Subacute Assessment of the Toxicity and Antidepressant-Like Effects of Origanum Majorana L. Polyphenols in Swiss Albino Mice
Abstract
:1. Introduction
2. Results
2.1. Tail Suspension Test
2.2. Forced Swimming Test
2.3. Toxicity Study
2.4. Fraction Analysis
3. Discussion
4. Materials and Methods
4.1. Plant
4.2. Polyphenol Extraction
4.3. Animals
4.4. Behavioral Tests
4.4.1. Forced Swimming Test
4.4.2. Tail Suspension Test
4.5. Fraction Analysis
4.6. Toxicity
4.6.1. Subacute Toxicity
4.6.2. Serum Biochemical Analysis
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nemeroff:, C.B. The burden of severe depression: A review of diagnostic challenges and treatment alternatives. J. Psychiatr. Res. 2007, 41, 189–206. [Google Scholar] [CrossRef]
- World Health Organization. Depression and Other Common Mental Disorders: Global Health Estimates; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Sarko, J. Antidepressants, old and new: A review of their adverse effects and toxicity in overdose. Emerg. Med. Clin. North Am. 2000, 18, 637–654. [Google Scholar] [CrossRef]
- Mechchate, H.; Es-safi, I.; Haddad, H.; Bekkari, H.; Grafov, A.; Bousta, D. Combination of Catechin, Epicatechin, and Rutin:optimization of a novel complete antidiabetic formulation using a mixture design approach. J. Nutr. Biochem. 2020, 88, 108520. [Google Scholar] [CrossRef] [PubMed]
- Es-Safi, I.; Mechchate, H.; Amaghnouje, A.; El Moussaoui, A.; Cerruti, P.; Avella, M.; Grafov, A.; Bousta, D. Marketing and legal status of phytomedicines and food supplements in Morocco. J. Complement. Integr. Med. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Delgado, P.L. Depression: The case for a monoamine deficiency. J. Clin. Psychiatry 2000, 61 (Suppl. 6), 7–11. [Google Scholar]
- Moret, C.; Briley, M. The importance of norepinephrine in depression. Neuropsychiatr. Dis. Treat. 2011, 7, 9–13. [Google Scholar] [PubMed]
- Ferguson, J.M. SSRI Antidepressant Medications: Adverse Effects and Tolerability. Prim. Care Companion J. Clin. Psychiatry 2001, 3, 22–27. [Google Scholar] [CrossRef]
- Nevels, R.M.; Gontkovsky, S.T.; Williams, B.E. Paroxetine—The Antidepressant from Hell? Probably Not, But Caution Required. Psychopharmacol. Bull. 2016, 46, 77–104. [Google Scholar]
- Bouayed, J.; Rammal, H.; Dicko, A.; Younos, C.; Soulimani, R. Chlorogenic acid, a polyphenol from Prunus domestica (Mirabelle), with coupled anxiolytic and antioxidant effects. J. Neurol. Sci. 2007, 262, 77–84. [Google Scholar] [CrossRef]
- Amzad Hossain, M.; Salehuddin, S.M.; Kabir, M.J.; Rahman, S.M.M.; Rupasinghe, H.P.V. Sinensetin, rutin, 3′-hydroxy-5,6,7,4′-tetramethoxyflavone and rosmarinic acid contents and antioxidative effect of the skin of apple fruit. Food Chem. 2009, 113, 185–190. [Google Scholar] [CrossRef]
- Takeda, H.; Tsuji, M.; Miyamoto, J.; Masuya, J.; Iimori, M.; Matsumiya, T. Caffeic acid produces antidepressive- and/or anxiolytic-like effects through indirect modulation of the α1A-adrenoceptor system in mice. NeuroReport 2003, 14, 1067. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.B.; Camphuis, G.; Aguiló-Aguayo, I.; Gangopadhyay, N.; Rai, D.K. Antioxidant activity guided separation of major polyphenols of marjoram (Origanum majorana L.) using flash chromatography and their identification by liquid chromatography coupled with electrospray ionization tandem mass spectrometry. J. Sep. Sci. 2014, 37, 3205–3213. [Google Scholar] [CrossRef] [PubMed]
- Lucki, I. Behavioral Despair. In Encyclopedia of Psychopharmacology; Stolerman, I.P., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 202–204. [Google Scholar]
