 407, 1403–1414. [Google Scholar] [CrossRef]
- Galvão, A.F.; Petta, T.; Flamand, N.; Bollela, V.R.; Silva, C.L.; Jarduli, L.R.; Malmegrim, K.C.R.; Simões, B.P.; de Moraes, L.A.B.; Faccioli, L.H. Plasma Eicosanoid Profiles Determined by High-Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry in Stimulated Peripheral Blood from Healthy Individuals and Sickle Cell Anemia Patients in Treatment. Anal. Bioanal. Chem. 2016, 408, 3613–3623. [Google Scholar] [CrossRef]
- Roberts, L.D.; West, J.A.; Vidal-Puig, A.; Griffin, J.L. Methods for Performing Lipidomics in White Adipose Tissue. In Methods in Enzymology. 2014; 538, 211–231. 538.
- Andrade-Eiroa, A.; Canle, M.; Leroy-Cancellieri, V.; Cerdà, V. Solid-Phase Extraction of Organic Compounds: A Critical Review. Part II. TrAC-Trends Anal. Chem. 2016, 80, 655–667. [Google Scholar] [CrossRef]
- Bhattacharya, S.K. Lipidomics. In Methods in Molecular Biology; Bhattacharya, S.K., Ed.; Springer New York: New York, NY, USA, 2017; Volume 1609, ISBN 978-1-4939-6995-1. [Google Scholar]
- Benedusi, V. Lipidomics. Mater. Methods 2018, 8, 5139. [Google Scholar] [CrossRef]
- Ruiz-Rodriguez, A.; Reglero, G.; Ibañez, E. Recent Trends in the Advanced Analysis of Bioactive Fatty Acids. J. Pharm. Biomed. Anal. 2010, 51, 305–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurowski, K.; Kochan, K.; Walczak, J.; Barańska, M.; Piekoszewski, W.; Buszewski, B. Comprehensive Review of Trends and Analytical Strategies Applied for Biological Samples Preparation and Storage in Modern Medical Lipidomics: State of the Art. TrAC Trends Anal. Chem. 2017, 86, 276–289. [Google Scholar] [CrossRef]
- Campíns-Falcó, P.; Sevillano-Cabeza, A.; Herráez-Hernández, R.; Molins-Legua, C.; Moliner-Martínez, Y.; Verdú-Andrés, J. Solid-Phase Extraction and Clean-Up Procedures in Pharmaceutical Analysis. Encycl. Anal. Chem. 2012. [Google Scholar] [CrossRef]
- Laurentius, T.; Kob, R.; Fellner, C.; Nourbakhsh, M.; Bertsch, T.; Sieber, C.C.; Bollheimer, L.C. Long-Chain Fatty Acids and Inflammatory Markers Coaccumulate in the Skeletal Muscle of Sarcopenic Old Rats. Dis. Markers 2019, 2019, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Jaramillo, M.; Spooner, M.H.; Löhr, C.V.; Wong, C.P.; Zhang, W.; Jump, D.B. Lipidomic and Transcriptomic Analysis of Western Diet-Induced Nonalcoholic Steatohepatitis (NASH) in Female Ldlr-/-mice. PLoS ONE 2019, 14, e0214387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astarita, G.; Piomelli, D. Lipidomic Analysis of Endocannabinoid Metabolism in Biological Samples. J. Chromatogr. B 2009, 877, 2755–2767. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argueta, D.A.; DiPatrizio, N.V. Peripheral Endocannabinoid Signaling Controls Hyperphagia in Western Diet-Induced Obesity. Physiol. Behav. 2017, 171, 32–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez, P.A.; DiPatrizio, N.V. Impact of Maternal Western Diet-Induced Obesity on Offspring Mortality and Peripheral Endocannabinoid System in Mice. PLoS ONE 2018, 13, e0205021. [Google Scholar] [CrossRef]
- Perreault, M.; Zulyniak, M.A.; Badoud, F.; Stephenson, S.; Badawi, A.; Buchholz, A.; Mutch, D.M. A Distinct Fatty Acid Profile Underlies the Reduced Inflammatory State of Metabolically Healthy Obese Individuals. PLoS ONE 2014, 9, e88539. [Google Scholar] [CrossRef] [Green Version]
- Tomášová, P.; Čermáková, M.; Pelantová, H.; Vecka, M.; Kratochvílová, H.; Lipš, M.; Lindner, J.; Šedivá, B.; Haluzík, M.; Kuzma, M. Minor Lipids Profiling in Subcutaneous and Epicardial Fat Tissue Using LC/MS with an Optimized Preanalytical Phase. J. Chromatogr. B 2019, 1113, 50–59. [Google Scholar] [CrossRef]
- Lytle, K.A.; Wong, C.P.; Jump, D.B. Docosahexaenoic Acid Blocks Progression of Western Diet-Induced Nonalcoholic Steatohepatitis in Obese Ldlr-/-Mice. PLoS ONE 2017, 12, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prosen, H. Applications of Liquid-Phase Microextraction in the Sample Preparation of Environmental Solid Samples. Molecules 2014, 19, 6776–6808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teo, C.C.; Chong, W.P.K.; Tan, E.; Basri, N.B.; Low, Z.J.; Ho, Y.S. Advances in Sample Preparation and Analytical Techniques for Lipidomics Study of Clinical Samples. TrAC Trends Anal. Chem. 2015, 66, 1–18. [Google Scholar] [CrossRef]
- Genovese, A.; Rispoli, T.; Sacchi, R. Extra Virgin Olive Oil Aroma Release after Interaction with Human Saliva from Individuals with Different Body Mass Index. J. Sci. Food Agric. 2018, 98, 3376–3383. [Google Scholar] [CrossRef] [PubMed]
