Novel Papaverine Metal Complexes with Potential Anticancer Activities
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Description of Materials
2.2. Instrumentation
2.3. Synthesis of Metal Complexes
2.4. Magnetic Susceptibility Measurements
2.5. Antibacterial Investigation
2.6. Anticancer Investigation
3. Results and Discussion
3.1. Elemental Analysis and Molar Conductivities of Papaverine Metal Complexes
3.2. Magnetic Susceptibility Measurements
3.3. UV–Vis Spectra
3.4. IR Spectral Studies
3.5. 1H and 13C-NMR Spectral Studies
3.6. Thermal Analysis
3.6.1. V(III) Complex
3.6.2. Ru(III) Complex
3.6.3. Au(III) Complex
3.7. X-Ray Powder Diffraction Studies
3.8. Scanning Electron Microscopy
3.9. Proposed Structure of Papaverine Metal Complexes
3.10. Anti-Bacterial Study
3.11. Anticancer Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO. Fact Sheets. 2019. Available online: https://www.who.int/news (accessed on 1 October 2020).
- Aikman, B.; de Almeida, A.; Meier-Menches, S.M.; Casini, A. Aquaporins in cancer development: Opportunities for bioinorganic chemistry to contribute novel chemical probes and therapeutic agents. Metallomics 2018, 10, 696–712. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Sadler, P.J. How promising is phototherapy for cancer? Br. J. Cancer 2020, 123, 871–873. [Google Scholar] [CrossRef]
- Laws, K.; Suntharalingam, K. The Next Generation of Anticancer Metallopharmaceuticals: Cancer Stem Cell-Active Inorganics. ChemBioChem 2018, 19, 2246–2253. [Google Scholar] [CrossRef]
- Liu, J.K.; Couldwell, W.T. Intra-Arterial Papaverine Infusions for the Treatment of Cerebral Vasospasm Induced by Aneurysmal Subarachnoid Hemorrhage. Neurocritical Care 2005, 2, 124–132. [Google Scholar] [CrossRef]
- Sayama, C.M.; Liu, J.K.; Couldwell, W.T. Update on endovascular therapies for cerebral vasospasm induced by aneurysmal subarachnoid hemorrhage. Neurosurg. Focus 2006, 21, E12. [Google Scholar] [CrossRef]
- Keyrouz, S.G.; Diringer, M.N. Clinical review: Prevention and therapy of vasospasm in subarachnoid hemorrhage. Crit. Care 2007, 11, 220. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.-M.; Tu, Y.-K. The efficacy of papaverine administration by different routes for the treatment of experimental acute cerebral vasospasm. J. Clin. Neurosci. 2002, 9, 561–565. [Google Scholar] [CrossRef]
- Chappie, T.A.; Humphrey, J.M.; Allen, M.P.; Estep, K.G.; Fox, C.B.; Lebel, L.A.; Liras, S.; Marr, E.S.; Menniti, F.S.; Pandit, J.; et al. Discovery of a Series of 6,7-Dimethoxy-4-pyrrolidylquinazoline PDE10A Inhibitors. J. Med. Chem. 2007, 50, 182–185. [Google Scholar] [CrossRef]
- Yildiz, N.; Gokkaya, N.K.O.; Koseoglu, F.; Gokkaya, S.; Comert, D. Efficacies of papaverine and sildenafil in the treatment of erectile dysfunction in early-stage paraplegic men. Int. J. Rehabil. Res. 2011, 34, 44–52. [Google Scholar] [CrossRef]
- Trejo, H.E.; Urich, D.; Pezzulo, A.A.; Caraballo, J.C.; Gutierrez, J.; Castro, I.J.; Centeno, G.R.; De León, R.S. Beneficial effects of hydrocortisone and papaverine on a model of pulmonary embolism induced by autologous blood clots in isolated and perfused rabbit lungs. Respirology 2007, 12, 799–806. [Google Scholar] [CrossRef]
- Hs, K.; Pezhouman, A.; Angelini, M.; Olcese, R. Enhanced Late Na and Ca Currents as Effective Antiarrhythmic Drug Targets. Front. Pharmacol. 2017, 8, 36. [Google Scholar] [CrossRef] [Green Version]
