Anacyclus pyrethrum (L): Chemical Composition, Analgesic, Anti-Inflammatory, and Wound Healing Properties
Abstract
:1. Introduction
2. Results
2.1. Analgesic Activity of Samples Demonstrated by the Acetic Acid Method
2.2. Analgesic Activity of Samples Identified by the Formaldehyde Method
2.3. Anti-Inflammatory Activity
2.4. Wound Healing Activity
2.5. Phytochemical Identification of Plant Extracts
3. Discussion
4. Materials and Methods
4.1. Plant Samples
4.2. Extract Preparation
4.3. Preparation and Administration of Test Samples
4.4. Animals
4.5. Analgesic Activity of Samples Demonstrated by the Acetic Acid Method
4.6. Analgesic Activity of Samples Revealed by the Formaldehyde Method
4.7. Anti-Inflammatory Activity
4.8. Wound Healing Activity
4.9. Identification of Phytochemical Compounds
4.10. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviation
APPR | Anacyclus pyrethrum (L) roots |
APPG | Anacyclus pyrethrum (L) seeds |
APPF | Anacyclus pyrethrum (L) leaves |
APPC | Anacyclus pyrethrum (L) capitula |
References
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chabrier, J.-Y. Plantes médicinales et formes d’utilisation en phytothérapie. Ph.D. Thesis, Universite Henri Poincare—Nancy 1, Nancy, France, 2010. [Google Scholar]
- Verpoorte, R. La pharmacognosie du nouveau millénaire: Pistes et biotechnologie. In Des Sources du Savoir Aux Médicaments du Future; Fleurentin, J., Mazars, G., Pelt, J.-M., Eds.; IRD Éditions: Marseille, France, 2014; pp. 263–274. [Google Scholar]
- Fennane, M. Eléments pour un Livre rouge de la flore vasculaire du Maroc. Fasc. 3. Asteraceae. Tela-Botanica 2017, 3. Available online: https://www.tela-botanica.org/wp-content/uploads/2017/05/Tela-Bot_LivreR-FVM_Fasc-3-avril-2017.pdf (accessed on 18 October 2020).
- Fennane, M.; Ibn Tattou, J.M.; Oualidi, E. Flore Pratique du Maroc; Institut Scientifique: Rabat, Morocco, 2014; Volume 3. [Google Scholar]
- Humphries, C.J. A revision of the genus Anacyclus, L. (Compositae: Anthemidaea). Bull. Br. Mus. Nat. Hist. 1979, 7, 83–142. [Google Scholar]
- Ouarghidi, A.; Powell, B.; Martin, G.J.; Abbad, A. Traditional Sustainable Harvesting Knowledge and Distribution of a Vulnerable Wild Medicinal Root (A. pyrethrum var. pyrethrum) in Ait M’hamed Valley, Morocco. Econ. Bot. 2017, 71, 83–95. [Google Scholar] [CrossRef]
- Macheteau, S.; Desvaux, C. Miraculeuses Plantes d’Hildegarde de Bingen; Rustica: Paris, France, 2017. [Google Scholar]
- Patel, V.K.; Patel, R.V.; Venkatakrishna-Bhatt, H.; Gopalakrishna, G.; Devasankariah, G. A clinical appraisal ofAnacyclus pyrethrum root extract in dental patients. Phytotherapy Res. 1992, 6, 158–159. [Google Scholar] [CrossRef]
