Physicochemical Insight into Coordination Systems Obtained from Copper(II) Bromoacetate and 1,10-Phenanthroline
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Structural Analysis
2.3. UV-Vis Spectra Analysis
2.4. IR Spectra Analysis
2.5. Thermal Analysis
3. Materials and Methods
3.1. Synthesis
3.1.1. Preparation of Copper(II) Bromoacetate Solutions
3.1.2. Synthesis of Coordination Compounds
3.2. Crystal Structure Determination
3.3. Other Physical Measurements
3.4. Quantum-Mechanical Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Masternak, J.; Zienkiewicz-Machnik, M.; Kowalik, M.; Jabłońska-Wawrzycka, A.; Rogala, P.; Adach, A.; Barszcz, B. Recent advances in coordination chemistry of metal complexes basedon nitrogen heteroaromatic alcohols. Synthesis, structures andpotential applications. Coord. Chem. Rev. 2016, 327–328, 242–270. [Google Scholar] [CrossRef]
- Rasheed, T.; Nabeel, F. Luminescent metal-organic frameworks as potential sensory materials for various environmental toxic agents. Coord. Chem. Rev. 2019, 401, 213065. [Google Scholar] [CrossRef]
- Petricek, S. Structural diversity of nickel and manganese chloride complexes with pyridin-2-one. Molecules 2020, 25, 846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swiatkowski, M.; Kruszynski, R. Revealing the structural chemistry of the group 12 halide coordination compounds with 2,2′-bipyridine and 1,10-phenanthroline. J. Coord. Chem. 2017, 70, 642–675. [Google Scholar] [CrossRef]
- Liu, K.; Shi, W.; Cheng, P. The coordination chemistry of Zn(II), Cd(II) and Hg(II) complexes with 1,2,4-triazole derivatives. Dalton Trans. 2011, 40, 8475–8490. [Google Scholar] [CrossRef] [PubMed]
- Walfort, B.; Auth, T.; Degel, B.; Helten, H.; Stalke, D. Copper and Silver Triimidosulfites: S(NtBu)32--Bicapped M3-Triangles Connected via Lithium Halide Ladders or Fragments Thereof. Organometallics 2002, 21, 2208–2214. [Google Scholar] [CrossRef]
- Herber, U.; Moegling, J.; Siris, R.; Hoffmann, A.; Mayer, P.; Göbel, C.; Lochenie, C.; Weber, B.; Herres-Pawlis, S. A Study on FeII, ZnII and CuII Complexes with Novel Tridentate Bis(pyrazolyl)methane Ligands. Anorg. Allg. Chem. 2018, 644, 1576–1592. [Google Scholar] [CrossRef]
- Dhayal, R.S.; Liao, J.-H.; Wang, X.; Liu, Y.-C.; Chiang, M.-H.; Kahlal, S.; Saillard, J.-Y.; Liu, C.W. Diselenophosphate-Induced Conversion of an Achiral [Cu20H11{S2P(OiPr)2}9] into a Chiral [Cu20H11{Se2P(OiPr)2}9] Polyhydrido Nanocluster. Angew. Chem. Int. Ed. 2015, 54, 13604–13608. [Google Scholar] [CrossRef]
- Levason, W.; Spicer, M.D. The chemistry of copper and silver in their higher oxidation states. Coord. Chem. Rev. 1987, 76, 45–120. [Google Scholar] [CrossRef]
- Popova, T.V.; Aksenova, N.V. Complexes of Copper in Unstable Oxidation States. Russ. J. Coord. 2003, 29, 743–765. [Google Scholar] [CrossRef]
- Goswami, A.; Schmittel, M. Heteroleptic copper phenanthroline complexes in motion: From stand-alone devices to multi-component machinery. Coord. Chem. Rev. 2018, 376, 478–505. [Google Scholar] [CrossRef] [PubMed]
- Trose, M.; Nahra, F.; Cazin, C.S.J. Dinuclear N-heterocyclic carbene copper(I) complexes. Coord. Chem. Rev. 2018, 355, 380–403. [Google Scholar] [CrossRef] [Green Version]