- Nokta, M.; Albrecht, T.; Pollard, R. Papaverine hydrochloride: Effects on HIV replication and T-lymphocyte cell function. Immunopharmacology 1993, 26, 181–185. [Google Scholar] [CrossRef]
- Afzali, M.; Ghaeli, P.; Khanavi, M.; Parsa, M.; Montazeri, H.; Ghahremani, M.H.; Ostad, S.N. Non-addictive opium alkaloids selectively induce apoptosis in cancer cells compared to normal cells. DARU J. Pharm. Sci. 2015, 23, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sajadian, S.; Vatankhah, M.; Majdzadeh, M.; Kouhsari, S.M.; Ghahremani, M.H.; Ostad, S.N. Cell cycle arrest and apoptogenic properties of opium alkaloids noscapine and papaverine on breast cancer stem cells. Toxicol. Mech. Methods 2015, 25, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Li, L.-J.; Zhang, H.-B.; Wei, A.-Y. Papaverine selectively inhibits human prostate cancer cell (PC-3) growth by inducing mitochondrial mediated apoptosis, cell cycle arrest and downregulation of NF-κB/PI3K/Akt signalling pathway. J. BUON 2017, 22, 112–118. [Google Scholar]
- Goto, T.; Matsushima, H.; Kasuya, Y.; Hosaka, Y.; Kitamura, T.; Kawabe, K.; Hida, A.; Ohta, Y.; Simizu, T.; Takeda, K. The effect of papaverine on morphologic differentiation, proliferation and invasive potential of human prostatic cancer LNCaP cells. Int. J. Urol. 1999, 6, 314–319. [Google Scholar] [CrossRef]
- Shimizu, T.; Ohta, Y.; Ozawa, H.; Matsushima, H.; Takeda, K. Papaverine combined with prostaglandin E2 synergistically induces neuron-like morphological changes and decrease of malignancy in human prostatic cancer LNCaP cells. Anticancer Res. 2000, 20, 761–767. [Google Scholar]
- Noureini, S.K.; Wink, M. Antiproliferative Effect of the Isoquinoline Alkaloid Papaverine in Hepatocarcinoma HepG-2 Cells—Inhibition of Telomerase and Induction of Senescence. Molecules 2014, 19, 11846–11859. [Google Scholar] [CrossRef]
- Benej, M.; Hong, X.; Vibhute, S.; Scott, S.; Wu, J.; Graves, E.; Le, Q.-T.; Koong, A.C.; Giaccia, A.J.; Yu, B.; et al. Papaverine and its derivatives radiosensitize solid tumors by inhibiting mitochondrial metabolism. Proc. Natl. Acad. Sci. USA 2018, 115, 10756–10761. [Google Scholar] [CrossRef] [Green Version]
- Tamada, K.; Nakajima, S.; Ogawa, N.; Inada, M.; Shibasaki, H.; Sato, A.; Takasawa, R.; Yoshimori, A.; Suzuki, Y.; Watanabe, N.; et al. Papaverine identified as an inhibitor of high mobility group box 1/receptor for advanced glycation end-products interaction suppresses high mobility group box 1-mediated inflammatory responses. Biochem. Biophys. Res. Commun. 2019, 511, 665–670. [Google Scholar] [CrossRef]
- Inada, M.; Shindo, M.; Kobayashi, K.; Sato, A.; Yamamoto, Y.; Akasaki, Y.; Ichimura, K.; Tanuma, S.-I. Anticancer effects of a non-narcotic opium alkaloid medicine, papaverine, in human glioblastoma cells. PLoS ONE 2019, 14, e0216358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inada, M.; Sato, A.; Shindo, M.; Yamamoto, Y.; Akasaki, Y.; Ichimura, K.; Tanuma, S.-I. Anticancer Non-narcotic Opium Alkaloid Papaverine Suppresses Human Glioblastoma Cell Growth. Anticancer Res. 2019, 39, 6743–6750. [Google Scholar] [CrossRef] [PubMed]
