Anti-Microbial, Anti-Oxidant, and α-Amylase Inhibitory Activity of Traditionally-Used Medicinal Herbs: A Comparative Analyses of Pharmacology, and Phytoconstituents of Regional Halophytic Plants’ Diaspora
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenolics and Flavonoids Contents
2.2. Trace Elements Analysis
2.3. Anti-Oxidant Activity
2.4. The α-Amylase Inhibitory Activity
2.5. Anti-Microbial Activity
3. Materials and Methods
3.1. Plants Materials, and Extraction Procedure
3.2. Total Phenolics Contents
3.3. Total Flavonoids Contents
3.4. Trace Element Analysis
3.5. Estimation of Anti-Oxidant Activity
3.6. α-Amylase Enzyme Inhibition Assay
3.7. Antimicrobial Activity
Microorganisms
3.8. Determination of Anti-Microbial Activity Using the Agar Diffusion Method
3.9. Determination of Minimum Inhibitory Concentrations
3.10. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mohammed, H.A. The Valuable Impacts of Halophytic Genus Suaeda; Nutritional, Chemical, and Biological Values. Med. Chem. 2020, 16, 1. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, J.W.; Glenn, E.P. Global distribution and potential for halophytes. In Halophytes as a Resource for Livestock and for Rehabilitation of Degraded Lands; Springer: Berlin/Heidelberg, Germany, 1994; pp. 7–17. [Google Scholar]
- Al-Awajy, M.; Heakal, M.; Al-Asheikh, A.; Reda, M. Distribution and composition of salts in sand dunes overlying salt flats of coastal desert, Saudi Arabia. Geoderma 1992, 54, 125–136. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Al-Omar, M.S.; Aly, M.S.A.; Hegazy, M.M. Essential Oil Constituents and Biological Activities of the Halophytic Plants, Suaeda Vermiculata Forssk and Salsola Cyclophylla Bakera Growing in Saudi Arabia. J. Essent. Oil Bear. Plants 2019, 22, 82–93. [Google Scholar] [CrossRef]
- Mohammed, H.A. Behavioral Evaluation for Aqueous and Ethanol Extracts of Suaeda vermiculata Forssk. Cent. Nerv. Syst. Agents Med. Chem 2020, 20, 122–127. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Al-Omer, M.S.; Ahmed, A.M.; Hashish, N.E.; Alsaedi, H.M.; Alghazy, S.A.; Abdellatif, A.A.H. Comparative Study for the Volatile Oil Constituents and Antimicrobial Activity of Rhanterium epapposum Oliv. Growing in Qassim, Saudi Arabia. Pharmacogn. J. 2019, 11, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, H.A.; Al-Omar, M.S.; El-Readi, M.Z.; Alhowail, A.H.; Aldubayan, M.A.; El Ghany, A.A.A. Formulation of Ethyl Cellulose Microparticles Incorporated Pheophytin A Isolated from Suaeda vermiculata for Antioxidant and Cytotoxic Activities. Molecules 2019, 24, 1501. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, H.A.; Alshalmani, S.K.; Abdellatif, A.G. Antioxidant and quantitative estimation of phenolic and flavonoids of three halophytic plants growing in Libya. J. Pharmacog. Photochem. 2013, 2, 89–94. [Google Scholar]
- Ozgur, R.; Uzilday, B.; Sekmen, A.H.; Türkan, I. Reactive oxygen species regulation and antioxidant defence in halophytes. Funct. Plant Biol. 2013, 40, 832–847. [Google Scholar] [CrossRef]