- Bogdanova, O.V.; Kanekar, S.; D’Anci, K.E.; Renshaw, P.F. Factors influencing behavior in the forced swim test. Physiol. Behav. 2013, 118, 227–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Can, A.; Dao, D.T.; Terrillion, C.E.; Piantadosi, S.C.; Bhat, S.; Gould, T.D. The Tail Suspension Test. J. Vis. Exp. 2011, 59, e3769. [Google Scholar] [CrossRef] [Green Version]
- Planchez, B.; Surget, A.; Belzung, C. Animal models of major depression: Drawbacks and challenges. J. Neural Transm. 2019, 126, 1383–1408. [Google Scholar] [CrossRef] [Green Version]
- Thierry, B.; Stéru, L.; Simon, P.; Porsolt, R.D. The tail suspension test: Ethical considerations. Psychopharmacology 1986, 90, 284–285. [Google Scholar] [CrossRef]
- Takeda, H.; Tsuji, M.; Inazu, M.; Egashira, T.; Matsumiya, T. Rosmarinic acid and caffeic acid produce antidepressive-like effect in the forced swimming test in mice. Eur. J. Pharmacol. 2002, 449, 261–267. [Google Scholar] [CrossRef]
- Ito, N.; Yabe, T.; Gamo, Y.; Nagai, T.; Oikawa, T.; Yamada, H.; Hanawa, T. Rosmarinic Acid from Perillae Herba Produces an Antidepressant-Like Effect in Mice through Cell Proliferation in the Hippocampus. Biol. Pharm. Bull. 2008, 31, 1376–1380. [Google Scholar] [CrossRef] [Green Version]
- Fang, K.; Li, H.-R.; Chen, X.-X.; Gao, X.-R.; Huang, L.-L.; Du, A.-Q.; Jiang, C.; Li, H.; Ge, J.-F. Quercetin Alleviates LPS-Induced Depression-Like Behavior in Rats via Regulating BDNF-Related Imbalance of Copine 6 and TREM1/2 in the Hippocampus and PFC. Front. Pharmacol. 2020, 10, 1544. [Google Scholar] [CrossRef]
- Holzmann, I.; da Silva, L.M.; Corrêa da Silva, J.A.; Steimbach, V.M.B.; de Souza, M.M. Antidepressant-like effect of quercetin in bulbectomized mice and involvement of the antioxidant defenses, and the glutamatergic and oxidonitrergic pathways. Pharmacol. Biochem. Behav. 2015, 136, 55–63. [Google Scholar] [CrossRef]
- Machado, D.G.; Neis, V.B.; Balen, G.O.; Colla, A.; Cunha, M.P.; Dalmarco, J.B.; Pizzolatti, M.G.; Prediger, R.D.; Rodrigues, A.L.S. Antidepressant-like effect of ursolic acid isolated from Rosmarinus officinalis L. in mice: Evidence for the involvement of the dopaminergic system. Pharmacol. Biochem. Behav. 2012, 103, 204–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.-H.; Sim, Y.-B.; Han, P.-L.; Lee, J.-K.; Suh, H.-W. Antidepressant-like Effect of Kaempferol and Quercitirin, Isolated from Opuntia ficus-indica var. saboten. Exp. Neurobiol. 2010, 19, 30–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machado, D.G.; Bettio, L.E.B.; Cunha, M.P.; Santos, A.R.S.; Pizzolatti, M.G.; Brighente, I.M.C.; Rodrigues, A.L.S. Antidepressant-like effect of rutin isolated from the ethanolic extract from Schinus molle L. in mice: Evidence for the involvement of the serotonergic and noradrenergic systems. Eur. J. Pharmacol. 2008, 587, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Ishisaka, M.; Kakefuda, K.; Yamauchi, M.; Tsuruma, K.; Shimazawa, M.; Tsuruta, A.; Hara, H. Luteolin Shows an Antidepressant-Like Effect via Suppressing Endoplasmic Reticulum Stress. Biol. Pharm. Bull. 2011, 34, 1481–1486. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.-T.; Chen, Q.; Shi, H.; Zhang, K.-Q.; Rosen, R.T. Antioxidative effect of polyphenol extract prepared from various Chinese teas. Prev. Med. 1992, 21, 520–525. [Google Scholar] [CrossRef]
- National Research Council. Guide for the Care and Use of Laboratory Animals; National Academies Press (US): Washington, DC, USA, 2011. [Google Scholar]
- Porsolt, R.D.; Bertin, A.; Jalfre, M. Behavioral despair in mice: A primary screening test for antidepressants. Arch. Int. Pharmacodyn. Ther. 1977, 229, 327–336. [Google Scholar]
