Synthesis of a Series of Dual-Functional Chelated Titanate Bonding Agents and Their Application Performances in Composite Solid Propellants
Abstract
:1. Introduction
2. Results and Discussion
2.1. NMR Characterization of Bonding Agents
2.2. FTIR Characterization of Bonding Agents
2.3. Characterization of Interfacial Interaction by MIR
2.3.1. MIR Analysis of Bonding Agent-Coated AP
2.3.2. MIR Analysis of Bonding Agent-Coated RDX
2.4. Quantitative Analysis of Interfacial Interaction by XPS
2.5. Practical Application of Chelated Titanate Bonding Agents to Hydroxyl-Terminated Polybutadiene (HTPB) Composite Propellants
3. Experimental Section
3.1. Materials
3.2. Synthesis of N-Long Chain Alkyl-N, N-Dihydroxyethylamine
3.2.1. Synthesis of N-Octyl-N, N-Dihydroxyethylamine
3.2.2. Synthesis of N-Dodecyl-N, N-Dihydroxyethylamine
3.2.3. Synthesis of N-Hexadecyl-N, N-Dihydroxyethylamine
3.3. Synthesis of Lactic Acid Dibutoxytitannate Ester
3.4. Synthesis of Conjugated Titanate Bonding Agents
3.5. Characterization of Chelated Titanate Binding Agents
3.6. Interfacial Interaction Between Chelated Titanate Bonding Agents and AP/RDX
3.7. Application of Bonding Agents to HTPB Composite Propellants
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rao, N.P.; Solanke, C.; Bihari, B.K.; Singh, P.P.; Bhattacharya, B. Evaluation of mechanical properties of solid propellants in rocket motors by indentation technique. Propell. Explos. Pyrot. 2016, 41, 281–285. [Google Scholar] [CrossRef]
- Feng, T.; Xu, J.; Han, L.; Chen, X.; Zhou, C. Numerical study of the influence of initial defects on the mechanical properties of composite solid propellants. J. Funct. Mater. 2018, 49, 2204–2208. [Google Scholar]
- Feng, T.; Xu, J.; Han, L.; Chen, X.; Zhou, C. Mechanical properties of composite solid propellant with initial defects. J. Aeron. Mater. 2018, 38, 91–99. [Google Scholar]
- Murari, G.H.; Calciolari, F.L.; De Almeida, L.E.N. Dynamic mechanical characterization of composite solid propellant for propellant grain structural integrity assessment. Macromol. Symp. 2019, 383, 1800050. [Google Scholar] [CrossRef] [Green Version]
- Liu, X. Kinds of bonding agents and their acting mechanism for composite solid propellants. Chin. J. Energ. Mater. 2000, 3, 135–140. [Google Scholar]
- Zhao, Q.; Wu, R.; Cui, Y.; Wang, L.; Ma, Y. Research progress in bonding agents for nitramine-based propellant. Chem. Propell. Polym. Mater. 2012, 10, 12–16. [Google Scholar]
- Zhang, H. Advances in low signature signal CMDB propellants. J. Solid. Rock. Technol. 2000, 23, 36–38. [Google Scholar]
- Landsem, E.; Jensen, T.L.; Hansen, F.K.; Unneberg, E.; Kristensen, T.E. Neutral polymeric bonding agents (NPBA) and their use in smokeless composite rocket propellants based on HMX-GAP-BuNENA. Propell. Explos. Pyrot. 2012, 37, 581–591. [Google Scholar] [CrossRef]
- Tang, H.; Liu, X.; Wu, Q. Action mechanism of special functional agents in composite solid propellant(IV)- processability/mechanical properties. J. Solid. Rock. Technol. 2004, 27, 193–197. [Google Scholar]
- Wang, Y.; Qiu, G. Thermal behavior of bonding agent 1, 1’-(1, 3-phenylenedlcarbonyl) bis-2-methyl-aziridine. J. Propul. Power. 2001, 22, 258–260. [Google Scholar]