- Zaidi, S.M.A.; Pathan, S.A.; Singh, S.; Jamil, S.; Ahmad, F.J.; Khar, R.K. Anticonvulsant, Anxiolytic and Neurotoxicity Profile of Aqarqarha (Anacyclus pyrethrum) DC (Compositae) Root Ethanolic Extract. Pharmacol. Pharm. 2013, 4, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Shahraki, M.R.; Shahraki, S.; Arab, M.R.; Shahrakipour, M. The effects of aqueous extract of anacyclus pyrethrum on sperm count and reproductive organs in adult male rats. Zahedan J. Res. Med. Sci. 2015, 17, 5. [Google Scholar]
- Sharma, V.; Thakur, M.; Chauhan, N.S.; Dixit, V.K. Evaluation of the Anabolic, Aphrodisiac and Reproductive Activity of Anacyclus Pyrethrum DC in Male Rats. Sci. Pharm. 2009, 77, 97–110. [Google Scholar] [CrossRef] [Green Version]
- Bendjeddou, D.; Lalaoui, K.; Satta, D. Immunostimulating activity of the hot water-soluble polysaccharide extracts of Anacyclus pyrethrum, Alpinia galanga and Citrullus colocynthis. J. Ethnopharmacol. 2003, 88, 155–160. [Google Scholar] [CrossRef]
- Sharma, V.; Thakur, M.; Chauhan, N.S.; Dixit, V.K. Immunomodulatory activity of petroleum ether extract ofAnacyclus pyrethrum. Pharm. Biol. 2010, 48, 1247–1254. [Google Scholar] [CrossRef]
- Annalakshmi, R.; Uma, R.G.; Chandran, S.; Muneeswaran, A. A treasure of medicinal herb—Anacyclus pyrethrum A review. Indian J. Drugs Dis. 2012, 3, 9. [Google Scholar]
- Gautam, O.P.; Verma, S.; Jain, S.K. Anticonvulsant and myorelaxation activity of anacyclus pyrethrum dc. (akarkara) root extract. Pharmacologyonline 2011, 1, 121–125. [Google Scholar]
- Amine, D.; Mohamed, B.; Jamal, I.; Laila, N. Antibacterial Activity of Aqueous Extracts of Anacyclus Pyrethrum (L) Link and Corrigiola Telephiifolia Pourr. From the Middle Atlas Region-Morocco. Eur. Sci. J. ESJ 2017, 13, 116. [Google Scholar] [CrossRef] [Green Version]
- Jalayer, N.N.; Niakan, M.; Khodadadi, E. Determination of Antibacterial Activity of Anacyclus Pyrethrum Extract against Some of the Oral Bacteria: An In Vitro Study. J. Dent Shiraz Univ. Med. Scien. 2012, 13, 5. [Google Scholar]
- Elazzouzi, H.; Soro, A.; Elhilali, F.; Bentayeb, A.; Belghiti, M.A.E. Phytochemical study of Anacyclus pyrethrum (L.) of Middle Atlas (Morocco), and in vitro study of antibacterial activity of pyrethrum. Adv. Nat. Appl. Sci. 2014, 10, 131–141. [Google Scholar]
- Muralikrishnan, K.; Asokan, S.; Geethapriya, P.; Ahmed, K.S.Z.; Ayyappadasan, G. Comparative Evaluation of the Local Anesthetic Activity of Root Extract of Anacyclus pyrethrum and its Interaction at the Site of Injection in Guinea Pigs. Anesthesia: Essays Res. 2017, 11, 444–448. [Google Scholar] [CrossRef] [Green Version]
- Manouze, H.; Bouchatta, O.; Gadhi, A.C.; Bennis, M.; Sokar, Z.; Ba-M’Hamed, S. Anti-inflammatory, Antinociceptive, and Antioxidant Activities of Methanol and Aqueous Extracts of Anacyclus pyrethrum Roots. Front. Pharmacol. 2017, 8, 598. [Google Scholar] [CrossRef] [Green Version]