- Cryan, J.; Markou, A.; Lucki, I.; Cryan, J.F.; Markou, A.; Lucki, I. Cryan JF, Markou A, Lucki I. Assessing antidepressant activity in rodents: Recent developments and future needs. Trends Pharmacol. Sci. 2002, 23, 238–245. [Google Scholar] [CrossRef]
- Rodríguez-Landa, J.F.; Cueto-Escobedo, J.; Flores-Aguilar, L.Á.; Rosas-Sánchez, G.U.; Rovirosa-Hernández, M.d.J.; García-Orduña, F.; Carro-Juárez, M. The Aqueous Crude Extracts of Montanoa frutescens and Montanoa grandiflora Reduce Immobility Faster than Fluoxetine through GABAA Receptors in Rats Forced to Swim. J. Evid.-Based Integr. Med. 2018, 23. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.; Wang, D.; Xing, D.; Ding, Y.; Wang, R.; Lei, F.; Du, L. The antidepressant effect of ethanol extract of radix puerariae in mice exposed to cerebral ischemia reperfusion. Pharmacol. Biochem. Behav. 2004, 78, 319–325. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
Normal Control | OMP 50 mg/kg | OMP 100 mg/kg | |
---|---|---|---|
Uree (g/L) | 0.28 ± 0.02 | 0.26 ± 0.08 | 0.23 ±0.01 |
Creatinine (mg/L) | 3.40 ± 0.31 | 3.333 ± 0.89 | 4 ± 0 |
ALT (U/L) | 45.80 ± 1.11 | 37 ± 5.17 | 31 ± 6.21 |
AST (U/L) | 307.7 ± 30.37 | 265 ± 22.1 | 322 ± 29.1 |
Liver (g) | Kidneys (g) | Spleen (g) | Adrenal Gland (g) | Lungs (g) | |
---|---|---|---|---|---|
Normal control | 8.95 ± 0.52 | 1.79 ± 0.18 | 0.74 ± 0.15 | 0.24 ± 0.01 | 0.88 ± 0.28 |
OMP 100 mg/kg | 7.749 ± 0.21 | 1.74 ± 0.06 | 0.67 ± 0.04 | 0.21 ± 0.11 | 0.80 ± 0.09 |
OMP 50 mg/kg | 7.84 ± 0.16 | 1.82 ± 0.12 | 0.8 ± 0.11 | 0.17 ± 0.08 | 0.91 ± 0.3 |
Molecule | Fragment Analyzed | AUC |
---|---|---|
Arbutin | 271.20 > 107.80 | 2,295,593 |
Rosmarinic acid | 359.00 > 359.00 | 113,966,325 |
Ursolic acid | 455.00 > 455.00 | 2,400,530 |
Quercetin-3-O-glucoside | 463.10 > 300.00 | 419,677 |
Quercetin-7-O-glucuronic acid | 477.00 > 301.00 | 1,090,191 |
Luteolin-7-O-glucoside | 447.10 > 285.00 | 4,024,661 |
Kaempferol-3-0-glucuronic acid | 461.10 > 284.00 | 34,807,891 |
Kaempferol-3-0-pentose | 417.10 > 284.00 | 661,262 |
Caffeic acid | 179.00 > 135.00 | 2,334,092 |
Catechin | 289.00 > 245.00 | 515,400 |
Quercetin | 301.00 >151.00 | 16,011,331 |
Rutin | 609.00 > 301.00 | 35,325 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amaghnouje, A.; Mechchate, H.; Es-safi, I.; Boukhira, S.; S. Aliqahtani, A.; M. Noman, O.; A. Nasr, F.; Conte, R.; Calarco, A.; Bousta, D. Subacute Assessment of the Toxicity and Antidepressant-Like Effects of Origanum Majorana L. Polyphenols in Swiss Albino Mice. Molecules 2020, 25, 5653. https://doi.org/10.3390/molecules25235653
Amaghnouje A, Mechchate H, Es-safi I, Boukhira S, S. Aliqahtani A, M. Noman O, A. Nasr F, Conte R, Calarco A, Bousta D. Subacute Assessment of the Toxicity and Antidepressant-Like Effects of Origanum Majorana L. Polyphenols in Swiss Albino Mice. Molecules. 2020; 25(23):5653. https://doi.org/10.3390/molecules25235653
Chicago/Turabian StyleAmaghnouje, Amal, Hamza Mechchate, Imane Es-safi, Smahane Boukhira, Ali S. Aliqahtani, Omar M. Noman, Fahd A. Nasr, Raffaele Conte, Anna Calarco, and Dalila Bousta. 2020. "Subacute Assessment of the Toxicity and Antidepressant-Like Effects of Origanum Majorana L. Polyphenols in Swiss Albino Mice" Molecules 25, no. 23: 5653. https://doi.org/10.3390/molecules25235653
APA StyleAmaghnouje, A., Mechchate, H., Es-safi, I., Boukhira, S., S. Aliqahtani, A., M. Noman, O., A. Nasr, F., Conte, R., Calarco, A., & Bousta, D. (2020). Subacute Assessment of the Toxicity and Antidepressant-Like Effects of Origanum Majorana L. Polyphenols in Swiss Albino Mice. Molecules, 25(23), 5653. https://doi.org/10.3390/molecules25235653