- Del Chierico, F.; Nobili, V.; Vernocchi, P.; Russo, A.; De Stefanis, C.; Gnani, D.; Furlanello, C.; Zandonà, A.; Paci, P.; Capuani, G.; et al. Gut Microbiota Profiling of Pediatric Nonalcoholic Fatty Liver Disease and Obese Patients Unveiled by an Integrated Meta-Omics-Based Approach. Hepatology 2017, 65, 451–464. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Gasga, V.M.; Montalvo-González, E.; Loarca-Piña, G.; Vázquez-Landaverde, P.A.; Tovar, J.; Sáyago-Ayerdi, S.G. Microbial Metabolites Profile during In Vitro Human Colonic Fermentation of Breakfast Menus Consumed by Mexican School Children. Food Res. Int. 2017, 97, 7–14. [Google Scholar] [CrossRef]
- Cozzolino, R.; De Giulio, B.; Marena, P.; Martignetti, A.; Günther, K.; Lauria, F.; Russo, P.; Stocchero, M.; Siani, A. Urinary Volatile Organic Compounds in Overweight Compared to Normal-Weight Children: Results from the Italian I.Family Cohort. Sci. Rep. 2017, 7, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Marisol Encerrado Manriquez, A. Method Development For The Analysis Of Fatty Acids In Adipose Tissue Using Stir Bar Sorptive Extraction Coupled With Gas Chromatography-Mass Spectrometry. Masters’s Thesis, Biochemistry. The University of Texas at el El Paso, El Paso, TX, USA, August 2020. [Google Scholar]
- Eslami, Z.; Torabizadeh, M.; Talebpour, Z.; Talebpour, M.; Ghassempour, A.; Aboul-Enein, H.Y. Simple and Sensitive Quantification of Ghrelin Hormone in Human Plasma Using SBSE-HPLC/DAD-MS. J. Chromatogr. Sci. 2016, 54, 1652–1660. [Google Scholar] [CrossRef] [Green Version]
- Rezaee, M.; Assadi, Y.; Milani Hosseini, M.-R.; Aghaee, E.; Ahmadi, F.; Berijani, S. Determination of Organic Compounds in Water Using Dispersive Liquid–Liquid Microextraction. J. Chromatogr. A 2006, 1116, 1–9. [Google Scholar] [CrossRef]
- Amin, M.M.; Ebrahim, K.; Hashemi, M.; Shoshtari-Yeganeh, B.; Rafiei, N.; Mansourian, M.; Kelishadi, R. Association of Exposure to Bisphenol A with Obesity and Cardiometabolic Risk Factors in Children and Adolescents. Int. J. Environ. Health Res. 2019, 29, 94–106. [Google Scholar] [CrossRef]
- Krawczyńska, A.; Konieczna, L.; Skrzypkowska, M.; Siebert, J.; Reiwer-Gostomska, M.; Gutknecht, P.; Kaska, Ł.; Bigda, J.; Proczko-Stepaniak, M.; Bączek, T. Decreased Level of Vitamin D in Obesity Patients Measured by the LC-MS/MS Method. In Proceedings of the CECE 2019—16th International Interdisciplinary Meeting on Bioanalysis, Gdańsk, Poland, 24–26 September 2019; p. 33. [Google Scholar]
- Nigam, P.K. Serum Lipid Profile: Fasting or Non-Fasting? Indian J. Clin. Biochem. 2011, 26, 96–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tchernof, A.; Després, J.-P. Pathophysiology of Human Visceral Obesity: An Update. Physiol. Rev. 2013, 93, 359–404. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.; Guo, Z.; Johnson, C.M.; Hensrud, D.D.; Jensen, M.D. Splanchnic Lipolysis in Human Obesity. J. Clin. Invest. 2004, 113, 1582–1588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koelmel, J.P.; Ulmer, C.Z.; Fogelson, S.; Jones, C.M.; Botha, H.; Bangma, J.T.; Guillette, T.C.; Luus-Powell, W.J.; Sara, J.R.; Smit, W.J.; et al. Lipidomics for Wildlife Disease Etiology and Biomarker Discovery: A Case Study of Pansteatitis Outbreak in South Africa. Metabolomics 2019, 15, 38. [Google Scholar] [CrossRef]
- Mousa, A.; Naderpoor, N.; Mellett, N.; Wilson, K.; Plebanski, M.; Meikle, P.J.; de Courten, B. Lipidomic Profiling Reveals Early-Stage Metabolic Dysfunction in Overweight or Obese Humans. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2019, 1864, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Blewett, H.J.; Gerdung, C.A.; Ruth, M.R.; Proctor, S.D.; Field, C.J. Vaccenic Acid Favourably Alters Immune Function in Obese JCR:LA-Cp Rats. Br. J. Nutr. 2009, 102, 526–536. [Google Scholar] [CrossRef] [Green Version]
- Yoon, H.-R.; Kim, H.; Cho, S.-H. Quantitative Analysis of Acyl-Lysophosphatidic Acid in Plasma Using Negative Ionization Tandem Mass Spectrometry. J. Chromatogr. B 2003, 788, 85–92. [Google Scholar] [CrossRef]
- Matyash, V.; Liebisch, G.; Kurzchalia, T.V.; Shevchenko, A.; Schwudke, D. Lipid Extraction by Methyl-Tert-Butyl ETHER for high-Throughput Lipidomics. J. Lipid Res. 2008, 49, 1137–1146. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Jiang, C.-T.; Song, J.-Y.; Song, Q.-Y.; Ma, J.; Wang, H.-J. Lipidomic Profile Revealed the Association of Plasma Lysophosphatidylcholines with Adolescent Obesity. Biomed Res. Int. 2019, 2019, 1–9. [Google Scholar] [CrossRef]
- Misra, B.B.; Puppala, S.R.; Comuzzie, A.G.; Mahaney, M.C.; VandeBerg, J.L.; Olivier, M.; Cox, L.A. Analysis of Serum Changes in Response to a High Fat High Cholesterol Diet Challenge Reveals Metabolic Biomarkers of Atherosclerosis. PLoS ONE 2019, 14, e0214487. [Google Scholar] [CrossRef] [Green Version]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Nauck, M.; Warnick, G.R.; Rifai, N. Methods for Measurement of LDL-Cholesterol: A Critical Assessment of Direct Measurement by Homogeneous Assays versus Calculation. Clin. Chem. 2002, 48, 236–254. [Google Scholar] [CrossRef] [PubMed]