- Sodhi, R.K.; Paul, S. Metal Complexes in Medicine: An Overview and Update from Drug Design Perspective. Cancer Ther. Oncol. Int. J. 2019, 14, CTOIJ.MS.ID.555883. [Google Scholar] [CrossRef]
- Mirsafavi, R.; Lai, K.; Kline, N.D.; Fountain, I.A.W.; Meinhart, C.D.; Moskovits, M. Detection of Papaverine for the Possible Identification of Illicit Opium Cultivation. Anal. Chem. 2017, 89, 1684–1688. [Google Scholar] [CrossRef]
- Štarha, P.; Trávníček, Z. Non-platinum complexes containing releasable biologically active ligands. Co-Ord. Chem. Rev. 2019, 395, 130–145. [Google Scholar] [CrossRef]
- Hudej, R.; Kljun, J.; Kandioller, W.; Repnik, U.; Turk, B.; Hartinger, C.G.; Keppler, B.K.; Miklavčič, D.; Turel, I. Synthesis and Biological Evaluation of the Thionated Antibacterial Agent Nalidixic Acid and Its Organoruthenium(II) Complex. Organometallics 2012, 31, 5867–5874. [Google Scholar] [CrossRef]
- Aman, F.; Hanif, M.; Kubanik, M.; Ashraf, A.; Söhnel, T.; Jamieson, S.M.F.; Siddiqui, W.A.; Hartinger, C.G. Anti-Inflammatory Oxicams as Multi-donor Ligand Systems: pH- and Solvent-Dependent Coordination Modes of Meloxicam and Piroxicam to Ru and Os. Chem. Eur. J. 2017, 23, 4893–4902. [Google Scholar] [CrossRef]
- Kljun, J.; León, I.E.; Peršič, Š.; Cadavid-Vargas, J.F.; Etcheverry, S.B.; He, W.; Bai, Y.; Turel, I. Synthesis and biological characterization of organoruthenium complexes with 8-hydroxyquinolines. J. Inorg. Biochem. 2018, 186, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Patra, M.; Gasser, G. The medicinal chemistry of ferrocene and its derivatives. Nat. Rev. Chem. 2017, 1, 1–12. [Google Scholar] [CrossRef]
- Biancalana, L.; Batchelor, L.K.; De Palo, A.; Zacchini, S.; Pampaloni, G.; Dyson, P.J.; Marchetti, F. A general strategy to add diversity to ruthenium arene complexes with bioactive organic compounds via a coordinated (4-hydroxyphenyl)diphenylphosphine ligand. Dalton Trans. 2017, 46, 12001–12004. [Google Scholar] [CrossRef]
- Banerjee, S.; Chakravarty, A.R. Metal Complexes of Curcumin for Cellular Imaging, Targeting, and Photoinduced Anticancer Activity. Acc. Chem. Res. 2015, 48, 2075–2083. [Google Scholar] [CrossRef] [PubMed]
- Biot, C.; Nosten, F.; Fraisse, L.; Ter-Minassian, D.; Khalife, J.; Dive, D. The antimalarial ferroquine: From bench to clinic. Parasite 2011, 18, 207–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.-Y.; Yi, Q.-Y.; Wang, Y.-J.; Du, F.; He, M.; Tang, B.; Wan, D.; Liu, Y.-J.; Huang, H.-L. Photoinduced anticancer activity studies of iridium(III) complexes targeting mitochondria and tubules. Eur. J. Med. Chem. 2018, 151, 568–584. [Google Scholar] [CrossRef] [PubMed]
- Pierroz, V.; Joshi, T.; Leonidova, A.; Mari, C.; Schur, J.; Ott, I.; Spiccia, L.; Ferrari, S.; Gasser, G. Molecular and Cellular Characterization of the Biological E_ects of Ruthenium(II) Complexes Incorporating 2-Pyridyl-2-pyrimidine-4-carboxylic Acid. J. Am. Chem. Soc. 2012, 134, 20376. [Google Scholar] [CrossRef] [PubMed]
- Mulcahy, S.P.; Gründler, K.; Frias, C.; Wagner, L.; Prokop, A.; Meggers, E. Discovery of a strongly apoptotic ruthenium complex through combinatorial coordination chemistry. Dalton Trans. 2010, 39, 8177–8182. [Google Scholar] [CrossRef] [Green Version]
- Velders, A.H.; Kooijman, H.; Spek, A.L.; Haasnoot, J.G.; de Vos, D.; Reedijk, J. Strong Di_erences in the in vitro Cytotoxicity of Three Isomeric Dichlorobis(2-phenylazopyridine)ruthenium(II) Complexes. Inorg. Chem. 2000, 39, 2966–2967. [Google Scholar] [CrossRef]