- Landsem, E.; Jensen, T.L.; Hansen, F.K.; Unneberg, E.; Kristensen, T.E. Mechanical properties of smokeless composite rocket propellants based on prilled ammonium dinitramide. Propell. Explos. Pyrot. 2012, 37, 691–698. [Google Scholar] [CrossRef]
- Landsem, E.; Jensen, T.L.; Kristensen, T.E.; Hansen, F.K.; Benneche, T.; Unneberg, E. Isocyanate-free and dual curing of smokeless composite rocket propellants. Propell. Explos. Pyrot. 2013, 38, 75–86. [Google Scholar] [CrossRef]
- Kim, C.S. Filler Reinforcement of Polyurethane Binder Using a Neutral Polymeric Bonding Agent. U.S. Patent 4915755, 10 April 1990. [Google Scholar]
- An, H.; Li, J. The application of bonding agent in solid propellants. Chin. J. Expl. Propell. 1999, 22, 12–18. [Google Scholar]
- Allen, H.C.; Clarke, F.W. Tetra-alkyl Titanates as Bonding Agents for Thermoplastic Propellants. U.S. Patent 4597924, 1 July 1986. [Google Scholar]
- Monte, S.J.; Sugerman, G.; Dixon, S.J. Solid Propellant with Titanate Bonding Agent. U.S. Patent 5753853, 19 May 1998. [Google Scholar]
- Monte, S.J.; Sugerman, G. Enhanced Energetic Composites. U.S. Patent 6197135, 6 March 2001. [Google Scholar]
- Zhang, L.; Su, C.; He, Y.; Hui, Y. Study on safety of propellant mixing process. J. Solid. Rock. Technol. 2012, 35, 508–512. [Google Scholar]
- Zhu, H.; Wang, J.; Miao, J. Research of NEPE propellant slurry rheological characteristics in curing early period. J. Propul. Power. 2013, 34, 1420–1425. [Google Scholar]
- Rodić, V.; Petrić, M. The effect of additives on solid rocket propellant characteristics. Sci. Tech. Rev. 2004, 54, 9–14. [Google Scholar]
- Yin, B.; Lu, G.; Wu, J.; Wu, Q.; Chen, J. Study of slurry rheological behavior for GAP based minimum smoke composite propellant. J. Solid. Rock. Technol. 2015, 38, 702–706. [Google Scholar]
- Han, X.; Mao, J.; Su, C.; Zheng, Y.; Duan, J. New technology for reducing slurry viscosity of HTPB propellant using high performance processing auxiliaries. Chem. Propell. Polym. Mater. 2019, 17, 63–68. [Google Scholar]
- Hu, W.; Li, S.; Tang, G.; Xu, S. Study on interaction between bonding agent MAPO and oxidizers AP, HMX and RDX. J. Solid. Rock. Technol. 2010, 5, 11. [Google Scholar]
- Zhang, B.; Luo, Y.; Tan, H. Interactional mechanism of the interface between CL-20 and some bonding agents. Chin. J. Expl. Propell. 2005, 3, 23–26. [Google Scholar]
- Gholamian, F.; Ansari, M.; Abdullah, M.; Bataghva, F.; Ghariban-Lavasani, S. Intermolecular interaction of a neutral polymeric bonding agent containing N-Vinylpyrrolidone units with ammonium perchlorate and Keto-RDX. Chin. J. Polym. Sci. 2013, 31, 1372–1381. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Shi, L.; Yang, W.; Yao, W. Study on the synthesis and interfacial interaction performance of novel dodecylamine-based bonding agents used for composite solid propellants. Propell. Explos. Pyrot. 2015, 40, 50–59. [Google Scholar] [CrossRef]
- Meng, S.; Yu, W.; Liu, H.; Li, C.; Du, S. Research progress on the matrix/filler interface of composite solid propellant. New. Chem. Mater. 2019, 47, 28–32. [Google Scholar]