- Van Der Kolk, B.W.; Goossens, G.H.; Jocken, J.W.; Kersten, S.; Blaak, E.E. Angiopoietin-Like Protein 4 and Postprandial Skeletal Muscle Lipid Metabolism in Overweight and Obese Prediabetics. J. Clin. Endocrinol. Metab. 2016, 101, 2332–2339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Hees, A.M.J.; Jans, A.; Hul, G.B.; Roche, H.M.; Saris, W.H.M.; Blaak, E.E. Skeletal Muscle Fatty Acid Handling in Insulin Resistant Men. Obesity 2011, 19, 1350–1359. [Google Scholar] [CrossRef] [PubMed]
- Lindqvist, A.; Ekelund, M.; Garcia-Vaz, E.; Ståhlman, M.; Pierzynowski, S.; Gomez, M.F.; Rehfeld, J.F.; Groop, L.; Hedenbro, J.; Wierup, N.; et al. The Impact of Roux-en-Y Gastric Bypass Surgery on Normal Metabolism in a Porcine Model. PLoS ONE 2017, 12, e0173137. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.J.; Lee, H.S.; Lee, J.W. Direct Bilirubin is Associated with Low-Density Lipoprotein Subfractions and Particle Size in Overweight and Centrally Obese Women. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Doğan, S.; Aslan, I.; Eryılmaz, R.; Ensari, C.O.; Bilecik, T.; Aslan, M. Early Postoperative Changes of HDL Subfraction Profile and HDL-Associated Enzymes after Laparoscopic Sleeve Gastrectomy. Obes. Surg. 2013, 23, 1973–1980. [Google Scholar] [CrossRef] [PubMed]
- Sofi, F.; Dinu, M.; Pagliai, G.; Cesari, F.; Gori, A.M.; Sereni, A.; Becatti, M.; Fiorillo, C.; Marcucci, R.; Casini, A. Low-Calorie Vegetarian Versus Mediterranean Diets for Reducing Body Weight and Improving Cardiovascular Risk Profile. Circulation 2018, 137, 1103–1113. [Google Scholar] [CrossRef]
- Parks, E.J. Effect of Dietary Carbohydrate on Triglyceride Metabolism in Humans. J. Nutr. 2001, 131, 2772S–2774S. [Google Scholar] [CrossRef]
- Vogelzangs, N.; van der Kallen, C.J.H.; van Greevenbroek, M.M.J.; van der Kolk, B.W.; Jocken, J.W.E.; Goossens, G.H.; Schaper, N.C.; Henry, R.M.A.; Eussen, S.J.P.M.; Valsesia, A.; et al. Metabolic Profiling of Tissue-Specific Insulin Resistance in Human Obesity: Results from the Diogenes Study and the Maastricht Study. Int. J. Obes. 2020, 44, 1376–1386. [Google Scholar] [CrossRef]
- Sparks, J.D.; Sparks, C.E.; Adeli, K. Selective Hepatic Insulin Resistance, VLDL Overproduction, and Hypertriglyceridemia. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 2104–2112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engin, A.B.; Engin, A. Obesity and Lipotoxicity; Engin, A.B., Engin, A., Eds.; Advances in Experimental Medicine and Biology; Springer International Publishing: Cham, Switzerland, 2017; Volume 960, ISBN 978-3-319-48380-1. [Google Scholar]
- Björnson, E.; Adiels, M.; Taskinen, M.R.; Borén, J. Kinetics of Plasma Triglycerides in Abdominal Obesity. Curr. Opin. Lipidol. 2017, 28, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Alsulaiti, H. Triglycerides Analysis in Adipose Tissue from Insulin Sensitive and Insulin Resistance Obese Patients. Atherosclerosis 2017, 263, e267–e268. [Google Scholar] [CrossRef]
- Koulman, A.; Furse, S.; Baumert, M.; Goldberg, G.; Bluck, L. Rapid Profiling of Triglycerides in Human Breast Milk Using Liquid Extraction Surface Analysis Fourier Transform Mass Spectrometry Reveals New Very Long Chain Fatty Acids and Differences within Individuals. Rapid Commun. Mass Spectrom. 2019, 33, 1267–1276. [Google Scholar] [CrossRef] [PubMed]
- Crowe, F.L.; Skeaff, C.M.; Green, T.J.; Gray, A.R. Serum Fatty Acids as Biomarkers of Fat Intake Predict Serum Cholesterol Concentrations in a Population-Based Survey of New Zealand Adolescents and Adults. Am. J. Clin. Nutr. 2006, 83, 887–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hodge, A.M.; English, D.R.; O’Dea, K.; Sinclair, A.J.; Makrides, M.; Gibson, R.A.; Giles, G.G. Plasma Phospholipid and Dietary Fatty Acids as Predictors of Type 2 Diabetes: Interpreting the Role of Linoleic Acid. Am. J. Clin. Nutr. 2007, 86, 189–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolk, A.; Furuheim, M.; Vessby, B. Fatty Acid Composition of Adipose Tissue and Serum Lipids Are Valid Biological Markers Of Dairy Fat Intake in Men. J. Nutr. 2001, 131, 828–833. [Google Scholar] [CrossRef] [Green Version]
- Sledzinski, T.; Mika, A.; Stepnowski, P.; Proczko-Markuszewska, M.; Kaska, L.; Stefaniak, T.; Swierczynski, J. Identification of Cyclopropaneoctanoic Acid 2-Hexyl in Human Adipose Tissue and Serum. Lipids 2013, 48, 839–848. [Google Scholar] [CrossRef] [Green Version]
- Su, X.; Magkos, F.; Zhou, D.; Eagon, J.C.; Fabbrini, E.; Okunade, A.L.; Klein, S. Adipose Tissue Monomethyl Branched-Chain Fatty Acids and Insulin Sensitivity: Effects of Obesity and Weight Loss. Obesity 2015, 23, 329–334. [Google Scholar] [CrossRef] [Green Version]
- Mika, A.; Stepnowski, P.; Kaska, L.; Proczko, M.; Wisniewski, P.; Sledzinski, M.; Sledzinski, T. A Comprehensive Study of Serum Odd- and Branched-Chain Fatty Acids in Patients with Excess Weight. Obesity 2016, 24, 1669–1676. [Google Scholar] [CrossRef] [Green Version]