- Dogan, S.; Mutlu Balci, C.; Senocak, A.; Besli, S. Cu(II) complexes of cyclotriphosphazene bearing Schiff bases: Synthesis, structural characterization, DFT calculations, absorbance and thermal properties. Polyhedron 2020, 183, 114541. [Google Scholar] [CrossRef]
- Iqbal, M.; Karim, A.; Ali, S.; Nawaz Tahir, M.; Sohail, M. Synthesis, characterization, structural elucidation, electrochemistry, DNA binding study, micellization behaviour and antioxidant activity of the Cu(II) carboxylate complexes. Polyhedron 2020, 178, 114310. [Google Scholar] [CrossRef]
- Davidovich, R.L.; Stavila, V.; Marinin, D.V.; Voit, E.I.; Whitmire, K.H. Stereochemistry of lead(II) complexes with oxygen donor ligands. Coord. Chem. Rev. 2009, 253, 1316–1352. [Google Scholar] [CrossRef]
- Irto, A.; Cardiano, P.; Cataldo, S.; Chand, K.; Cigala, R.M.; Crea, F.; De Stefano, C.; Gattuso, G.; Muratore, N.; Pettignano, A.; et al. Speciation studies of bifunctional 3-hydroxy-4-pyridinone ligands in the presence of Zn2+ at different ionic strengths and temperatures. Molecules 2019, 24, 4084. [Google Scholar] [CrossRef] [Green Version]
- Urbansky, E.T. The Fate of the Haloacetates in Drinking Water Chemical Kinetics in Aqueous Solution. Chem. Rev. 2001, 101, 3233–3244. [Google Scholar] [CrossRef]
- Kruszynski, R. Synthesis of coordination compounds via dehalogenation of zinc bromoacetate in presence of some amines. Inorg. Chim. Acta 2011, 371, 111–123. [Google Scholar] [CrossRef]
- Gao, S.; Huang, M.; Sun, Z.; Li, D.; Xie, C.; Feng, L.; Liu, S.; Zheng, K.; Pang, Q. A new mixed-ligand lanthanum(III) complex with salicylic acid and 1,10-phenanthroline: Synthesis, characterization, antibacterial activity, and underlying mechanism. J. Mol. Struct. 2021, 1225, 129096. [Google Scholar] [CrossRef]
- Aycan, T.; Ozturk, F.; Doruk, T.; Demir, S.; Fidan, M.; Pasaoglu, H. Synthesis, structural, spectral and antimicrobial activity studies of copper-nalidixic acid complex with 1,10-phenanthroline: DFT and molecular docking. Spectrochim. Acta A 2020, 241, 118639. [Google Scholar] [CrossRef]
- Swiatkowski, M.; Kruszynski, R. Structural insights into the usage of carboxylate ions as molecular pins. Polyhedron 2017, 135, 265–277. [Google Scholar] [CrossRef]
- Golovnev, N.N.; Molokeev, M.S.; Sterkhova, I.V.; Lesnikov, M.K.; Demina, A.V.; Patrin, G.S. Two new Cu(II) and Ni(II) 1,10-phenanthroline complexes with anions of barbituric acids in the outer sphere: Synthesis, structure, spectroscopic, magnetic and thermal properties. J. Mol. Struct. 2020, 1219, 128526. [Google Scholar] [CrossRef]
- Onawumi, O.O.; Adekunle, F.A.; Ibrahim, A.O.; Rajasekharan, M.V.; Odunola, O.A. Synthesis, Characterization, and Crystal Structures of [Cu(phen)2Cl]Cl.6.5H2O and [Cu(phen)2Br]Br. Synth. React. Inorg. M. 2010, 40, 78–83. [Google Scholar]
- Inczedy, J. Równowagi kompleksowania w chemii analitycznej, (eng. Analytical Application of Complex Equilibria); PWN: Warsaw, Poland, 1979; p. 263. [Google Scholar]