- Hotze, A.C.G.; Velders, A.H.; Ugozzoli, F.; Biagini-Cingi, M.; Manotti-Lanfredi, A.M.; Haasnoot, J.G.; Reedijk, J. Synthesis, Characterization, and Crystal Structure of α-[Ru(azpy)2(NO3)2] (azpy = 2 (Phenylazo)pyridine) and the Products of Its Reactions with Guanine Derivatives. Inorg. Chem. 2000, 39, 3838–3844. [Google Scholar] [CrossRef]
- Roy, S.; Colombo, E.; Vinck, R.; Mari, C.; Rubbiani, R.; Patra, M.; Gasser, G. Increased Lipophilicity of Halogenated Ruthenium(II) Polypyridyl Complexes Leads to Decreased Phototoxicity in vitro when Used as Photosensitizers for Photodynamic Therapy. ChemBioChem 2020. [Google Scholar] [CrossRef]
- Karges, J.; Yempala, T.; Tharaud, M.; Gibson, D.; Gasser, G. A Multi-action and Multi-target RuII–PtIV Conjugate Combining Cancer-Activated Chemotherapy and Photodynamic Therapy to Overcome Drug Resistant Cancers. Angew. Chem. Int. Ed. 2020, 59, 7069–7075. [Google Scholar] [CrossRef]
- Leon, I.E.; Cadavid-Vargas, J.F.; Di Virgilio, A.L.; Etcheverry, S.B. Vanadium, Ruthenium and Copper Compounds: A New Class of Nonplatinum Metallodrugs with Anticancer Activity. Curr. Med. Chem. 2017, 24, 112–148. [Google Scholar] [CrossRef]
- Lazarević, T.; Rilak, A.; Bugarčić, Ž.D. Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clinical uses, cytotoxicity studies and future perspectives. Eur. J. Med. Chem. 2017, 142, 8–31. [Google Scholar] [CrossRef] [PubMed]
- Caruso, F.; Rossi, M.; Benson, A.; Opazo, C.; Freedman, D.; Monti, E.; Gariboldi, M.B.; Shaulky, J.; Marchetti, F.; Pettinari, R.; et al. Ruthenium–Arene Complexes of Curcumin: X-Ray and Density Functional Theory Structure, Synthesis, and Spectroscopic Characterization, in Vitro Antitumor Activity, and DNA Docking Studies of (p-Cymene)Ru(curcuminato)chloro. J. Med. Chem. 2012, 55, 1072–1081. [Google Scholar] [CrossRef] [PubMed]
- Biancalana, L.; Batchelor, L.K.; Ciancaleoni, G.; Zacchini, S.; Pampaloni, G.; Dyson, P.J.; Marchetti, F. Versatile coordination of acetazolamide to ruthenium(ii) p-cymene complexes and preliminary cytotoxicity studies. Dalton Trans. 2018, 47, 9367–9384. [Google Scholar] [CrossRef]
- Păunescu, E.; Soudani, M.; Martín-Gimeno, P.; Scopelliti, R.; Bello, M.L.; Dyson, P.J. Organometallic Glutathione S-Transferase Inhibitors. Organometallics 2017, 36, 3313–3321. [Google Scholar] [CrossRef] [Green Version]
- Goc, A. Biological activity of vanadium compounds. Open Life Sci. 2006, 1, 314–332. [Google Scholar] [CrossRef]
- Treviño, S.; Díaz, A.; Sánchez-Lara, E.; Sanchez-Gaytan, B.; Perez-Aguilar, J.M.; González-Vergara, E. Vanadium in Biological Action: Chemical, Pharmacological Aspects, and Metabolic Implications in Diabetes Mellitus. Biol. Trace Element Res. 2019, 188, 68–98. [Google Scholar] [CrossRef] [Green Version]
- Del Carpio, E.; Hernández, L.; Ciangherotti, C.; Coa, V.V.; Jiménez, L.; Lubes, V.; Lubes, G. Vanadium: History, chemistry, interactions with α-amino acids and potential therapeutic applications. Co-Ord. Chem. Rev. 2018, 372, 117–140. [Google Scholar] [CrossRef]
- Crans, D.C.; Smee, J.J.; Gaidamauskas, E.; Yang, L. The Chemistry and Biochemistry of Vanadium and the Biological Activities Exerted by Vanadium Compounds. Chem. Rev. 2004, 104, 849–902. [Google Scholar] [CrossRef]