- Bose, J.; Rodrigo-Moreno, A.; Shabala, S. ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot. 2014, 65, 1241–1257. [Google Scholar] [CrossRef]
- Qasim, M.; Gulzar, S.; Khan, M.A. Halophytes as medicinal plants. In Proceedings of the NAM Meeting, Denizli, Turkey, 27–29 June 2011. [Google Scholar]
- Clardy, J.; Fischbach, M.A.; Walsh, C.T. New antibiotics from bacterial natural products. Nat. Biotechnol. 2006, 24, 1541–1550. [Google Scholar] [CrossRef]
- Kirst, H.A. Developing new antibacterials through natural product research. Expert Opin. Drug Discov. 2013, 8, 479–493. [Google Scholar] [CrossRef] [PubMed]
- Mann, J.; Davidson, R.S.; Hobbs, J.B.; Banthorpe, D.V.; Harborne, J.B. Natural Products: Their Chemistry and Biological Significance; Longman Scientific & Technical: Harlow, UK, 1994; ISBN 0582060095. [Google Scholar]
- DerMarderosian, A.; Beutler, J.A. The Review of Natural Products: The Most Complete Source of Natural Product Information; Facts and Comparisons: St. Louis, MO, USA, 2002; ISBN 1574391410. [Google Scholar]
- Ksouri, R.; Ksouri, W.M.; Jallali, I.; Debez, A.; Magné, C.; Hiroko, I.; Abdelly, C. Medicinal halophytes: Potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit. Rev. Biotechnol. 2011, 32, 289–326. [Google Scholar] [CrossRef] [PubMed]
- El Raey, M.A.; Osman, S.M.; El-Kashak, W.A.; Wink, M. New isorhamnetin derivatives from Salsola imbricata Forssk. leaves with distinct anti -inflammatory activity. Pharmacogn. Mag. 2016, 12, S47–S51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bahramsoltani, R.; Kalkhorani, M.; Zaidi, S.M.A.; Farzaei, M.H.; Rahimi, R. The genus Tamarix: Traditional uses, phytochemistry, and pharmacology. J. Ethnopharmacol. 2019, 246, 112245. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Alhazmi, H.A.; Ansari, S.H.; Hussain, A.; Ahmad, S.; Alam, M.S.; Ali, M.S.; El-Sharkawy, K.A.; Hakeem, K.R. Tamarix aphylla (L.) Karst. Phytochemical and bioactive profile compilations of less discussed but effective naturally growing Saudi plant. In Plants and Human Health, Volume 3; Springer: Berlin/Heidelberg, Germany, 2019; pp. 343–352. [Google Scholar]
- Gamal, E.E.G.; Al-Khalifa, K.S.; Gameel, A.S.; Emad, M.A.; El-Ghazali, G.E.; Saleem, G.A.; Abdallah, E.M. Traditional medicinal plants indigenous to Al-Rass province, Saudi Arabia. J. Med. Plants Res. 2010, 4, 2680–2683. [Google Scholar] [CrossRef] [Green Version]
- Qasim, M.; Abideen, Z.; Adnan, M.Y.; Ansari, R.; Gul, B.; Khan, M.A. Traditional ethnobotanical uses of medicinal plants from coastal areas. J. Coast. Life Med. 2014, 2, 22–30. [Google Scholar]
- Saleem, M.; Akhter, N.; Ali, M.S.; Nazir, M.; Riaz, N.; Moazzam, M.; Arshad, M.; Jabbar, A. Structure determination of salisomide and salisoflavan, two new secondary metabolites from Salsola imbricata, by 1D and 2D NMR spectroscopy. Magn. Reson. Chem. 2008, 47, 263–265. [Google Scholar] [CrossRef]
- Yu, H.S.; Al, S.I. Anti-inflammatory and Wound Healing Activities of Herbal Gel Containing an Antioxidant Tamarix aphylla Leaf Extract. Int. J. Pharmacol. 2011, 7, 829–835. [Google Scholar] [CrossRef]