- He, G.; Sun, J.; Zhao, R.; Li, J. Bis(2-bromoacetato-κ2O,O’)(1,10-phenanthroline-κ2N,N’)copper(II). Acta Crystallogr. Sect. E Struct. Rep. Online 2009, 65, m417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. Cambridge Structural Database, CSD v 5.39, August 2018. Acta Crystallogr. Sect. B Struct. Sci. 2016, 72, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Kepert, D.L. Aspects of the Stereochemistry of Six-coordination. In Progress in Inorganic Chemistry; Lippard, S.J., Ed.; John Wiley: New York, NY, USA, 1977; Volume 23. [Google Scholar]
- Batsanov, S.S. Van der Waals Radii of Elements. Inorg. Mater. 2001, 37, 871–885. [Google Scholar] [CrossRef]
- Hu, S.-Z.; Zhou, Z.-H.; Robertson, B.E. Consistent approaches to van der Waals radii for the metallic elements. Z. Kristallogr. 2009, 224, 375–383. [Google Scholar] [CrossRef]
- Zachariasen, W.H. Bond lengths in oxygen and halogen compounds of d and f elements. J. Less-Common Met. 1978, 62, 1–7. [Google Scholar] [CrossRef]
- Brown, I.D. Influence of Chemical and Spatial Constraints on the Structures of Inorganic Compounds. Acta Crystallogr. Sect. B Struct. Sci. 1997, 53, 381–393. [Google Scholar] [CrossRef]
- Brown, I.D. Chemical and steric constraints in inorganic solids. Acta Crystallogr. Sect. B Struct. Sci. 1992, 48, 553–572. [Google Scholar] [CrossRef]
- Shields, P.G.; Raithby, P.R.; Allen, F.H.; Motherwell, W.D.S. The assignment and validation of metal oxidation states in the Cambridge Structural Database. Acta Crystallogr. Sect. B Struct. Sci. 2000, 56, 455–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Favas, M.C.; Kepert, D.L. Aspects of the Stereochemistry of Four-Coordination and Five-Coordination. In Progress in Inorganic Chemistry; Lippard, S.J., Ed.; John Wiley: New York, NY, USA, 1980; Volume 27, pp. 325–463. [Google Scholar]
- Ortega, G.; Hernández, J.; González, T.; Dorta, R.; Briceño, A. 1,2,4,5-Benzenetetracarboxylic acid: A versatile hydrogen bonding template for controlling the regioselective topochemical synthesis of head-to-tail photodimers from stilbazole derivatives. Photochem. Photobiol. Sci. 2018, 17, 670–680. [Google Scholar] [CrossRef] [PubMed]
- Gordon, M.S.; Binkley, J.S.; Pople, J.A.; Pietro, W.J.; Hehre, W.J. Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements. J. Am. Chem. Soc. 1982, 104, 2797–2803. [Google Scholar] [CrossRef]
- Shao, Y.; Zhang, X.; Liang, K.; Wang, J.; Lin, Y.; Yang, S.; Zhang, W.-B.; Zhu, M.; Sun, B. How does the interplay between bromine substitution at bay area and bulky substituents at imide position influence the photophysical properties of perylene diimides? RSC Adv. 2017, 7, 16155–16162. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Ge, F.; Cai, Z. Effects of halogen substitution and solvent on the fluorescent spectra of fluorescein. Chem. Bullet./Huaxue Tongbao 2014, 77, 243–249. [Google Scholar]
- Katon, J.E.; Kleinlein, R.L. The vibrational spectra and structure of sodium bromoacetate and sodium bromoacetate-d2. J. Mol. Struct. 1973, 17, 239–248. [Google Scholar] [CrossRef]
- Reiher, M.; Brehm, G.; Schneider, S. Assignment of Vibrational Spectra of 1,10-Phenanthroline by Comparison with Frequencies and Raman Intensities from Density Functional Calculations. J. Phys. Chem. A 2004, 108, 734–742. [Google Scholar] [CrossRef]
- Muniz-Miranda, M. Surface Enhanced Raman Scattering and Normal Coordinate Analysis of 1,10-Phenanthroline Adsorbed on Silver Sols. J. Phys. Chem. A 2000, 104, 7803–7810. [Google Scholar] [CrossRef]