- Rimbau, V.; Cerdan, C.; Vila, R.; Iglesias, J. Antiinflammatory activity of some extracts from plants used in the traditional medicine of North-African countries. Phytother. Res. 1999, 5, 421–423. [Google Scholar] [CrossRef]
- Manouze, H.; Bouchatta, O.; Bennis, M.; Sokar, Z.; Ba-M’Hamed, S. Anticonvulsive and neuroprotective effects of aqueous and methanolic extracts of Anacyclus pyrethrum root in kainic acid-induced-status epilepticus in mice. Epilepsy Res. 2019, 158, 106225. [Google Scholar] [CrossRef]
- Sujith, K.; Suba, V.; Darwin, C.R. Neuropharmacological profile of ethanolic extract of anacyclus Pyrethrum in Albino wistar rats. Int. J. Pharm. Sci. Res. 2011, 2, 6. [Google Scholar]
- Pahuja, M.; Mehla, J.; Reeta, K.H.; Tripathi, M.; Gupta, Y.K. Effect of Anacyclus pyrethrum on Pentylenetetrazole-Induced Kindling, Spatial Memory, Oxidative Stress and Rho-Kinase II Expression in Mice. Neurochem. Res. 2013, 38, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, S.; Mansoori, M.H.; Singh, N.K.; Shivhare, M.K.; Bhardwaj, P.; Singh, R.K. Antidiabetic effect of anacyclus pyrethrum DC in alloxan induced diabetic rats. Eur. J. Biol. Sci. 2011, 4, 117–120. [Google Scholar]
- Usmani, A.; Mujahid; Khushtar, M.; Siddiqui, H.H.; Rahman, A. Hepatoprotective effect of Anacyclus pyrethrum Linn. against antitubercular drug-induced hepatotoxicity in SD rats. J. Complement. Integr. Med. 2016, 13. [Google Scholar] [CrossRef]
- Sujith, K.; Darwin, C.R.; Sathish; Suba, V. Memory-enhancing activity of Anacyclus pyrethrum in albino Wistar rats. Asian Pac. J. Trop. Dis. 2012, 2, 307–311. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.-M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amresh, G.; Reddy, G.; Rao, C.; Singh, P. Evaluation of anti-inflammatory activity of Cissampelos pareira root in rats. J. Ethnopharmacol. 2007, 110, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Gui, R.K.; Mamyrbékova-Békro, J.A.; Pirat, J.-L.; Bekro, Y.-A.; Sommerer, N.; Verbaere, A.; Meudec, E.; Kabran, G.R. Identification de composés phénoliques extraits de deux plantes de la pharmacopée ivoirienne. J. Soc. Ouest-Afr. Chim. 2014, 8, 57–63. [Google Scholar]
- Reanmongkol, W.; Noppapan, T.; Subhadhirasakul, S. Antinociceptive, antipyretic, and anti-inflammatory activities of Putranjiva roxburghii Wall. leaf extract in experimental animals. J. Nat. Med. 2009, 63, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.L.; Jiang, W.B.; Xie, M.X. Flavonoids: Recent advances as anticancer drugs. Recent Pat. Anti Cancer Drug Discov. 