- Bondia-Pons, I.; Castellote, A.I.; López-Sabater, M.C. Comparison of Conventional and Fast Gas Chromatography in Human Plasma Fatty Acid Determination. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004, 809, 339–344. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Lee, A.; Yoo, H.J.; Kim, M.; Kim, M.; Shin, D.Y.; Lee, J.H. Association between Increased Visceral Fat Area and Alterations in Plasma Fatty acid Profile in Overweight Subjects: A Cross-Sectional Study. Lipids Health Dis. 2017, 16, 248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.J.; Lee, A.; Yoo, H.J.; Kim, M.; Kim, M.; Jee, S.H.; Shin, D.Y.; Lee, J.H. Effect of Weight Loss on Circulating Fatty Acid Profiles in Overweight Subjects with High Visceral Fat Area: A 12-Week Randomized Controlled Trial. Nutr. J. 2018, 17, 28. [Google Scholar] [CrossRef] [PubMed]
- Aslan, M.; Aslan, I.; Özcan, F.; Eryılmaz, R.; Ensari, C.O.; Bilecik, T. A Pilot Study Investigating Early Postoperative Changes of Plasma Polyunsaturated Fatty Acids after Laparoscopic Sleeve Gastrectomy. Lipids Health Dis. 2014, 13, 62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badoud, F.; Lam, K.P.; Perreault, M.; Zulyniak, M.A.; Britz-McKibbin, P.; Mutch, D.M. Metabolomics Reveals Metabolically Healthy and Unhealthy Obese Individuals Differ in Their Response to a Caloric Challenge. PLoS ONE 2015, 10, e0134613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Qiu, T.; Zhu, J.; Wang, J.; Li, X.; Deng, Y.; Zhang, X.; Feng, J.; Chen, K.; Wang, C.; et al. Serum FFAs Profile Analysis of Normal Weight and Obesity Individuals of Han and Uygur Nationalities in China. Lipids Health Dis. 2020, 19, 13. [Google Scholar] [CrossRef] [Green Version]
- Nemati, R.; Lu, J.; Tura, A.; Smith, G.; Murphy, R. Acute Changes in Non-Esterified Fatty Acids in Patients with Type 2 Diabetes Receiving Bariatric Surgery. Obes. Surg. 2017, 27, 649–656. [Google Scholar] [CrossRef]
- Lin, C.; Våge, V.; Mjøs, S.A.; Kvalheim, O.M. Changes in Serum Fatty Acid Levels During the First Year After Bariatric Surgery. Obes. Surg. 2016, 26, 1735–1742. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Molina, B.; Castellano-Castillo, D.; Alcaide-Torres, J.; Pastor, Ó.; de Luna Díaz, R.; Salas-Salvadó, J.; López-Moreno, J.; Fernández-García, J.C.; Macías-González, M.; Cardona, F.; et al. Differential Effects of Restrictive and Malabsorptive Bariatric Surgery Procedures on the Serum Lipidome in Obese Subjects. J. Clin. Lipidol. 2018, 12, 1502–1512. [Google Scholar] [CrossRef]
- Muoio, D.M.; Newgard, C.B. The Good in Fat. Nature 2014, 516, 49–50. [Google Scholar] [CrossRef] [Green Version]
- Pingitore, A.; Chambers, E.S.; Hill, T.; Maldonado, I.R.; Liu, B.; Bewick, G.; Morrison, D.J.; Preston, T.; Wallis, G.A.; Tedford, C.; et al. The Diet-Derived Short Chain Fatty Acid Propionate Improves Beta-Cell Function in Humans and Stimulates Insulin Secretion from Human Islets In Vitro. Diabetes Obes. Metab. 2017, 19, 257–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, L.; Prodhan, M.A.I.; Yuan, F.; Yin, X.; Lorkiewicz, P.K.; Wei, X.; Feng, W.; McClain, C.; Zhang, X. Simultaneous Quantification of Straight-Chain and Branched-Chain Short Chain Fatty Acids by Gas Chromatography Mass Spectrometry. J. Chromatogr. B 2018, 1092, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Amer, B.; Nebel, C.; Bertram, H.C.; Mortensen, G.; Dalsgaard, T.K. Direct Derivatization vs Aqueous Extraction Methods of Fecal Free Fatty Acids for GC–MS Analysis. Lipids 2015, 50, 681–689. [Google Scholar] [CrossRef] [PubMed]
- García-Villalba, R.; Giménez-Bastida, J.A.; García-Conesa, M.T.; Tomás-Barberán, F.A.; Carlos Espín, J.; Larrosa, M. Alternative Method for Gas Chromatography-Mass Spectrometry Analysis of Short-Chain Fatty Acids in Faecal Samples. J. Sep. Sci. 2012, 35, 1906–1913. [Google Scholar] [CrossRef]
- Kirkham, T.C.; Williams, C.M.; Fezza, F.; Marzo, V. Di Endocannabinoid Levels in Rat Limbic Forebrain and Hypothalamus in Relation to Fasting, Feeding and Satiation: Stimulation of Eating by 2-Arachidonoyl Glycerol. Br. J. Pharmacol. 2002, 136, 550–557. [Google Scholar] [CrossRef]
- Liakh, I.; Pakiet, A.; Sledzinski, T.; Mika, A. Methods of the Analysis of Oxylipins in Biological Samples. Molecules 2020, 25, 349. [Google Scholar] [CrossRef] [Green Version]
- Pickens, C.A.; Sordillo, L.M.; Comstock, S.S.; Harris, W.S.; Hortos, K.; Kovan, B.; Fenton, J.I. Plasma Phospholipids, Non-Esterified Plasma Polyunsaturated Fatty Acids and Oxylipids are Associated with BMI. Prostaglandins Leukot. Essent. Fat. Acids 2015, 95, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Azar, S.; Sherf-Dagan, S.; Nemirovski, A.; Webb, M.; Raziel, A.; Keidar, A.; Goitein, D.; Sakran, N.; Shibolet, O.; Tam, J.; et al. Circulating Endocannabinoids Are Reduced Following Bariatric Surgery and Associated with Improved Metabolic Homeostasis in Humans. Obes. Surg. 2019, 29, 268–276. [Google Scholar] [CrossRef]