- Deacon, G.B.; Phillips, R.J. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord. Chem. Rev. 1980, 33, 227–250. [Google Scholar] [CrossRef]
- Zelenak, V.; Vargova, Z.; Gyoryova, K. Correlation of infrared spectra of zinc(II) carboxylates with their structures. Spectrochim. Acta A 2007, 66, 262–272. [Google Scholar] [CrossRef]
- Sutton, C.C.R.; da Silva, G.; Franks, G.V. Modeling the IR Spectra of Aqueous Metal Carboxylate Complexes: Correlation between Bonding Geometry and Stretching Mode Wavenumber Shifts. Chem. A Eur. J. 2015, 21, 6801–6805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swiatkowski, M.; Kruszynski, R. Structurally diverse coordination compounds of zinc as effective precursors of zinc oxide nanoparticles with various morphologies. Appl. Organomet. Chem. 2019, 33, e4812. [Google Scholar] [CrossRef]
- Sharutin, V.V.; Sharutina, O.K.; Efremov, A.N.; Andreev, P.V. Synthesis and Structures of Tris(3-Fluorophenyl)antimony Dicarboxylates: (3-FC6H4)3Sb[OC(O)R]2 (R = C6H3[(NO2)2-3,5)], CH2Br, CH2Cl, and CH=CHPh). Russ. J. Coord. Chem. 2018, 44, 635–641. [Google Scholar] [CrossRef]
- Sharutin, V.V.; Sharutina, O.K.; Efremov, A.N. Tri-para-Tolylantimony Dicarboxylates (4-MeC6H4)3Sb[OC(O)R)]2, R = C6H4(NO2-3), C6H3(NO2)2−3,5, CH2Br: Synthesis and Structure. Russ. J. Inorg. Chem. 2019, 64, 68–73. [Google Scholar] [CrossRef]
- Uchida, S.; Eguchi, R.; Nakamura, S.; Ogasawara, Y.; Kurosawa, N.; Mizuno, N. Selective Sorption of Olefins by Halogen-Substituted Macrocation-Polyoxometalate Porous Ionic Crystals. Chem. Mater. 2012, 24, 325–330. [Google Scholar]
- Katon, J.E.; Kleinlein, R.L. The vibrational spectra and assignments of bromoacetic acid and three of its deuterated analogues. Spectrochim. Acta Part. A 1973, 29, 791–801. [Google Scholar] [CrossRef]
- Mathew, S.; Nair, C.G.R. Thermal decomposition kinetics: Part XVII. Kinetics and mechanism of thermal decomposition of bis(ethylenediamine)copper(II) halide monohydrate. Termochim. Acta 1991, 181, 253–268. [Google Scholar] [CrossRef]
- Eichloff, R. Uber halogenirte Essigsäuren. Justus Liebigs Ann. Chem. 1905, 342, 115–123. [Google Scholar]
- Sheldrick, G.M. SHELXT– Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prince, E. International Tables for Crystallography, Volume C: Mathematical, Physical and Chemical Tables; Academic Publishers: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Georgiev, G.T.; Butler, J.J. Long-term calibration monitoring of Spectralon diffusers BRDF in the air-ultraviolet. Appl. Opt. 2007, 46, 7892–7899. [Google Scholar] [CrossRef] [PubMed]
- Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de Streek, J.; Wood, P.A. Mercury CSD 2.0-New Features for the Visualization and Investigation of Crystal Structures. J. Appl. Cryst. 2008, 41, 466–470. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision, D.01; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-Consistent Molecular-Orbital Methods. IX. An Extended Gaussian-Type Basis for Molecular-Orbital Studies of Organic Molecules. J. Chem. Phys. 1971, 54, 724–728. [Google Scholar] [CrossRef]
- CrystalExplorer17; University of Western Australia: Perth, Australia, 2019.