2010, 5, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Arunachalam, K.; Parimelazhagan, T. Anti-inflammatory, wound healing and in-vivo antioxidant properties of the leaves of Ficus amplissima Smith. J. Ethnopharmacol. 2013, 145, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Boonen, J.; Bronselaer, A.; Nielandt, J.; Veryser, L.; De Tré, G.; De Spiegeleer, B. Alkamid database: Chemistry, occurrence and functionality of plant N-alkylamides. J. Ethnopharmacol. 2012, 142, 563–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elufioye, T.O.; Habtemariam, S.; Adejare, A. Chemistry and Pharmacology of Alkylamides from Natural Origin. Rev. Bras. de Farm. 2020, 30, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, R.; Narashimman, B.S.; Trivedi, V.; Chaturvedi, R. Isolation and quantification of antimalarial N -alkylamides from flower-head derived in vitro callus cultures of Spilanthes paniculata. J. Biosci. Bioeng. 2017, 124, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Xing, Y.; Quan, Q.; Sun, Q.; Tian, J.; Liu, C.; Song, X.; Wang, X.; Liu, Y. Synthesis and biological evaluation of N-Alkylamide derivatives as anti-tumor agents. J. Tradit. Chin. Med Sci. 2020, 2095754820300892. [Google Scholar] [CrossRef]
- Rackemann, D.W.; Doherty, W.O. The conversion of lignocellulosics to levulinic acid. Biofuels, Bioprod. Biorefining 2011, 5, 198–214. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, N.; Mishra, P. Synthesis and evaluation of 4-substituted semicarbazones of levulinic acid for anticonvulsant activity. J. Zhejiang Univ. Sci. B 2005, 6, 617–621. [Google Scholar] [CrossRef]
- Licursi, D.; Antonetti, C.; Mattonai, M.; Pérez-Armad, L.; Rivas, S.; Ribechini, E.; Galletti, A.M.R. Multi-valorisation of giant reed (Arundo Donax L.) to give levulinic acid and valuable phenolic antioxidants. Ind. Crop. Prod. 2018, 112, 6–17. [Google Scholar] [CrossRef]
- Adeleye, A.T.; Hitler, L.; Akakuru, O.U.; Joseph, I.; Enudi, O.C.; Michael, D.P. A Review on the conversion of levulinic acid and its esters to various useful chemicals. AIMS Energy 2019, 7, 165–185. [Google Scholar] [CrossRef]
- Katariya, D.; Ashid, M.; Sharma, B.K.; Joshi, A. Synthesis, Characterization and Biological Activity of Some Indole Substituted Propanoic Acid. J. Chem. Chem. Sci. 2019, 9, 206–213. [Google Scholar] [CrossRef]
- Rao, P.V.; Gan, S.H. Cinnamon: A Multifaceted Medicinal Plant. Evidence-Based Complement. Altern. Med. 2014, 2014, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Mollazadeh, H.; Hosseinzadeh, H. Cinnamon effects on metabolic syndrome: A review based on its mechanisms. Iran. J. Basic. Med. Sci. 2016, 19, 1258–1270. [Google Scholar] [PubMed]