- Shawky, E.; Gabr, N.; El-Gindi, M.; Mekky, R. A Comprehensive Review on Genus Zygophyllum. J. Adv. Pharm. Res. 2019, 3, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.-H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Waghmode, A.P.; Joshi, G.V. Chemical composition of leaves of halophytes and sediments in estuarine habitat. Indian J. Geo-Marine Sci. 1982, 11, 104–106. [Google Scholar]
- Bryan, A.H. Trace Elements in Human and Animal Nutrition. Am. J. Public Health Nations Health 1957, 47, 496. [Google Scholar] [CrossRef]
- Abbaspour, N.; Hurrell, R.; Kelishadi, R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014, 19, 164–174. [Google Scholar] [PubMed]
- Al-Wabel, M.; Sallam, A.E.-A.S.; Usman, A.R.; Ahmad, M.; El-Naggar, A.H.; El-Saeid, M.H.; Al-Faraj, A.; El-Enazi, K.; Alromian, F. Trace metal levels, sources, and ecological risk assessment in a densely agricultural area from Saudi Arabia. Environ. Monit. Assess. 2017, 189, 252. [Google Scholar] [CrossRef] [PubMed]
- Scheiber, I.F.; Mercer, J.F.; Dringen, R. Metabolism and functions of copper in brain. Prog. Neurobiol. 2014, 116, 33–57. [Google Scholar] [CrossRef]
- Wessels, I.; Maywald., M.; Rink, L. Zinc as a Gatekeeper of Immune Function. Nutrients 2017, 9, 1286. [Google Scholar] [CrossRef] [Green Version]
- Wong, S.P.; Leong, L.P.; Koh, J.H.W. Antioxidant activities of aqueous extracts of selected plants. Food Chem. 2006, 99, 775–783. [Google Scholar] [CrossRef]
- Köck, R.; Becker, K.; Cookson, B.; van Gemert-Pijnen, J.E.; Harbarth, S.; Kluytmans, J.; Mielke, M.; Peters, G.; Skov, R.L.; Struelens, M.J. Methicillin-resistant Staphylococcus aureus (MRSA): Burden of disease and control challenges in Europe. Eurosurveillance 2010, 15, 19688. [Google Scholar] [CrossRef]
- Cuny, C.; Kuemmerle, J.; Stanek, C.; Willey, B.; Strommenger, B.; Witte, W. Emergence of MRSA infections in horses in a veterinary hospital: Strain characterisation and comparison with MRSA from humans. Eurosurveillance 2006, 11, 13–14. [Google Scholar] [CrossRef]
- Ordonez, A.; Gomez, J.; Vattuone, M.; Lsla, M. Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem. 2006, 97, 452–458. [Google Scholar] [CrossRef]
- Gargoum, H.M.; Muftah, S.S.; Al Shalmani, S.; Mohammed, H.A.; Alzoki, A.N.; Debani, A.H.; El Shari, F.; El Barassi, I.; Meghil, S.E.; Abdellatif, A.G. Phytochemical screening, and investigation of the effect of Alhagi maurorum (camel thorn) on carbon tetrachloride, acetaminophen and adriamycin-induced toxicity in experimental animals. J. Sci. Innov. Res. 2013, 2, 1023–1033. [Google Scholar]
- Johnsson, L. Selenium uptake by plants as a function of soil type, organic matter content and pH. Plant Soil 1991, 133, 57–64. [Google Scholar] [CrossRef]
- Mohammad, J.I.; Selvaraj, M.; Mani, V.; Selvarajan, K.K.; Mohammad, J.I.; Kaveti, B.; Bera, H.; Palanimuthu, V.R.; Teh, L.K.; Salleh, M.Z. Identification of novel acetylcholinesterase inhibitors: Indolopyrazoline derivatives and molecular docking studies. Bioorganic Chem. 2016, 67, 9–17. [Google Scholar] [CrossRef]