- Qiu, L.; Liu, F.; Zhao, L. Effects of contamination on sample surface to the quantitative analysis by X-ray photoelectron spectroscopy. Phys. Test. Chem. Anal. Part B. 2007, 3, 182–184. [Google Scholar]
- Gonçalves, R.; Iha, K.; Rocco, J.A.F.F. Energetic Materials Research, Applications, and New Technologies, 1st ed.; IGI Global: Hershey, PA, USA, 2017. [Google Scholar]
Sample | Functionality of N Atom | Binding Energy (eV) | Content (%) | R (%) |
---|---|---|---|---|
AP | -NH4+ | 404.45 | 100 | 0 |
AP-8 | -NH4+ | 404.38 | 57.50 | 42.50 |
>N- | 406.66 | 42.50 | ||
AP-12 | -NH4+ | 404.94 | 44.93 | 55.07 |
>N- | 406.83 | 55.07 | ||
AP-16 | -NH4+ | 404.70 | 48.92 | 51.08 |
>N- | 406.78 | 51.08 | ||
RDX | -NO2 | 404.06 | 52.49 | 0 |
>N-NO2 | 409.67 | 47.51 | ||
RDX-8 | -NO2 | 403.90 | 54.02 | 4.82 |
>N-NO2 | 411.09 | 41.16 | ||
>N- | 406.64 | 4.82 | ||
RDX-12 | -NO2 | 404.28 | 45.01 | 6.72 |
>N-NO2 | 410.59 | 48.27 | ||
>N- | 406. 41 | 6.72 | ||
RDX-16 | -NO2 | 403.70 | 44.12 | 11.49 |
>N-NO2 | 411.06 | 44.49 | ||
>N- | 406.51 | 11.49 |
Control | DLT-8 | DLT-12 | DLT-16 | ||
---|---|---|---|---|---|
Yield Value/Pa | 39.26 ± 1.04 | 33.15 ± 0.98 | 23.71 ± 1.17 | 18.64 ± 0.89 | |
−40 °C | σ/MPa | 1.01 ± 0.09 | 1.61 ± 0.11 | 1.83 ± 0.19 | 1.54 ± 0.20 |
εm/% | 37.6 ± 1.12 | 29.5 ± 1.65 | 31.6 ± 1.99 | 28.7 ± 2.47 | |
εb/% | 48.9 ± 2.37 | 41.7 ± 2.19 | 38.9 ± 1.95 | 34.7 ± 1.89 | |
Φ | 1.30 | 1.41 | 1.23 | 1.21 | |
25 °C | σ/MPa | 0.47 ± 0.09 | 0.53 ± 0.12 | 0.56 ± 0.07 | 0.54 ± 0.09 |
εm/% | 43.1 ± 2.13 | 44.9 ± 3.17 | 41.9 ± 2.09 | 41.7 ± 2.57 | |
εb/% | 66.5 ± 3.55 | 65.7 ± 3.69 | 62.1 ± 3.12 | 60.5 ± 2.99 | |
Φ | 1.54 | 1.46 | 1.48 | 1.45 | |
60 °C | σ/MPa | 0.43 ± 0.08 | 0.49 ± 0.07 | 0.67 ± 0.11 | 0.63 ± 0.13 |
εm/% | 46.3 ± 3.62 | 43.1 ± 2.55 | 42.3 ± 2.49 | 40.5 ± 2.55 | |
εb/% | 69.7 ± 3.19 | 61.6 ± 3.08 | 59.5 ± 3.17 | 56.7 ± 3.98 | |
Φ | 1.51 | 1.43 | 1.41 | 1.40 |
Sample Availability: Samples of the compounds DLT-8, DLT-12 and DLT-16 are available from the authors. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, G.; Chang, Y.; Chen, Y.; Zhang, W.; Ye, Y.; Guo, Y.; Jin, S. Synthesis of a Series of Dual-Functional Chelated Titanate Bonding Agents and Their Application Performances in Composite Solid Propellants. Molecules 2020, 25, 5353. https://doi.org/10.3390/molecules25225353
Lin G, Chang Y, Chen Y, Zhang W, Ye Y, Guo Y, Jin S. Synthesis of a Series of Dual-Functional Chelated Titanate Bonding Agents and Their Application Performances in Composite Solid Propellants. Molecules. 2020; 25(22):5353. https://doi.org/10.3390/molecules25225353
Chicago/Turabian StyleLin, Guomin, Yixue Chang, Yu Chen, Wei Zhang, Yanchun Ye, Yanwen Guo, and Shaohua Jin. 2020. "Synthesis of a Series of Dual-Functional Chelated Titanate Bonding Agents and Their Application Performances in Composite Solid Propellants" Molecules 25, no. 22: 5353. https://doi.org/10.3390/molecules25225353
APA StyleLin, G., Chang, Y., Chen, Y., Zhang, W., Ye, Y., Guo, Y., & Jin, S. (2020). Synthesis of a Series of Dual-Functional Chelated Titanate Bonding Agents and Their Application Performances in Composite Solid Propellants. Molecules, 25(22), 5353. https://doi.org/10.3390/molecules25225353