- Altaf, M.; Monim-Ul-Mehboob, M.; Kawde, A.-N.; Corona, G.; Larcher, R.; Ogasawara, M.; Casagrande, N.; Celegato, M.; Borghese, C.; Siddik, Z.H.; et al. New bipyridine gold(III) dithiocarbamate-containing complexes exerted a potent anticancer activity against cisplatin-resistant cancer cells independent of p53 status. Oncotarget 2016, 8, 490–505. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.-B.; Wang, F.-Y.; Tang, X.-M.; Feng, H.-W.; Chen, Z.-F.; Liu, Y.-C.; Liu, Y.-N.; Liang, H. Organometallic Gold(III) Complexes Similar to Tetrahydroisoquinoline Induce ER-Stress-Mediated Apoptosis and Pro-Death Autophagy in A549 Cancer Cells. J. Med. Chem. 2018, 61, 3478–3490. [Google Scholar] [CrossRef]
- Fernández-Moreira, V.; Herrera, R.P.; Gimeno, M.C. Anticancer properties of gold complexes with biologically relevant ligands. Pure Appl. Chem. 2019, 91, 247–269. [Google Scholar] [CrossRef]
- Kim, J.H.; Reeder, E.; Parkin, S.; Awuah, S.G. Gold(I/III)-Phosphine Complexes as Potent Antiproliferative Agents. Sci. Rep. 2019, 9, 12335. [Google Scholar] [CrossRef] [PubMed]
- Radisavljević, S.; Petrović, B. Gold(III) Complexes: An Overview on Their Kinetics, Interactions with DNA/BSA, Cytotoxic Activity, and Computational Calculations. Front. Chem. 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Glišić, B.Đ.; Djuran, M.I. Gold complexes as antimicrobial agents: An overview of different biological activities in relation to the oxidation state of the gold ion and the ligand structure. Dalton Trans. 2014, 43, 5950–5969. [Google Scholar] [CrossRef]
- Bhargava, S.K.; Priver, S.H.; Abraham, A.N.; Shukla, R.; Bansal, V.; Bhargava, S.K. Linking Flavonoids to Gold—A New Family of Gold Compounds for Potential Therapeutic Applications. Eur. J. Inorg. Chem. 2015, 2015, 4275–4279. [Google Scholar] [CrossRef]
- Frezza, M.; Hindo, S.; Chen, D.; Davenport, A.; Schmitt, S.; Tomco, D.; Dou, Q.P. Novel metals andmetal complexes as platforms for cancer therapy. Curr. Pharm. Des. 2010, 16, 1813–1825. [Google Scholar] [CrossRef] [Green Version]
- Egbewande, F.A.; Coster, M.J.; Jenkins, I.; Davis, R.A. Reaction of Papaverine with Baran DiversinatesTM. Molecules 2019, 24, 3938. [Google Scholar] [CrossRef] [Green Version]
- Allen, F.H. The Cambridge Structural Database: A quarter of a million crystal structures and rising. Acta Crystallogr. Sect. B Struct. Sci. 2002, 58, 380–388. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
- Refat, M.S.; El-Korashy, S.A.; Kumar, D.N.; Ahmed, A.S. Spectral and thermal studies of alloxan complexes. J. Co-Ord. Chem. 2008, 61, 1935–1950. [Google Scholar] [CrossRef]
- Refat, M.S.; Ibrahim, H.K.; Sowellim, S.Z.A.; Soliman, M.H.; Saeed, E.M. Spectroscopic and Thermal Studies of Mn(II), Fe(III), Cr(III) and Zn(II) Complexes Derived from the Ligand Resulted by the Reaction between 4-Acetyl Pyridine and Thiosemicarbazide. J. Inorg. Organomet. Polym. Mater. 2009, 19, 521–531. [Google Scholar] [CrossRef]
- El-Wahed, M.A.; Refat, M.; El-Megharbel, S. Synthesis, spectroscopic and thermal characterization of some transition metal complexes of folic acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2008, 70, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Lever, A.B.P. Inorganic Electronic Spectroscopy, 4th ed.; Elsevier: London, UK, 1980; p. 481. [Google Scholar]