- Ebrahimzadeh, M.A.; Pourmorad, F.; Bekhradnia, A.R. Iron chelating activity, phenol and flavonoid content of some medicinal plants from Iran. African J. Biotechnol. 2008, 7, 3188–3192. [Google Scholar]
- Noreen, T.; Taha, M.; Imran, S.; Chigurupati, S.; Rahim, F.; Selvaraj, M.; Ismail, N.H.; Mohammad, J.I.; Ullah, H.; Javid, M.T.; et al. Synthesis of alpha-amylase inhibitors based on privileged indole scaffold. Bioorganic Chem. 2017, 72, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Cooper, K.E.; Woodman, D. The diffusion of antiseptics through agar gels, with special reference to the agar cup assay method of estimating the activity of penicillin. J. Pathol. Bacteriol. 1946, 58, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Kirkwood, B.R.; Sterne, J.A.C. Essential Medical Statistics; Wiley: Hoboken, NJ, USA, 2010; ISBN 9781444392845. [Google Scholar]
Sample Availability: Samples of the extracts are available from the authors. |
Plant | TPC (mg/g) | TFC (mg/g) |
---|---|---|
Salsola imbricata | 360.0 ± 2.01 | 70.5 ± 0.88 |
Salsola cyclophylla | 126.6 ± 0.81 | 20.5 ± 1.02 |
Tamarix aphylla | 159.9 ± 1.8 | 30.5 ± 0.96 |
Zygophyllum simplex | 260.1 ± 0.94 | 35.5 ± 0.61 |
Aeluropus lagopoides | 293.3 ± 1.60 | 54.8 ± 0.88 |
Trace Element | Halophytic Plant | ||||
---|---|---|---|---|---|
S. cyclophylla | S. imbricata | T. aphylla | A. lagopoides | Z. simplex | |
Iron (Fe) µg/kg | 600 | 865 | 1474 | 4113 | 525 |
Copper (Cu) µg/kg | 0.48 | 11.1 | 1.92 | 7.01 | 2.64 |
Zinc (Zn) µg/kg | 27.4 | 35.0 | 35.2 | 40.1 | 27.4 |
Conc. (µg/mL) | Standard | Halophytic Plants | ||||
---|---|---|---|---|---|---|
Ascorbic Acid | Z. simplex | S. cyclophylla | A. lagopoides | T. aphylla | S. imbricata | |
10 | 40.31 ± 0.40 A | 29.85 ± 0.36 D | 39.55 ± 0.35 AB | 37.31 ± 0.0.28 C | 38.06 ± 0.32 BC | 37.31 ± 0.15 C |
25 | 52.22 ± 0.16 A | 38.06 ± 0.24 F | 48.51 ± 0.22 B | 42.54 ± 0.15 E | 44.03 ± 0.21 D | 45.52 ± 0.26 C |
50 | 56.70 ± 0.12 A | 52.24 ± 0.18 C | 55.22 ± 0.17 B | 50.75 ± 0.42 D | 50.00 ± 0.23 D | 52.24 ± 0.19 C |
100 | 85.10 ± 0.08 A | 71.64 ± 2.52 D | 73.88 ± 0.24 CD | 64.18 ± 0.19 E | 77.61 ± 0.17 BC | 79.10 ± 0.28 B |
250 | 86.60 ± 0.15 A | 86.57 ± 0.12 A | 85.82 ± 0.16 A | 86.57 ± 0.27 A | 86.57 ± 0.19 A | 86.57 ± 0.27 A |
500 | 92.50 ± 0.52 A | 89.50 ± 0.44 B | 90.30 ± 0.39 B | 83.58 ± 0.40 C | 89.55 ± 0.32 B | 89.55 ± 0.05 B |
1000 | 94.00 ± 0.26 A | 90.30 ± 0.35 B | 93.28 ± 0.18 A | 91.04 ± 0.12 B | 90.30 ± 0.39 B | 91.04 ± 0.12 B |
IC50 ± SEM (95% CI IC50 range) | 60.49 ± 3.73 (53.19 to 68.78) | 65.67 ± 1.49 (62.62 to 68.78) | 76.78 ± 2.12 (72.48 to 81.38) | 94.42 ± 4.19 (86.12 to 103.7) | 71.01 ± 1.93 (67.13 to 75.14) | 66.34 ± 2.28 (61.78 to 71.25) |
Conc. (µg/mL) | Acarbose | Z. simplex | S. cyclophylla | A. lagopoides | T. aphylla | S. imbricata |
---|---|---|---|---|---|---|
10 | 36.92 ± 0.44 A | 31.54±0.52 BC | 30.00 ± 0.68 C | 33.08 ± 0.43 AB | 31.54±0.33 BC | 30.77 ± 0.28 C |
25 | 46.15 ± 0.52 A | 47.69 ± 0.48 A | 38.46 ± 0.28 B | 38.46 ± 0.66 B | 40.77 ± 0.58 B | 46.15 ± 0.46 A |
50 | 76.92 ± 0.23 A | 70.00 ± 0.45 B | 66.15 ± 0.40 C | 69.23 ± 0.32 B | 66.92 ± 0.42 C | 69.23 ± 0.46 B |