Sample Availability: Samples of the compounds 1 and 2 are available from the authors. |
i—j | dij (Å) | νij (v.u.) | i—j—k | αijk (°) | i—j—k | αijk (°) |
---|---|---|---|---|---|---|
compound 1 | ||||||
Cu1—N1 | 2.0255(17) | 0.432 */0.421 † | N1—Cu1—N2 | 81.77(7) | N2—Cu1—O5 | 90.27(6) |
Cu1—N2 | 2.0112(17) | 0.449 */0.437 † | N1—Cu1—O1 | 89.34(6) | O1—Cu1—O3 | 91.68(6) |
Cu1—O1 | 1.9428(14) | 0.461 */0.456 † | N1—Cu1—O3 | 150.23(6) | O1—Cu1—O4 | 83.82(6) |
Cu1—O3 | 2.0263(14) | 0.368 */0.364 † | N1—Cu1—O4 | 98.38(6) | O1—Cu1—O5 | 93.17(6) |
Cu1—O4 | 2.7977(14) | 0.046 * | N1—Cu1—O5 | 118.85(6) | O3—Cu1—O4 | 52.25(6) |
Cu1—O5 | 2.2175(14) | 0.219 */0.217 † | N2—Cu1—O1 | 171.06(7) | O3—Cu1—O5 | 90.81(6) |
N2—Cu1—O3 | 96.52(6) | O4—Cu1—O5 | 142.65(7) | |||
N2—Cu1—O4 | 98.40(6) | |||||
compound 2 | ||||||
Cu1—N1 | 2.001(2) | 0.449 | N1—Cu1—N2 | 81.81(9) | N2—Cu1—O2 i | 139.74(8) |
Cu1—N2 | 2.033(2) | 0.412 | N1—Cu1—O1 | 166.12(8) | N2—Cu1—Br2 | 114.14(6) |
Cu1—O1 | 1.9378(19) | 0.462 | N1—Cu1—O2 i | 88.52(8) | O1—Cu1—O2 i | 93.35(8) |
Cu1—O2 i | 1.9964(18) | 0.394 | N1—Cu1—Br2 | 95.42(6) | O1—Cu1—Br2 | 97.31(6) |
Cu1—Br2 | 2.6198(4) | 0.270 | N2—Cu1—O1 | 87.95(8) | O2 i—Cu1—Br2 | 105.60(5) |
Theoretical λ (nm) | E (eV) | f | The Most Important Orbitals Involved in Electronic Transitions | Character of Transition | Experimental λ (nm) (Solid State) | |||
---|---|---|---|---|---|---|---|---|
1 | 2 | 1 | 2 | phen | ||||
228.31 | 5.4305 | 0.0104 | αH-5→αL+3 βH-15→βL | d(Cu)/n(BrAcO)/σ(BrAcO)→π*(phen) d(Cu)/n(BrAcO)/σ(BrAcO)/π(phen)→d(Cu)/π*(phen) | 218.99 | 220.84 | 214 | |
233.98 | 5.2989 | 0.0096 | αH-9→αL+2 | d(Cu)/n(BrAcO)/π(phen)→π*(phen) | ||||
240.36 | 5.1583 | 0.0130 | βH-8→βL+3 | d(Cu)/n(BrAcO)/π(phen)→π*(phen) | ||||
362.12 | 3.4238 | 0.0085 | βH-17→βL βH-8→βL+3 | π(phen)→ d(Cu)/σ*(phen)/σ*(BrAcO) d(Cu)/n(Br)/n(BrAcO)→π*(phen) | ||||
363.01 | 3.4154 | 0.0081 | βH-17→βL βH-8→βL+3 | π(phen)→ d(Cu)/σ*(phen)/σ*(BrAcO) d(Cu)/n(Br)/n(BrAcO)→π*(phen) | ||||
369.66 | 3.3540 | 0.0085 | βH-13→βL | d(Cu)/n(Br)/n(BrAcO)/π(phen)→d(Cu)/σ*(phen)/σ*(BrAcO) | ||||
259.56 | 4.7767 | 0.1149 | βH-13→βL | d(Cu)/n(BrAcO)→d(Cu)/π*(phen) | 261.35 | 265.62 | 253 | |
260.46 | 4.7602 | 0.0545 | αH-1→αL+3 | d(Cu)/n(BrAcO)/σ(BrAcO)→π*(phen) | ||||
261.78 | 4.7362 | 0.0689 | βH-5→βL+3 | d(Cu)/n(BrAcO)/σ(BrAcO)→π*(phen) | ||||
262.05 | 4.7314 | 0.0555 | βH-5→βL+3 | d(Cu)/n(BrAcO)/σ(BrAcO)→π*(phen) | ||||