- Chaudhary, N.K.; Mishra, P. Metal Complexes of a Novel Schiff Base Based on Penicillin: Characterization, Molecular Modeling, and Antibacterial Activity Study. Bioinorg. Chem. Appl. 2017, 2017, 6927675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartyzel, A. Synthesis, thermal study and some properties of N2O4—Donor Schiff base and its Mn(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes. J. Therm. Anal. Calorim. 2016, 127, 2133–2147. [Google Scholar] [CrossRef] [Green Version]
- Clarke, E.G.C.; Moffat, A.C.; Pharmaceutical Society of Great Britain; Department of Pharmaceutical Sciences. Clarke’s Isolation and Identification of Drugs in Pharmaceuticals, Body Fluids, and Post-Mortem Material, 2nd ed.; Moffat, A.C., Ed.; Pharmaceutical Press: King of Prussia, PA, USA; Rittenhouse Book Distributors: London, UK, 1986. [Google Scholar]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part A: Theory and Applications in Inorganic Chemistry; Part B: Application in Coordination, Organometallic, and Bioinorganic Chemistry, 5th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Singh, B.K.; Mishra, P.; Prakash, A.; Bhojak, N. Spectroscopic, electrochemical and biological studies of the metal complexes of the Schiff base derived from pyrrole-2-carbaldehyde and ethylenediamine. Arab. J. Chem. 2017, 10, S472–S483. [Google Scholar] [CrossRef] [Green Version]
- Garg, B.S.; Kumar, D.N.; Sarbhai, M. Copper(II) complexes of new biomimetic polydentate amide ligands: A spectroscopic study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2005, 61, 141–147. [Google Scholar] [CrossRef]
- Dauter, Z. Collection of X-Ray Diffraction Data from Macromolecular Crystals. Breast Cancer 2017, 1607, 165–184. [Google Scholar] [CrossRef] [Green Version]
- Wanga, X.; Xu, D.; Cheng, X.; Huang, J. Preparation and characterization of Hg(N2H4CS)4Zn(SCN)4. J. Cryst. Growth 2004, 271, 120–127. [Google Scholar] [CrossRef]
- Venuti, V.; Crupi, V.; Fazio, B.; Majolino, D.; Acri, G.; Testagrossa, B.; Stancanelli, R.; De Gaetano, F.; Gagliardi, A.; Paolino, D.; et al. Physicochemical Characterization and Antioxidant Activity Evaluation of Idebenone/Hydroxypropyl-β-Cyclodextrin Inclusion Complex. Biomolecules 2019, 9, 531. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.I.; Khan, A.; Hussain, I.; Gul, S.; Iqbal, M.; Inayat-Ur-Rahman; Khuda, F. Spectral, XRD, SEM and biological properties of new mononuclear Schiff base transition metal complexes. Inorg. Chem. Commun. 2013, 35, 104–109. [Google Scholar] [CrossRef]
- Ali, M.A.; Haroon, G.M.; Nazimuddin, M.; Majumdar, S.M.M.; Tarafder, M.T.H.; Khair, M.A. Synthesis, characterization and biological activities of some new nickel (II), copper (II), zinc (II) and cadmium (II) complexes of quadridentate SNNS ligands. Trans. Met. Chem. 1992, 17, 133. [Google Scholar] [CrossRef]
- West, D.X.; Carlson, C.S.; Galloway, C.P.; Liberta, A.E.; Daniel, C.R. Transition metal ion complexes of thiosemicarbazones derived from 2-acetylpyridine. Part 6. The chemical and antifungal properties of 2-acetylpyridine4 N-diethyl- and4 N-dipropylthiosemicarbazones and their copper(II) complexes. Transit. Met. Chem. 1990, 15, 91–95. [Google Scholar] [CrossRef]