- Sahib, A.S. Antidiabetic and Antioxidant Effect of Cinnamon in poorly Controlled Type-2 Diabetic Iraqi Patients: A Randomized, Placebo-Controlled Clinical Trial. J. Intercult. Ethnopharmacol. 2016, 5, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Ku, S.-K.; Lee, I.-C.; Kim, J.A.; Bae, J.-S. Antithrombotic activities of pellitorine in vitro and in vivo. Fitoterapia 2013, 91, 1–8. [Google Scholar] [CrossRef]
- Ee, G.C.L.; Lim, C.M.; Rahmani, M.; Shaari, K.; Bong, C.F.J. Pellitorine, a Potential Anti-Cancer Lead Compound against HL60 and MCT-7 Cell Lines and Microbial Transformation of Piperine from Piper Nigrum. Molecules 2010, 15, 2398–2404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, W.; Ku, S.-K.; Min, B.-W.; Lee, S.; Jee, J.-G.; Kim, J.A.; Bae, J.-S. Vascular barrier protective effects of pellitorine in LPS-induced inflammation in vitro and in vivo. Fitoterapia 2014, 92, 177–187. [Google Scholar] [CrossRef]
- Leland, D.L.; Kotick, M.P. Analgesic narcotic antagonists. 4.′ 7-Met hyl-N-(cycloalkylmet hyl) -3- hydroxymorp hinan-6-ones and -isomorphinan-6-ones. J. Med. Chem. 1980, 23, 1427–1431. [Google Scholar] [CrossRef]
- Ben Haddou, T.; Malfacini, D.; Calo’, G.; Aceto, M.D.; Harris, L.S.; Traynor, J.R.; Coop, A.; Schmidhammer, H.; Spetea, M. Exploring Pharmacological Activities and Signaling of Morphinans Substituted in Position 6 as Potent Agonists Interacting with the μ Opioid Receptor. Mol. Pain 2014, 10, 48. [Google Scholar] [CrossRef] [Green Version]
- Awasthi, K. An Investigation into Anti-Dyslipidemic Activity of Isovaleric Acid in Wistar Rats Fed Fructose-Rich High Fat Diet. J. Med Sci. Clin. Res. 2019, 7. [Google Scholar] [CrossRef]
- Eadie, M.J. Could Valerian Have Been the First Anticonvulsant? Epilepsia 2004, 45, 1338–1343. [Google Scholar] [CrossRef]
- El Moussaoui, A.; Bourhia, M.; Jawhari, F.Z.; Mechchate, H.; Slighoua, M.; Bari, A.; Ullah, R.; Mahmood, H.M.; Ali, S.S.; Ibenmoussa, S.; et al. Phytochemical Identification, Acute, and Sub-Acute Oral Toxicity Studies of the Foliar Extract of Withania frutescens. Molecules 2020, 25, 4528. [Google Scholar] [CrossRef]
- Martini, M.-C. Introduction à la Dermopharmacie et à la Cosmétologie; Médicales Internationales: Cachan, France, 2011. [Google Scholar]
- Ouedraogo, N.; Lompo, M.; Sawadogo, R.W.; Tibiri, A.; Hay, A.-E.; Koudou, J.; Dijoux, M.-G.; Guissou, I.P. Étude des activités anti-inflammatoire, analgésique et antipyrétique des décoctés aqueux des feuilles et des racines de Pterocarpus erinaceus Poir. (Fabaceae). Phytothérapie 2012, 10, 286–292. [Google Scholar] [CrossRef]
- Ridtitid, W.; Sae-Wong, C.; Reanmongkol, W.; Wongnawa, M. Antinociceptive activity of the methanolic extract of Kaempferia galanga Linn. in experimental animals. J. Ethnopharmacol. 2008, 118, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-Induced Edema in Hind Paw of the Rat as an Assay for Antiinflammatory Drugs. Exp. Biol. Med. 1962, 111, 544–547. [Google Scholar] [CrossRef] [PubMed]