- Merrill, A.H.; Sullards, M.C.; Allegood, J.C.; Kelly, S.; Wang, E. Sphingolipidomics: High-Throughput, Structure-Specific, and Quantitative Analysis of Sphingolipids by Liquid Chromatography Tandem Mass Spectrometry. Methods 2005, 36, 207–224. [Google Scholar] [CrossRef]
- Brozinick, J.T.; Hawkins, E.; Hoang Bui, H.; Kuo, M.S.; Tan, B.; Kievit, P.; Grove, K. Plasma Sphingolipids Are Biomarkers of Metabolic Syndrome in Non-Human Primates Maintained on a Western-Style Diet. Int. J. Obes. 2013, 37, 1064–1070. [Google Scholar] [CrossRef] [Green Version]
- Croyal, M.; Kaabia, Z.; León, L.; Ramin-Mangata, S.; Baty, T.; Fall, F.; Billon-Crossouard, S.; Aguesse, A.; Hollstein, T.; Sullivan, D.R.; et al. Fenofibrate Decreases Plasma Ceramide in Type 2 Diabetes Patients: A Novel Marker of CVD? Diabetes Metab. 2018, 44, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Neeland, I.J.; Singh, S.; McGuire, D.K.; Vega, G.L.; Roddy, T.; Reilly, D.F.; Castro-Perez, J.; Kozlitina, J.; Scherer, P.E. Relation of Plasma Ceramides to Visceral Adiposity, Insulin Resistance and the Development of Type 2 Diabetes Mellitus: The Dallas Heart Study. Diabetologia 2018, 61, 2570–2579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özer, H.; Aslan, İ.; Oruç, M.T.; Çöpelci, Y.; Afşar, E.; Kaya, S.; Aslan, M. Early Postoperative Changes of Sphingomyelins and Ceramides after Laparoscopic Sleeve Gastrectomy. Lipids Health Dis. 2018, 17, 269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, C.L.; Kratz, M.; Ralston, M.M.; Reinehr, T. Changes in Adipose-Derived Inflammatory Cytokines and Chemokines after Successful Lifestyle Intervention in Obese Children. Metabolism 2011, 60, 445–452. [Google Scholar] [CrossRef]
- Van der Kolk, B.W.; Vogelzangs, N.; Jocken, J.W.E.; Valsesia, A.; Hankemeier, T.; Astrup, A.; Saris, W.H.M.; Arts, I.C.W.; van Greevenbroek, M.M.J.; Blaak, E.E. Plasma Lipid Profiling of Tissue-Specific Insulin Resistance in Human Obesity. Int. J. Obes. 2019, 43, 989–998. [Google Scholar] [CrossRef]
- Kunešová, M.; Hlavatý, P.; Tvrzická, E.; Staňková, B.; Kalousková, P.; Viguerie, N.; Larsen, T.M.; Van Baak, M.A.; Jebb, S.A.; Martinez, J.A.; et al. Fatty Acid Composition of Adipose Tissue Triafter Weight Loss and Weight Maintenance: The Diogenes Study. Physiol. Res. 2012, 61, 597–607. [Google Scholar] [CrossRef]
- Montastier, E.; Villa-Vialaneix, N.; Caspar-Bauguil, S.; Hlavaty, P.; Tvrzicka, E.; Gonzalez, I.; Saris, W.H.M.; Langin, D.; Kunesova, M.; Viguerie, N. System Model Network for Adipose Tissue Signatures Related to Weight Changes in Response to Calorie Restriction and Subsequent Weight Maintenance. PLOS Comput. Biol. 2015, 11, e1004047. [Google Scholar] [CrossRef] [Green Version]
- Grzybek, M.; Palladini, A.; Alexaki, V.I.; Surma, M.A.; Simons, K.; Chavakis, T.; Klose, C.; Coskun, Ü. Comprehensive and Quantitative Analysis of White and Brown Adipose Tissue by Shotgun Lipidomics. Mol. Metab. 2019, 22, 12–20. [Google Scholar] [CrossRef]
- Hanzu, F.A.; Vinaixa, M.; Papageorgiou, A.; Párrizas, M.; Correig, X.; Delgado, S.; Carmona, F.; Samino, S.; Vidal, J.; Gomis, R. Obesity Rather Than Regional Fat Depots Marks the Metabolomic Pattern of Adipose Tissue: An Untargeted Metabolomic Approach. Obesity 2014, 22, 698–704. [Google Scholar] [CrossRef]
- Mitsutake, S.; Zama, K.; Yokota, H.; Yoshida, T.; Tanaka, M.; Mitsui, M.; Ikawa, M.; Okabe, M.; Tanaka, Y.; Yamashita, T.; et al. Dynamic Modification of Sphingomyelin in Lipid Microdomains Controls Development of Obesity, Fatty Liver, and Type 2 Diabetes. J. Biol. Chem. 2011, 286, 28544–28555. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Przybylska, M.; Wu, I.H.; Zhang, J.; Siegel, C.; Komarnitsky, S.; Yew, N.S.; Cheng, S.H. Inhibiting Glycosphingolipid Synthesis Improves Glycemic Control and Insulin Sensitivity in Animal Models of Type 2 Diabetes. Diabetes 2007, 56, 1210–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Y.; Hu, H.; Qu, S.; Wang, J.; Hua, C.; Zhang, J.; Wei, P.; He, X.; Hao, J.; Liu, P.; et al. SIRT5 Deacylates Metabolism-Related Proteins and Attenuates Hepatic Steatosis in Ob/Ob Mice. EBioMedicine 2018, 36, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Yetukuri, L.; Katajamaa, M.; Medina-Gomez, G.; Seppänen-Laakso, T.; Vidal-Puig, A.; Orešič, M. Bioinformatics Strategies for Lipidomics Analysis: Characterization of Obesity Related Hepatic Steatosis. BMC Syst. Biol. 2007, 1, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preuss, C.; Jelenik, T.; Bódis, K.; Müssig, K.; Burkart, V.; Szendroedi, J.; Roden, M.; Markgraf, D.F. A New Targeted Lipidomics Approach Reveals Lipid Droplets in Liver, Muscle and Heart as a Repository for Diacylglycerol and Ceramide Species in Non-Alcoholic Fatty Liver. Cells 2019, 8, 277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Han, X. Advanced Shotgun Lipidomics for Characterization of Altered Lipid Patterns in Neurodegenerative Diseases and Brain Injury. Methods Mol. Biol. 2016, 1303, 405–422. [Google Scholar]