Complex | M.Wt | Yield (%) | mp/(°C) | Color | Content [Calculated (Found)] | |||
---|---|---|---|---|---|---|---|---|
% C | % H | % N | % M | |||||
C20H27Cl3N3O4V | 530.75 | 75 | 300 °C | Brown | 45.21 | 5.09 | 7.91 | 9.60 |
(45.18) | (5.03) | (7.90) | (9.58) | |||||
C20H27Cl3N3O4Ru | 580.88 | 78 | 300 °C | Dark brown | 41.35 | 4.69 | 7.23 | 17.40 |
(41.30) | (4.61) | (7.20) | (17.39) | |||||
C20H27Cl3N3O4Au | 676.77 | 77 | 300 °C | Dark green | 35.41 | 4.00 | 6.13 | 28.65 |
(35.50) | (4.02) | (6.21) | (29.10) |
Frequency (cm−1) | Assignment | |||
---|---|---|---|---|
Papaverine | V(III) | Ru(III) | Au(III) | |
3011 | 3018 | 3018 | 3011 | CH (stretch); aromatic rings |
29742938 | 2967 | 2967 | 2961 | CH (asymmetric stretch); OCH3 |
2836 | 2836 | 2843 | 2836 | CH (symmetric stretch); OCH3 |
1635 | 1618 | 1618 | 1611 | C=N (stretch) |
1517 | 1517 | 1509 | 1509 | C=N (in conjugated cyclic system) |
1458 | 1407 | 1466 | 1407 | |
1604 | 1590 1560 | 1560 | 1589 1560 | C=C (aromatic) |
- | 467, 415 | 267, 415 | 467, 408 | M–N (stretch) |
372 | 364 | 364 | M–Cl (stretch) |
Atoms | δH(ppm) | |
---|---|---|
Papaverine HCl | Au(III) Complex | |
1a | 4.35 | 4.47 |
3 | 8.18 | 8.25 |
4 | 7.21 | 7.52 |
5 | 6.80 | 6.79 |
8 | 7.14 | 7.30 |
2′ | 6.68 | 6.81 |
5′ | 6.57 | 6.76 |
6′ | 6.65 | 6.76 |
3′-OMe | 3.58 | 3.65 |
4′-OMe | 3.59 | 3.68 |
6′-OMe | 3.74 | 3.86 |
7′-OMe | 3.70 | 3.93 |
Atoms | δC(ppm) | |
---|---|---|
Papaverine HCl | Au(III) Complex | |
1 | 157.7 | 158.3 |
1a | 42.1 | 41.2 |
3 | 140.8 | 140.9 |
4 | 118.6 | 118.9 |
4a | 133.3 | 133.3 |
5 | 105.2 | 104.7 |
6 | 152.3 | 152.6 |
7 | 149.7 | 150.0 |
8 | 104.1 | 106.1 |
8a | 122.8 | 122.5 |
1′ | 132.2 | 132.7 |
2′ | 111.9 | 112.4 |
3′ | 147.5 | 147.5 |
4′ | 149.0 | 149.0 |
5′ | 112.0 | 118.9 |
6′ | 120.5 | 121.0 |
6-OMe | 55.8 | 55.9 |
7-OMe | 55.8 | 55.9 |
3′-OMe | 55.8 | 56.1 |
4′-OMe | 55.8 | 56.2 |
Complex | Decomp. Step | Temp. Rang | TG Weight Loss (%) | Assignments | |
---|---|---|---|---|---|
Calc. | Found | ||||
V(III) complex | 1 | 180–260 °C | 6.41 | 6.00 | 2NH3 |
2 | 290–390 °C | 20.63 | 20.50 | 3HCl | |
3 | 410–550 °C | 57.28 | 57.20 | C20H18NO2 | |
Ru(III) complex | 1 | 170–250 °C | 5.85 | 6.00 | 2NH3 |
2 | 260–350 °C | 18.85 | 18.35 | 3HCl | |
3 | 360–450 °C | 52.33 | 52.00 | C20H18NO2 | |
Au(III) complex | 1 | 190–280 °C | 5.02 | 5.00 | 2NH3 |
2 | 300–380 °C | 16.18 | 16.10 | 3HCl | |
3 | 390–550 °C | 49.65 | 49.44 | C20H18NO4 |
Ligand/Complex | K. pneumonia | E. coli | S. epidermidis | S. aureus |
---|---|---|---|---|
Control, DMSO | 0.0 | 0.0 | 0.0 | 0.0 |
Papaverine | 0.4 | 0.2 | 0.5 | 0.5 |
V(III) complex | 0.0 | 0.1 | 0.3 | 0.0 |
Ru(III) complex | 0.3 | 0.1 | 0.2 | 0.0 |
Au(III) complex | 0.3 | 0.3 | 0.2 | 0.0 |
Augmentin | 0.5 | 0.3 | 1.0 | 0.4 |
Unasyn | 0.2 | 0.1 | 1.0 | 0.2 |
Sample Conc. (µg/mL) | Papaverine HCl | Au(III) Complex | Cisplatin * | Doxorubicin * | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Viability % | Inhibitory % | S.D. (±) | Viability % | Inhibitory % | S.D. (±) | Viability % | Inhibitory % | S.D. (±) | Viability % | Inhibitory % | S.D. (±) | |
500 | 6.23 | 93.77 | 0.21 | 3.16 | 96.84 | 0.25 | 3.72 | 96.28 | 0.12 | 1.51 | 98.49 | 0.17 |
250 | 13.91 | 86.09 | 0.13 | 5.38 | 94.62 | 0.14 | 4.98 | 95.02 | 0.24 | 2.36 | 97.64 | 0.26 |
125 | 20.42 | 79.58 | 0.43 | 10.21 | 89.79 | 0.07 | 7.83 | 92.17 | 0.61 | 3.21 | 96.79 | 0.21 |