- Imtara, H.; Al-Waili, N.; Bakour, M.; Al-Waili, W.; Lyoussi, B. Evaluation of antioxidant, diuretic, and wound healing effect of Tulkarm honey and its effect on kidney function in rats. Veter-World 2018, 11, 1491–1499. [Google Scholar] [CrossRef] [Green Version]
Samples | Doses, mg/kg | Number of Contortions | Cramp Inhibition, % |
---|---|---|---|
Roots (APPR) | 300 | 11.6 ± 4.35 *** | 94.10 ± 4.35 |
500 | 17.2 ± 6.13 *** | 91.25 ± 6.13 | |
1000 | 51.6 ± 14.79 *** | 73.75 ± 14.79 | |
Seeds (APPG) | 300 | 41.6 ± 11.79 *** | 78.84 ± 11.79 |
500 | 40.4 ± 13.21 *** | 79.45 ± 13.23 | |
1000 | 24.4 ± 7.95 *** | 87.59 ± 7.95 | |
Leaves (APPF) | 300 | 116.4 ± 8.91 ** | 40.79 ± 8.91 |
500 | 173 ± 5.27 | 12.00 ± 5.27 | |
1000 | 141 ± 11.29 * | 28.28 ± 11.29 | |
Capitula (APPC) | 300 | 66 ± 6.50 *** | 66.42 ± 6.50 |
500 | 58.4 ± 4.27 *** | 70.29 ± 4.27 | |
1000 | 104.6 ± 4.49 ** | 46.79 ± 4.49 | |
Control | - | 196.6 ± 10.70 | - |
Diclofenac | 100 | 111.8 ± 22.47 ** | 43.13 ± 22.47 |
Samples | First Phase (0–5 min) | Second Phase (15–30 min) | ||
---|---|---|---|---|
Duration of Nociceptive Response (sec) | % Inhibition | Duration of Nociceptive Response (sec) | % Inhibition | |
Roots (APPR) (300 mg/kg) | 16.2 ± 1.28 *** | 88.31 ± 1.28 | 13.8 ± 0.96 *** | 88.87 ± 0.96 |
Seeds (APPG) (500 mg/kg) | 22.6 ± 5.83 *** | 83.69 ± 5.83 | 29.2 ± 6.09 *** | 76.45 ± 6.09 |
Leaves (APPF) (300 mg/kg) | 8.2 ± 2.26 *** | 94.08 ± 2.26 | 15.2 ± 2.22 *** | 87.74 ± 2.22 |
Capitula (APPC) (500 mg/kg) | 44.4 ± 2.50 *** | 67.96 ± 2.50 | 10.8 ± 2.51 *** | 91.29 ± 2.51 |
Control (Nacl) | 138.6 ± 13.4 | - | 124 ± 2.23 | - |
Diclofenac (100 mg/kg) | 97.8 ± 8.85 ** | 29.44 ± 8.85 | 67.4 ± 2.42 ** | 45.65 ± 2.42 |
Samples | Oral Administration | Dermal Administration | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Oedema Volume (ΔmL) | % Inhibition | Oedema Volume (ΔmL) | % Inhibition | |||||||||
1 h | 3 h | 5 h | 1 h | 3 h | 5 h | 1 h | 3 h | 5 h | 1 h | 3 h | 5 h | |
Roots (APPR) (300 mg/kg) | 0.32 ± 0.04 *** | 0.2 ± 0.03 *** | 0.06 ± 0.02 *** | 61.90 ± 4.45 | 73.68 ± 4.16 | 91.18 ± 3.60 | 0.22 ± 0.06 *** | 0.14 ± 0.05 *** | 0.04 ± 0.02 *** | 76.09 ± 6.34 | 84.78 ± 5.54 | 96 ± 2.45 |
Seeds (APPG) (500 mg/kg) | 0.24 ± 0.07 *** | 0.14 ± 0.06 *** | 0.04 ± 0.02*** | 71.43 ± 8.91 | 81.58 ± 7.89 | 94.12 ± 3.60 | 0.16 ± 0.04 *** | 0.1 ± 0.031 *** | 0.039 ± 0.02 *** | 82.61 ± 4.35 | 89.13 ± 3.44 | 96 ± 2.45 |
Leaves (APPF) (300 mg/kg) | 0.24 ± 0.02 *** | 0.12 ± 0.02 *** | 0.06 ± 0,02 *** | 71.43 ± 2.92 | 84.21 ± 2.63 | 91.18 ± 3.60 | 0.36 ± 0.05 *** | 0.26 ± 0.02 ** | 0.2 ± 0.04 ** | 60.87 ± 5.54 | 71.74 ± 2.66 | 80 ± 4.47 |