100 | 84.62 ± 0.21 A | 71.54 ± 1.15 C | 77.69 ± 0.56 B | 71.54 ± 0.52 C | 77.69 ± 0.56 B | 77.69 ± 0.53 B |
250 | 89.23 ± 0.29 A | 73.85 ± 0.49 B | 89.23 ± 0.29 A | 69.23 ± 0.62 C | 89.23 ± 0.17 A | 89.23 ± 0.44 A |
500 | 91.54 ± 0.29 A | 82.31 ± 0.44 C | 90.00 ± 0.18 AB | 82.31 ± 0.17 C | 89.23 ± 0.65 B | 90.00 ± 0.21 AB |
1000 | 93.85 ± 0.21 A | 93.46±0.17 AB | 92.31 ± 0.40 B | 86.92 ± 0.29 C | 93.46 ± 0.28 AB | 93.48 ± 0.39 AB |
IC50±SEM (95% CI IC50 range) | 40.54 ± 1.65 (37.26 to 44.25) | 60.43 ± 8.29 (45.34 to 81.18) | 49.24 ± 1.88 (45.44 to 53.47) | 56.60 ± 8.46 (41.25 to 80.22) | 50.58 ± 2.25 (46.06 to 55.69) | 44.66 ± 1.90 (40.83 to 48.92) |
Test Organism | Z. simplex | S. cyclophylla | A. lagopoides | T. aphylla | S. imbricata | Positive Control |
---|---|---|---|---|---|---|
S. aureus | 13 mm | 8 mm | 9 mm | 13 mm | 11 mm | 20 mm |
P. mirabilis | - | - | - | - | - | - |
E. coli | - | - | 8 mm | 14 mm | - | 35 mm |
E. faecalis | - | - | - | 14 mm | - | 8 mm |
K. pneumonia | - | - | - | 12 mm | - | 26 mm |
P. aeruginosa | 12 mm | - | - | 12 mm | - | 27 mm |
C. albicans | - | - | - | 14 mm | - | 16 mm |
MRSA | 33 mm | - | - | 15 mm | - | 11 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Omar, M.S.; Mohammed, H.A.; Mohammed, S.A.A.; Abd-Elmoniem, E.; Kandil, Y.I.; Eldeeb, H.M.; Chigurupati, S.; Sulaiman, G.M.; Al-Khurayyif, H.K.; Almansour, B.S.; et al. Anti-Microbial, Anti-Oxidant, and α-Amylase Inhibitory Activity of Traditionally-Used Medicinal Herbs: A Comparative Analyses of Pharmacology, and Phytoconstituents of Regional Halophytic Plants’ Diaspora. Molecules 2020, 25, 5457. https://doi.org/10.3390/molecules25225457
Al-Omar MS, Mohammed HA, Mohammed SAA, Abd-Elmoniem E, Kandil YI, Eldeeb HM, Chigurupati S, Sulaiman GM, Al-Khurayyif HK, Almansour BS, et al. Anti-Microbial, Anti-Oxidant, and α-Amylase Inhibitory Activity of Traditionally-Used Medicinal Herbs: A Comparative Analyses of Pharmacology, and Phytoconstituents of Regional Halophytic Plants’ Diaspora. Molecules. 2020; 25(22):5457. https://doi.org/10.3390/molecules25225457
Chicago/Turabian StyleAl-Omar, Mohsen S., Hamdoon A. Mohammed, Salman A. A. Mohammed, Essam Abd-Elmoniem, Yasser I. Kandil, Hussein M. Eldeeb, Sridevi Chigurupati, Ghassan M. Sulaiman, Hadeel K. Al-Khurayyif, Basma S. Almansour, and et al. 2020. "Anti-Microbial, Anti-Oxidant, and α-Amylase Inhibitory Activity of Traditionally-Used Medicinal Herbs: A Comparative Analyses of Pharmacology, and Phytoconstituents of Regional Halophytic Plants’ Diaspora" Molecules 25, no. 22: 5457. https://doi.org/10.3390/molecules25225457
APA StyleAl-Omar, M. S., Mohammed, H. A., Mohammed, S. A. A., Abd-Elmoniem, E., Kandil, Y. I., Eldeeb, H. M., Chigurupati, S., Sulaiman, G. M., Al-Khurayyif, H. K., Almansour, B. S., Suryavamshi, P. M., & Khan, R. A. (2020). Anti-Microbial, Anti-Oxidant, and α-Amylase Inhibitory Activity of Traditionally-Used Medicinal Herbs: A Comparative Analyses of Pharmacology, and Phytoconstituents of Regional Halophytic Plants’ Diaspora. Molecules, 25(22), 5457. https://doi.org/10.3390/molecules25225457