62.5 | 32.76 | 67.24 | 0.92 | 14.59 | 85.41 | 0.57 | 14.68 | 85.32 | 0.23 | 5.07 | 94.93 | 0.32 |
31.25 | 48.97 | 51.03 | 1.41 | 21.63 | 78.37 | 0.29 | 23.79 | 76.21 | 0.41 | 6.93 | 93.07 | 0.29 |
15.6 | 71.25 | 28.75 | 2.53 | 27.96 | 72.04 | 0.18 | 34.62 | 65.38 | 0.89 | 15.46 | 84.54 | 1.07 |
7.8 | 87.43 | 12.57 | 0.41 | 35.82 | 64.18 | 0.24 | 46.71 | 53.29 | 1.37 | 19.89 | 80.11 | 1.27 |
3.9 | 97.82 | 2.18 | 0.06 | 46.29 | 53.71 | 0.95 | 52.85 | 47.15 | 0.98 | 24.98 | 75.02 | 1.30 |
2 | 100 | 0 | 0 | 52.86 | 47.14 | 0.78 | 61.74 | 38.26 | 0.36 | 31.69 | 68.31 | 0.82 |
1 | 100 | 0 | 0 | 65.03 | 34.97 | 0.13 | 70.88 | 29.12 | 0.16 | 40.17 | 59.83 | 1.53 |
0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | 100 | 0 | 0 |
IC50 | 30.5 ± 1.1 µg/mL | 2.87 ± 0.12 µg/mL | 5.71 ± 0.5 µg/mL | 0.35 ± 0.03 µg/mL |
Sample Conc. (µg/mL) | Papaverine HCl | Au(III) Complex | Cisplatin * | Doxorubicin * | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Viability % | Inhibitory % | S.D. (±) | Viability % | Inhibitory % | S.D. (±) | Viability % | Inhibitory % | S.D. (±) | Viability % | Inhibitory % | S.D. (±) | |
500 | 8.85 | 91.15 | 0.13 | 5.83 | 94.17 | 0.15 | 3.08 | 96.92 | 0.04 | 1.72 | 98.28 | 0.42 |
250 | 20.72 | 79.28 | 0.46 | 11.74 | 88.26 | 0.28 | 4.31 | 95.69 | 0.17 | 2.70 | 97.30 | 0.50 |
125 | 28.94 | 71.06 | 0.59 | 20.36 | 79.64 | 0.14 | 6.75 | 93.25 | 0.21 | 4.22 | 95.78 | 0.36 |
62.5 | 46.75 | 53.25 | 2.31 | 29.40 | 70.6 | 0.26 | 12.39 | 87.61 | 0.18 | 6.13 | 93.87 | 0.39 |
31.25 | 72.31 | 27.69 | 3.45 | 38.64 | 61.36 | 1.82 | 22.98 | 77.02 | 0.41 | 13.05 | 86.95 | 0.72 |
15.6 | 88.42 | 11.58 | 1.06 | 57.03 | 42.97 | 2.35 | 31.87 | 68.13 | 0.91 | 18.13 | 81.87 | 1.16 |
7.8 | 95.17 | 4.83 | 0.35 | 73.19 | 26.81 | 2.48 | 40.62 | 59.38 | 0.86 | 20.81 | 79.19 | 1.22 |
3.9 | 99.63 | 0.37 | 0.11 | 87.28 | 12.72 | 1.54 | 47.89 | 52.11 | 0.67 | 25.59 | 74.41 | 0.89 |
2 | 100 | 0 | 0 | 96.31 | 3.69 | 0.53 | 60.75 | 39.25 | 1.83 | 29.50 | 70.50 | 0.75 |
1 | 100 | 0 | 0 | 99.76 | 0.24 | 0.12 | 68.17 | 31.83 | 0.54 | 38.39 | 61.61 | 1.05 |
0 | 100 | 0 | 0 | 100 | 0 | 100 | 0 | 0 | 100 | 0 | 0 | |
IC50 | 58.5 ± 13.5 µg/mL | 21.6 ± 8.9 µg/mL | 3.67 ± 0.2 µg/mL | 0.36 ± 0.04 µg/mL |
Sample Availability: Samples of the compounds papaverine and its V(III), Ru(III), and Au(III) complexes are available from the authors. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaber, A.; Alsanie, W.F.; Kumar, D.N.; Refat, M.S.; Saied, E.M. Novel Papaverine Metal Complexes with Potential Anticancer Activities. Molecules 2020, 25, 5447. https://doi.org/10.3390/molecules25225447
Gaber A, Alsanie WF, Kumar DN, Refat MS, Saied EM. Novel Papaverine Metal Complexes with Potential Anticancer Activities. Molecules. 2020; 25(22):5447. https://doi.org/10.3390/molecules25225447
Chicago/Turabian StyleGaber, Ahmed, Walaa F. Alsanie, Deo Nandan Kumar, Moamen S. Refat, and Essa M. Saied. 2020. "Novel Papaverine Metal Complexes with Potential Anticancer Activities" Molecules 25, no. 22: 5447. https://doi.org/10.3390/molecules25225447
APA StyleGaber, A., Alsanie, W. F., Kumar, D. N., Refat, M. S., & Saied, E. M. (2020). Novel Papaverine Metal Complexes with Potential Anticancer Activities. Molecules, 25(22), 5447. https://doi.org/10.3390/molecules25225447