Capitula (APPC) (500 mg/kg) | 0.28 ± 0.06 *** | 0.14 ± 0.05 *** | 0.04 ± 0.02 *** | 66.67 ± 6.94 | 81.58 ± 6.71 | 94.12 ± 3.60 | 0.28 ± 0.05 *** | 0.14 ± 0.05 *** | 0.02 ± 0.02 *** | 69.57 ± 6.34 | 84.78 ± 5.54 | 98 ± 2 |
Control (Nacl) | 0.9 ± 0.03 | 0.98 ± 0.04 | 0.94 ± 0.05 | 0 | 0 | 0 | 0.92 ± 0.02 | 0.92 ± 0.05 | 1 ± 0.04 | 0 | 0 | 0 |
Diclofenac (100 mg/kg) or cream 1% | 0.64 ± 0.08 * | 0.26 ± 0.04 ** | 0.14 ± 0.04 ** | 23.81 ± 8.91 | 65.79 ± 5.26 | 79.41 ± 5.88 | 0.52 ± 0.08 ** | 0.28 ± 0.07 ** | 0.04 ± 0.02 *** | 38.10 ± 9.52 | 63.18 ± 9.67 | 94.12 ± 3.60 |
Samples | Doses | Day 1 | Day 3 | Day 7 | Day 12 | Day 14 | Day 16 | Day 18 |
---|---|---|---|---|---|---|---|---|
Roots (APPR) | 5% | 0 | 17.52 ± 3.00 | 74.45 ± 2.08 | 99.81 ± 0.19 | 100 ± 0 | 100 ± 0 | 100 ± 0 |
10% | 0 | 10.73 ± 1.84 | 59.35 ± 4.94 | 98.23 ± 0.75 | 99.84 ± 0.16 | 100 ± 0 | 100 ± 0 | |
Seeds (APPG) | 5% | 0 | 10.08 ± 1.05 | 55.93 ± 1.21 | 96.07 ± 0.26 | 99.5 ± 0.04 | 100 ± 0 | 100 ± 0 |
10% | 0 | 14.26 ± 0.46 | 60.71 ± 3.22 | 98.93 ± 0.11 | 100 ± 0 | 100 ± 0 | 100 ± 0 | |
Leaves (APPF) | 5% | 0 | 10.15 ± 1.28 | 44.74 ± 1.87 | 86.19 ± 1.95 | 95.46 ± 0.52 | 99.04 ± 0.29 | 100 ± 0 |
10% | 0 | 11.69 ± 1.67 | 41.79 ± 4.05 | 79.16 ± 2.44 | 94.17 ± 2.21 | 99.58 ± 0.22 | 100 ± 0 | |
Capitula (APPC) | 5% | 0 | 14.47 ± 1.78 | 56.29 ± 1.40 | 98.89 ± 0.422 | 100 ± 0 | 100 ± 0 | 100 ± 0 |
10% | 0 | 16.09 ± 3.01 | 73.54 ± 6.43 | 100 ± 0 | 100 ± 0 | 100 ± 0 | 100 ± 0 | |
Control | - | 0 | 5.90 ± 0.62 | 34.57 ± 2.93 | 66.14 ± 2.48 | 75.25 ± 2.50 | 84.88 ± 1.40 | 92.73 ± 1.66 |
Diclofenac 1% | - | 0 | 12.54 ± 2.22 | 44.15 ± 4.31 | 77.47 ± 3.34 | 89.14 ± 1.58 | 96.22 ± 1.31 | 100 ± 0 |
N° | RT | m/z Quasi-Molecular Peak | Structural Formula | Compounds | % Area | |||
---|---|---|---|---|---|---|---|---|
Anacyclus pyrethrum (L) | ||||||||
Roots (APPR) | Seeds (APPG) | Leaves (APPF) | Capitula (APPC) | |||||
1 | 4.35 | 231 (M + H)+ | C15H19NO | (2,4)-N-isobutyl-2,4-undecadiene-8,10-diynamide | 0.97 | 0.76 | 2.29 | - |
2 | 4.92 | 246 (M)+ | C16H25ON | N-isobutyl-dodeca-2,4,8,10-tetraenamide | 6.79 | 4.44 | 9.45 | 15.91 |
3 | 6.12 | 241 (M)+ | C9H14F3NO3 | Sarcosine, N-(trifluoroacetyl)-, butyl ester | 2.65 | 0.65 | 4.26 | - |
4 | 6.98 | 193 (M + H)+ | C12H17ON | N-isobutyl-2,4-octadiene-6- monoynamide | 0.76 | 0.68 | 0.68 | 0.74 |
5 | 7.71 | 116 (M)+ | C5H8O3 | Levulinic acid | 37.47 | 50.45 | 7.01 | 3.66 |
6 | 8.43 | 104 (M)+ | C3H4O4 | propanedioic acid | 8.48 | 6.39 | 16.86 | 6.50 |
7 | 8.77 | 177 (M)+ | C11H15ON | N-isobutyl-2,4-heptadiene-6- monoynamide | - | 1.52 | 6.29 | - |
8 | 9.38 | 256 (M)+ | C16H32O2 | Palmitic Acid | 2.85 | 2.75 | 3.17 | 8.34 |