- Bielawski, J.; Szulc, Z.M.; Hannun, Y.A.; Bielawska, A. Simultaneous Quantitative Analysis of Bioactive Sphingolipids by High-Performance Liquid Chromatography-Tandem Mass Spectrometry. Methods 2006, 39, 82–91. [Google Scholar] [CrossRef]
- Yang, G.; Badeanlou, L.; Bielawski, J.; Roberts, A.J.; Hannun, Y.A.; Samad, F. Central Role of Ceramide Biosynthesis in Body Weight Regulation, Energy Metabolism, and the Metabolic Syndrome. Am. J. Physiol.-Endocrinol. Metab. 2009, 297. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Zhu, G.; Gao, X.; Wu, D.; Carrasco, P.; Casals, N.; Hegardt, F.G.; Moran, T.H.; Lopaschuk, G.D. Important Roles of Brain-Specific Carnitine Palmitoyltransferase and Ceramide Metabolism in Leptin Hypothalamic Control of Feeding. Proc. Natl. Acad. Sci.USA 2011, 108, 9691–9696. [Google Scholar] [CrossRef] [Green Version]
- Rutkowsky, J.M.; Lee, L.L.; Puchowicz, M.; Golub, M.S.; Befroy, D.E.; Wilson, D.W.; Anderson, S.; Cline, G.; Bini, J.; Borkowski, K.; et al. Reduced Cognitive Function, Increased Bloodbrain-Barrier Transport and Inflammatory Responses, and Altered Brain Metabolites in LDLr-/-and C57BL/6 Mice Fed a Western Diet. PLoS ONE 2018, 13, e0191909. [Google Scholar] [CrossRef] [Green Version]
- Rawish, E.; Nickel, L.; Schuster, F.; Stölting, I.; Frydrychowicz, A.; Saar, K.; Hübner, N.; Othman, A.; Kuerschner, L.; Raasch, W. Telmisartan Prevents Development of Obesity and Normalizes Hypothalamic Lipid Droplets. J. Endocrinol. 2020, 244, 95–110. [Google Scholar] [CrossRef]
- Gudbrandsen, O.A.; Kodama, Y.; Mjøs, S.A.; Zhao, C.-M.; Johannessen, H.; Brattbakk, H.-R.; Haugen, C.; Kulseng, B.; Mellgren, G.; Chen, D. Effects of Duodenal Switch Alone or in Combination with Sleeve Gastrectomy on Body Weight and Lipid Metabolism in Rats. Nutr. Diabetes 2014, 4, e124-e124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De la Maza, M.P.; Rodriguez, J.M.; Hirsch, S.; Leiva, L.; Barrera, G.; Bunout, D. Skeletal Muscle Ceramide Species in Men with Abdominal Obesity. J. Nutr. Health Aging 2015, 19, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Stanley, W.C.; Dabkowski, E.R.; Ribeiro, R.F.; O’Connell, K.A. Dietary Fat and Heart Failure: Moving From Lipotoxicity to Lipoprotection. Circ. Res. 2012, 110, 764–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harmancey, R.; Wilson, C.R.; Wright, N.R.; Taegtmeyer, H. Western Diet Changes Cardiac Acyl-CoA Composition in Obese Rats: A Potential Role for Hepatic Lipogenesis. J. Lipid Res. 2010, 51, 1380–1393. [Google Scholar] [CrossRef] [Green Version]
- Butler, T.J.; Ashford, D.; Seymour, A.-M. Western Diet Increases Cardiac Ceramide Content in Healthy and Hypertrophied Hearts. Nutr. Metab. Cardiovasc. Dis. 2017, 27, 991–998. [Google Scholar] [CrossRef]
- Pakiet, A.; Jakubiak, A.; Mierzejewska, P.; Zwara, A.; Liakh, I.; Sledzinski, T.; Mika, A. The Effect of a High-Fat Diet on the Fatty Acid Composition in the Hearts of Mice. Nutrients 2020, 12, 824. [Google Scholar] [CrossRef] [Green Version]
- Feng, R.; Sun, G.; Zhang, Y.; Sun, Q.; Ju, L.; Sun, C.; Wang, C. Short-Term High-Fat Diet Exacerbates Insulin Resistance and Glycolipid Metabolism Disorders in Young Obese Men with Hyperlipidemia, as Determined by Metabolomics Analysis Using Ultra-HPLC-Quadrupole Time-of-Flight Mass Spectrometry. J. Diabetes 2019, 11, 148–160. [Google Scholar] [CrossRef]
- Araujo, D.S.; Guedes de Oliveira Scudine, K.; Pedroni-Pereira, A.; Gavião, M.B.D.; Pereira, E.C.; Fonseca, F.L.A.; Castelo, P.M. Salivary Uric Acid is a Predictive Marker of Body Fat Percentage in Adolescents. Nutr. Res. 2020, 74, 62–70. [Google Scholar] [CrossRef]
- Ruebel, M.L.; Piccolo, B.D.; Mercer, K.E.; Pack, L.; Moutos, D.; Shankar, K.; Andres, A. Obesity Leads to Distinct Metabolomic Signatures in Follicular Fluid of Women Undergoing In Vitro Fertilization. Am. J. Physiol. Metab. 2019, 316, E383–E396. [Google Scholar] [CrossRef]
- De la Cuesta-Zuluaga, J.; Mueller, N.; Álvarez-Quintero, R.; Velásquez-Mejía, E.; Sierra, J.; Corrales-Agudelo, V.; Carmona, J.; Abad, J.; Escobar, J. Higher Fecal Short-Chain Fatty Acid Levels Are Associated with Gut Microbiome Dysbiosis, Obesity, Hypertension and Cardiometabolic Disease Risk Factors. Nutrients 2018, 11, 51. [Google Scholar] [CrossRef] [Green Version]
- Tipthara, P.; Thongboonkerd, V. Differential Human Urinary Lipid Profiles Using Various Lipid-Extraction Protocols: MALDI-TOF and LIFT-TOF/TOF Analyses. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnet, L.; Margier, M.; Svilar, L.; Couturier, C.; Reboul, E.; Martin, J.C.; Landrier, J.F.; Defoort, C. Simple Fast Quantification of Cholecalciferol, 25-Hydroxyvitamin D and 1,25-Dihydroxyvitamin D in Adipose Tissue Using LC-HRMS/MS. Nutrients 2019, 11, 1977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Lipid Class(es) | Matrix | Sample Preparation Method | Analysis Method | References | ||