262.65 | 4.7206 | 0.0572 | αH-5→αL+2 | d(Cu)/n(BrAcO)/σ(BrAcO)→π*(phen) | ||||
376.25 | 3.2953 | 0.0054 | βH-6→βL+3 | d(Cu)/n(Br)/n(BrAcO)→π*(phen) | ||||
378.12 | 3.2789 | 0.0068 | αH-13→αL | d(Cu)/n(Br)/n(BrAcO)/π(phen)→d(Cu)/σ*(phen)/σ*(BrAcO) | ||||
379.21 | 3.2696 | 0.0104 | βH-6→βL+3 | d(Cu)/n(Br)/n(BrAcO)→π*(phen) | ||||
301.36 | 4.1142 | 0.0697 | βH-9→βL+2 | d(Cu)/n(H2O)n(BrAcO)σ(BrAcO)/π(phen)→d(Cu)/σ*(phen)/σ*(BrAcO) | 308.46 | 310.77 | 294 | |
330.05 | 3.7565 | 0.0147 | βH-7→βL+2 βH-8→βL | d(Cu)/n(H2O)n(BrAcO)→d(Cu)/σ*(phen)/σ*(BrAcO) d(Cu)/n(BrAcO)/π(phen)→d(Cu)/π*(phen) | ||||
390.59 | 3.1743 | 0.0169 | αH-11→αL βH-15→βL | n(Br)/n(BrAcO)/σ(BrAcO)→d(Cu)/σ*(phen)/σ*(BrAcO) d(Cu)/(Br)/n(BrAcO)/σ(phen)→d(Cu)/σ*(phen)/σ*(BrAcO) | ||||
392.79 | 3.1565 | 0.0163 | αH-11→αL | n(Br)/n(BrAcO)/σ(BrAcO)→d(Cu)/σ*(phen)/σ*(BrAcO) | ||||
400.16 | 3.0984 | 0.0092 | αH-9→αL | n(Br)/n(BrAcO)/σ(BrAcO)→d(Cu)/σ*(phen)/σ*(BrAcO) | ||||
358.41 | 3.4593 | 0.0421 | βH-4→βL+2 | d(Cu)/n(H2O)/n(BrAcO)/σ(BrAcO)→d(Cu)/σ*(phen)/σ*(BrAcO) | 344.61 384.41 | 344.77 | 324 335 | |
368.93 | 3.3606 | 0.0114 | βH-5→βL βH-4→βL | d(Cu)/n(BrAcO)/σ(BrAcO)→d(Cu)/π*(phen) d(Cu)/n(H2O)/n(BrAcO)/σ(BrAcO)→d(Cu)/π*(phen) | ||||
410.44 | 3.0207 | 0.0118 | βH-7→βL+1 βH-8→βL+1 | d(Cu)/n(Br)/n(BrAcO)→π*(phen) d(Cu)/n(Br)/n(BrAcO)→π*(phen) | ||||
413.33 | 2.9997 | 0.0210 | αH-8→αL+1 βH-7→βL+1 | d(Cu)/n(Br)/n(BrAcO)→π*(phen) d(Cu)/n(Br)/n(BrAcO)→π*(phen) | ||||
427.35 | 0.0085 | βH-2→βL+2 | d(Cu)/n(H2O)n(BrAcO)σ(BrAcO)→d(Cu)/σ*(phen)/σ*(BrAcO) | 439.55 | ||||
476.36 | 2.6027 | 0.0026 | αH-6→αL αH-7→αL | d(Cu)/n(Br)/n(BrAcO)→d(Cu)/σ*(phen)/σ*(BrAcO) d(Cu)/n(Br)/n(BrAcO)→d(Cu)/σ*(phen)/σ*(BrAcO) | 516.59 | |||
473.81 | 2.6167 | 0.0037 | αH-1→αL | d(Cu)/n(BrAcO)/σ(BrAcO)→d(Cu)/n(BrAcO)/σ*(BrAcO)/σ*(phen) | 726.94 759.80 | 728.98 769.21 | ||
646.65 | 1.9173 | 0.0020 | βH-14→βL+2 βH-13→βL+2 | d(Cu)/n(H2O)/σ(BrAcO)/π(phen)→d(Cu)/σ*(phen)/σ*(BrAcO) d(Cu)/n(BrAcO)→d(Cu)/σ*(phen)/σ*(BrAcO) | ||||
712.92 | 1.7391 | 0.0028 | βH-13→βL+2 | d(Cu)/n(BrAcO)→d(Cu)/σ*(phen)/σ*(BrAcO) | ||||
949.37 | 1.3060 | 0.0028 | βH→βL+2 | d(Cu)/n(BrAcO)→d(Cu)/σ*(phen)/σ*(BrAcO) | ||||
509.01 | 2.4358 | 0.0005 | βH-7→βL | d(Cu)/n(Br)/n(BrAcO)→d(Cu)/σ*(BrAcO)/σ*(phen) | ||||
599.93 | 2.0666 | 0.0008 | αH-3→αL | n(BrAcO)/σ(BrAcO)→d(Cu)/σ*(BrAcO)/σ*(phen) | ||||
730.15 | 0.0027 | 0.0026 | αH-27→αL | d(Cu)/n(BrAcO)/n(Br)/σ(phen)→d(Cu)/σ*(BrAcO)/σ*(phen) |
Compound | 1 | 2 |
---|---|---|