9 | 9.65 | 285 (M)+ | C17H19NO3 | Morphinan-6-One, 4,5.Alpha.-Epoxy-3-Hydroxy-17-Methyl | 2.17 | 1.31 | 2.86 | 4.93 |
10 | 10.62 | 147 (M)+ | C9H8O2 | Cinnamic acid | - | - | 10.53 | - |
11 | 10.75 | 278 (M + H)+ | C18H31NO | 2,4-undecadiene-8,10-diyne-N-tyramide | 11.09 | 5.34 | 16.50 | 46.07 |
12 | 11.64 | 271 (M)+ | C18H25NO | N-isobutyl-dodeca-2,4,8,10-tetraenamide (Anacycline) | 2.94 | 8.63 | - | - |
13 | 12.12 | 221 (M)+ | C14H23NO | N-isobutyl-2,6,8-decatrienamide | 0.63 | - | 2.06 | - |
14 | 12.61 | 223 (M)+ | C14H25NO | (2E,4E)-N-(2-methylpropyl)deca-2,4-dienamide (Pellitorine) | 1.16 | 6.04 | 0.78 | - |
15 | 12.94 | 274 (M + H)+ | C18H27NO | Tetradeca-2E-diny-8,10-diynoic acid IBA | 0.77 | - | 0.59 | 2.72 |
16 | 13.39 | 270 (M + H)+ | C18H23NO | Tetradeca-2E,4E, nE-trienoic-8,10-diynoic acid IBA | - | 2.85 | 1.86 | - |
17 | 13.67 | 102 (M)+ | C5H10O2 | Isovaleric acid | 1.28 | 4.13 | 4.14 | - |
18 | 14.10 | 313 (M)+ | C20H27NO2 | Dodeca-2E,4E, nE-trienoic acid 4-hydroxyphenylethylamide | 3.54 | 1.15 | 1.58 | 2.08 |
19 | 14.57 | 251 (M)+ | C16H29NO | 2,8-N-isobutyl-2,8-dodecadienamide | 0.87 | - | 1.19 | 1.19 |
20 | 15.15 | 341 (M)+ | C22H31NO2 | Tetradeca-2E,4E,8Etrienoic acid 4-hydroxyphenylethylamide | 0.61 | - | 0.82 | - |
Sample Availability: Samples of the compounds are not available from the authors. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jawhari, F.Z.; El Moussaoui, A.; Bourhia, M.; Imtara, H.; Mechchate, H.; Es-Safi, I.; Ullah, R.; Ezzeldin, E.; Mostafa, G.A.; Grafov, A.; et al. Anacyclus pyrethrum (L): Chemical Composition, Analgesic, Anti-Inflammatory, and Wound Healing Properties. Molecules 2020, 25, 5469. https://doi.org/10.3390/molecules25225469
Jawhari FZ, El Moussaoui A, Bourhia M, Imtara H, Mechchate H, Es-Safi I, Ullah R, Ezzeldin E, Mostafa GA, Grafov A, et al. Anacyclus pyrethrum (L): Chemical Composition, Analgesic, Anti-Inflammatory, and Wound Healing Properties. Molecules. 2020; 25(22):5469. https://doi.org/10.3390/molecules25225469
Chicago/Turabian StyleJawhari, Fatima Zahra, Abdelfattah El Moussaoui, Mohammed Bourhia, Hamada Imtara, Hamza Mechchate, Imane Es-Safi, Riaz Ullah, Essam Ezzeldin, Gamal A. Mostafa, Andriy Grafov, and et al. 2020. "Anacyclus pyrethrum (L): Chemical Composition, Analgesic, Anti-Inflammatory, and Wound Healing Properties" Molecules 25, no. 22: 5469. https://doi.org/10.3390/molecules25225469
APA StyleJawhari, F. Z., El Moussaoui, A., Bourhia, M., Imtara, H., Mechchate, H., Es-Safi, I., Ullah, R., Ezzeldin, E., Mostafa, G. A., Grafov, A., Ibenmoussa, S., Bousta, D., & Bari, A. (2020). Anacyclus pyrethrum (L): Chemical Composition, Analgesic, Anti-Inflammatory, and Wound Healing Properties. Molecules, 25(22), 5469. https://doi.org/10.3390/molecules25225469