---|---|---|---|---|---|---|
Pre-Preparation | Extraction Method | Derivatization Step | ||||
PL | Plasma | - | modified Folch method | sodium methoxide—FAME | GC | Blewett et al. [121] |
FFA, TAG | Plasma | - | Bligh and Dyer’s method | 14% BF3 - MeOH - FAME | GC-MS | Choromańska et al. [74] |
LPAs | Plasma | - | hydrochloric acid + MeOH/chloroform (2:1) | - | ESI-MS –MS | Yoon et al. [122] |
SM | Plasma | MeOH | modified Matyash method | - | LC-MS/MS | Im et al. [50] |
lipidomic profile (328 lipid species from 24 lipid classes: dhCer, Cer. MHC, DHC, THC, GM3, SM, PC, PC(0), PC(P), LPC, PE, PE(0), PE(P), LPE, PI, LPI, PS, PG, CE, COH, DG, TG) | Plasma | MeOH | chloroform/MeOH (2:1) | - | LC ESI-MS/MS | Wang et al. [124] |
untargeted metabolomics analysis /lipidomic profile? (515 metabolites) | Serum | - | ACN: isopropanol: water (3:3:2) | MSTFA + MTBSTFA | 2D GC-ToF-MS | Misra et al. [125] |
lipidomic profile (143 lipid species from lipid classes: FA, FFA, PC, PE, PI, PS, PG, LPC, LPA, SM) | Plasma | - | MeOH/n-hexane (4:1) | acetyl chloride + 6% K2CO3 | GC- FID/MS | Wang et al. [51] |
sterols | Serum | MeOH | solid-phase extraction (hybrid solid-phase extraction-precipitation (H-PPT) cartridge) | MSTFA/ammonium iodide (NH 4 I)/dithioerythritol (DTE) (500:4:2) | GC-MS | Cho et al. [82] |
total FAs + circulating PL, TG | Serum | - | chloroform/MeOH (2:1) | methylation (100 °C; 1.5 h) | GC- FID | Perreault et al. [102] |
FFA, TAG, PL | Serum | - | Folch method | 10% BF3 - MeOH | GC–MS | Śledziński et al. [144] |
SFA, MUFAs, PUFAs | Plasma | - | MeOH | acetyl chloride + 6% K2CO3 | GC-MS | Kang et al. [148] |
MCFAs, NEFAs | Serum | MeOH | - | 10M KOH in MeOH + 24 N H2SO4 | GC-MS | Wijayatunga et al. [7] |
PUFAs | Plasma | ACN/37% hydrochloric acid (4:1) | n-hexane | - | LC-MS/MS | Aslan et al. [150] |
MUFAs, PUFAs, OCFAs | Serum | ACN | chloroform/MeOH (2:1) | - | UHPLC-MS | Ma et al. [152] |
PUFAs | Plasma | MeOH | - | acetyl chloride + 6% K2CO3 | LC-MS | Itariu et al. [86] |
NEFAs | Plasma | - | Dole extraction | - | LC-MS | Nemati et al. [153] |
MUFAs, PUFAs, SFA | Serum | - | chloroform/MeOH (2:1) | HCl in MeOH | GLC-FID | Lin et al. [154] |
FAs, bile acids (BA), steroids, LPL, glycerolipids, cholesterol esters, SPL, PL | Serum | For FAs, bile acids (BA), steroids and LPL - MeOH | For glycerolipids, cholesterol esters, sphingolipids and phospholipids - NaCl + chloroform/MeOH (2:1) | - | UPLC-MS | Ramos-Molina et al. [155] |
Serum | - | chloroform/MeOH (2:1) | - | UHPLC-MS | Ramos-Molina et al. [155] | |
FAHFAs | Serum | MeOH | solid-phase extraction (hysphere C8 cartridges) | - | LC-MS/MS | López-Bascón et al. [87] |
SCFAs | Plasma | MeOH | dichloromethane | 0.1 M O-benzylhydroxylamine (O-BHA) in MeOH and 0.25 M N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) in MeOH | LC-MS/MS | Zeng and Cao [58] |
MAG, FAE, oxFAE, oxMAG, FA, oxFA, DAG, TAG, PE, PI, NAPE, LNAPE, PC | Plasma | - | Chloroform | - | LC/MS | Astarita et al. [99] |
endocannabinoids | Plasma | - | Chloroform | - | UPLC-MS/MS | Argueta et al. [100] |
endocannabinoids | Plasma | - | Chloroform | - | UPLC-MS/MS | Perez et al. [101] |
oxylipins | Serum | - | solid-phase extraction (C18 cartridges) | - | online SPE–LC–MS/MS | Ferreiro-Vera et al. [57] |
nonesterified PUFAs and oxylipins | Plasma | MeOH + formic acid | solid-phase extraction (Strata-X) | - | UHPLC-MS/MS | Pickens et al. [163] |
oxylipins, endocannabinoid, Cer | Serum | IPA with 10 mM ammonium formate + 1% formic acid | - | - | UPLC-MS/MS | Hernandez-Carretero et al. [52] |
endocannabinoids | Serum | acetones + Tris buffer (50 mM, pH 8.0) | chloroform/MeOH (2:1) | - | LC-MS/MS | Azar et al. [164] |
unesterified oxylipins, endocannabinoids | Plasma | MeOH/ACN (1:1) | solid-phase extraction (BEH C18 colum) | - | UPLC-MS/MS | Fan et al. [54] |
Cer | Plasma | - | Bligh and Dyer method | - | UPLC-MS/MS | León-Aguilar et al. [76] |
Cer, SM | Serum | - | chloroform/MeOH (2:1) | - | (UFLC)-MS/MS | Özer et al. were [169] |
FA | Adipose tissue | - | MeOH/chloroform (2:1) | 10 % BF3 - MeOH | GC–MS | Roberts et al. [90] |
acylcarnitines | Adipose tissue | - | MeOH/chloroform (2:1) | - | LC–MS | Roberts et al. [90] |
SFA, MUFAs, TFA, PUFAs | Adipose tissue | - | n-hexane | sodium methoxide | GC–FID/MS analysis | Kunešová et al. [172] |
FAHFAs | Adipose tissue | - | MTBE/MeOH/water | - | UPLC-MS/MS | Hu et al. [79] |
oxylipins | Adipose tissue | MeOH | RapidTrace Biotage | - | LC-MS-MS | Okada et al. [85] |
TAG | Adipose tissue | - | Bligh and Dyer method | - | LC-MS | Al-Sulaiti et al. [71] |