Empirical formula | C16H14Br2CuN2O5 | C32H25Br5Cu2N4O8 |
Formula weight | 537.65 | 1120.19 |
Crystal system | Triclinic | Monoclinic |
Space group | P-1 (No. 2) | C2/c (No. 15) |
Unit cell dimensions | ||
a (Å) | 9.1666(2) | 25.3799(7) |
b (Å) | 10.4887(2) | 7.2326(2) |
c (Å) | 11.0716(3) | 20.1769(5) |
α (°) | 65.382(2) | 90.00 |
β (°) | 66.608(2) | 107.993(3) |
γ (°) | 73.039(2) | 90.00 |
Volume (Å3) | 877.95(4) | 3522.59(17) |
Z | 2 | 4 |
Calculated density (Mg/m3) | 2.034 | 2.112 |
Absorption coefficient (mm−1) | 7.371 | 6.918 |
F(000) | 526 | 2168 |
Crystal size (mm) | 0.060 × 0.095 × 0.179 | 0.016 × 0.038 × 0.242 |
θ Range for data collection (°) | 4.632 to 78.742 | 2.940 to 31.436 |
Index ranges | −11 ≤ h ≤ 11, −13 ≤ k ≤ 12, −13 ≤ l ≤ 13 | −36 ≤ h ≤ 34, −10 ≤ k ≤ 10, −28 ≤ l ≤ 26 |
Reflections collected / unique | 40793/3603 | 30256/5249 |
Rint | 0.0307 | 0.0471 |
Completeness (%) | 99.9 (to θ = 67°) | 99.9 (to θ = 25°) |
Min. and max. transmission | 0.500 and 0.973 | 0.404 and 1.000 |
Data / restraints / parameters | 3603/0/241 | 5249/0/234 |
Goodness-of-fit on F2 | 1.083 | 1.013 |
Final R indices [I > 2σ(I)] | R1 = 0.0211, wR2 = 0.0535 | R1 = 0.0320, wR2 = 0.0756 |
R indices (all data) | R1 = 0.0215, wR2 = 0.0537 | R1 = 0.0448, wR2 = 0.0802 |
Largest diff. peak and hole (e•Å−3) | 0.846 and −0.917 | 1.869 and −1.368 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krejner, E.; Sierański, T.; Świątkowski, M.; Bogdan, M.; Kruszyński, R. Physicochemical Insight into Coordination Systems Obtained from Copper(II) Bromoacetate and 1,10-Phenanthroline. Molecules 2020, 25, 5324. https://doi.org/10.3390/molecules25225324
Krejner E, Sierański T, Świątkowski M, Bogdan M, Kruszyński R. Physicochemical Insight into Coordination Systems Obtained from Copper(II) Bromoacetate and 1,10-Phenanthroline. Molecules. 2020; 25(22):5324. https://doi.org/10.3390/molecules25225324
Chicago/Turabian StyleKrejner, Ewelina, Tomasz Sierański, Marcin Świątkowski, Marta Bogdan, and Rafał Kruszyński. 2020. "Physicochemical Insight into Coordination Systems Obtained from Copper(II) Bromoacetate and 1,10-Phenanthroline" Molecules 25, no. 22: 5324. https://doi.org/10.3390/molecules25225324
APA StyleKrejner, E., Sierański, T., Świątkowski, M., Bogdan, M., & Kruszyński, R. (2020). Physicochemical Insight into Coordination Systems Obtained from Copper(II) Bromoacetate and 1,10-Phenanthroline. Molecules, 25(22), 5324. https://doi.org/10.3390/molecules25225324