more than 300 lipid species from lipid classes: CL, Cer, ST. HexCer, LPA, LPC, LPE, LPG, LPI, LPS, SM, TAG, CE, DAG, PA, PC, PE, PG, PI, PS | Adipose tissue | - | two-step chloroform/MeOH extraction | - | MS | Grzybek et al. [174] |
TAG, MAG, DAG, LysoPC, PC, LysoPE, PE, Cer, SM, PI, PS, FA | Adipose tissue | - | modified Folch method | - | LC-MS | Tomášová et al. [103] |
oxysterols, Cer, endocannabinoids | Adipose tissue | - | dichloromethane/MeOH/water (8:4:2) + solid-phase extraction (C18 colum) | - | LC-MS | Mutemberezi et al. [83] |
OxPL | Adipose tissue | - | chloroform/MeOH (3:1) + BHT | - | LC-MS | Serbulea et al. [75] |
MAG, DAG, TAG, NL, Cer, FFA, GSPL, SM | Liver | - | Folch extraction | 10% BF3 - MeOH | GC-MS | Pakiet et al. [80] |
STA, MUFA, PUFA | HepG2 cells | - | chloroform/MeOH (2:1) + BHT | hexane + 0.05% BHT | GC- FID | Lytle et al. [104] |
Cer, SM, GPCho, GPEtn, GPSer, GPA, GPGro, DG, TG | Liver | - | chloroform/MeOH (2:1) | - | UPLC-MS | Yetukuri et al. [179] |
LPL (LPS, LPA, LPI, LPG, LPC, LPE) | Liver | 4% formic acids in MeOH | modified method of Bligh and Dyer + solid-phase extraction (HybridSPE cartridge) | - | ESI-MS | Wang et al. [70] |
SFA, MUFA, PUFA | Liver | - | chloroform:MeOH (2:1) plus 1 mM BHT | 1% H2SO4 in MeOH | GC–FID | Garcia-Yaramillo et al. [98] |
PUFA, PUFA-derived oxylipins | Liver | MeOH | solid-phase extraction (Strata-X) | - | targeted UPLC-TOF-MS/MS | Garcia-Yaramillo et al. [98] |
DAG, TAG, PC, PS, PI, PG, PE, LPL, SM | Liver | - | methylene chloride/IPA/MeOH (25:10:65) | - | untargeted UPLC-TOF-MS/MS | Garcia-Yaramillo et al. [98] |
DAG, Cer | Liver | - | Folch method + solid-phase extraction (Sep Pak Diol Cartridges) | - | LC-MS/MS | Preuss et al. [180] |
Brain | - | IPA/water/ethyl acetate (30:10:60) | - | LC-MS | Yang et al. [184] | |
non-esterified oxylipins, endocannabinoids, PUFAs | Brain | MeOH | MTBE | - | UHPLC-QTOF-MS | Rutkowsky et al. [185] |
Cer, DG, ClcCer, LPC, PC, PE, FA, PI, SM | Brain | - | MeOH/ethyl acetate | - | CSH-ESI QTOF MS/MS | Rutkowsky et al. [185] |
endocannabinoid | Brain | - | chloroform/MeOH/50 mM Tris HCl (2:1:1) | MSTFA + 1% trimethylchlorosylane | GC-MS | Kirkham et al. [161] |
SFA, MUFA, PUFA | Skeletal muscle | - | Bligh and Dyer method | anhydrous MeOH containing 2.5 M HCl (100 °С; 2 h) | GC-FID | Gudbrandsen et al. [187] |
FFA, DAG, TAG, PL | Skeletal muscle | - | chloroform/MeOH (2:1) | 14% BF3 - MeOH | GC-MS | Van Hees et al. [129] |
CE, TAG, GPL | Skeletal muscle | - | for CE, TAG and GPL fractions - tert-butyl methyl ether (90%, tert-BME) and MeOH; for FFA fraction chloroform/MeOH (2:1) + solid phase extraction | 2 M sodium methoxide solution | GC-MS | Laurentius et al. [97] |
LPC, LPE, PI, PG, Cer, PC, PE, PS, TG, HexCer, SM | Skeletal muscle | - | two-stage extraction method using MTBE/MeOH | - | nUHPLC-ESI-MS/MS | Eum et al. [78] |
DAG, Cer, acyl-CoA | Heart | - | Bligh and Dyer method | - | HPLC-UV | Harmancey et al. [190] |
sphingolipids | Heart | - | MeOH/chloroform | - | LC-MS/MS | Merrill et al. [165] |
SFA, MUFA, PUFA | Heart | - | chloroform/MeOH (2:1) + solid-phase extraction (Strata) | 10% BF3—MeOH | GC–MS | Pakiet et al. [192] |
SM, PC, PE, PG, PI, PS | Urine | - | ACQUITY UPLC HSS-T3 C18 column | - | UPLC-QTOF-MS/MS | Feng et al. [193] |
Cholesterol, 7-ketocholesterol | Saliva | - | for cholesterol and 7-ketocholesterol chloroform/MeOH (2:1); for 25-hydroxyvitamins D2 and D3 MeOH/IPA | - | HPLC-DAD | Araujo and Santos [194] |
FFA, PI, PC, LPC, PS, PE, TG | Follicular fluid and serum | - | IPA/acetonitrile/water (3:3:2) or MTBE | MSTFA + 1% TMCS | GC-MS | Ruebel et al. [195] |
FFA, PI, PC, LPC, PE, PS | Follicular fluid and serum | - | IPA/acetonitrile/water (3:3:2) or MTBE | - | untargeted CSH-ESI QTOF MS/MS | Ruebel et al. [195] |
SCFAs | Faecal samples | - | - | CTC Combipal 3 autosampler in HS/SPME mode equipped with a gray fibe | GC-MS | Cuesta-Zuluaga et al. [196] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liakh, I.; Sledzinski, T.; Kaska, L.; Mozolewska, P.; Mika, A. Sample Preparation Methods for Lipidomics Approaches Used in Studies of Obesity. Molecules 2020, 25, 5307. https://doi.org/10.3390/molecules25225307
Liakh I, Sledzinski T, Kaska L, Mozolewska P, Mika A. Sample Preparation Methods for Lipidomics Approaches Used in Studies of Obesity. Molecules. 2020; 25(22):5307. https://doi.org/10.3390/molecules25225307
Chicago/Turabian StyleLiakh, Ivan, Tomasz Sledzinski, Lukasz Kaska, Paulina Mozolewska, and Adriana Mika. 2020. "Sample Preparation Methods for Lipidomics Approaches Used in Studies of Obesity" Molecules 25, no. 22: 5307. https://doi.org/10.3390/molecules25225307
APA StyleLiakh, I., Sledzinski, T., Kaska, L., Mozolewska, P., & Mika, A. (2020). Sample Preparation Methods for Lipidomics Approaches Used in Studies of Obesity. Molecules, 25(22), 5307. https://doi.org/10.3390/molecules25225307