Production of Verbascoside, Isoverbascoside and Phenolic Acids in Callus, Suspension, and Bioreactor Cultures of Verbena officinalis and Biological Properties of Biomass Extracts
Abstract
:1. Introduction
2. Results
2.1. Agar Callus Cultures
2.1.1. Morphology, Inoculum Selection and Biomass Increases
2.1.2. Phytochemical Analysis of Biomass Extracts
2.2. Suspension Cultures
2.2.1. Morphology, Inoculum Selection and Biomass Increases
2.2.2. Phytochemical Analysis of Biomass Extracts
2.3. Bioreactor Cultures
2.3.1. Morphology, Inoculum Selection and Biomass Increases
2.3.2. Phytochemical Analysis of Biomass Extracts
2.4. Phytochemical Analysis of Parent Plant Material
2.5. Artemia salina Leach Lethality Bioassay
2.6. Effect on SH-SY5Y Human Neuroblastoma Cell Proliferation
2.7. Antioxidant Activity
2.8. Antibacterial Activity of Extracts
3. Discussion
3.1. Biomass Increments
3.2. Phytochemical Analysis
3.3. Biological Activities
4. Materials and Methods
4.1. Chemicals
4.2. Parent Plant Material
4.3. Initiation of in vitro Cultures
4.4. Experimental in vitro Cultures
4.5. Extraction
4.6. Chromatographic Analyses—HPLC-DAD
4.6.1. Phenylpropanoid Glycosides and Iridoids
4.6.2. Phenolic Acids and Flavonoids
4.7. Artemia salina Leach Lethality Bioassay
4.8. Effect on SH-SY5Y Human Neuroblastoma Cell Proliferation
4.9. Antioxidant Activity
4.9.1. Determination of Total Phenolic Content
4.9.2. Free Radical Scavenging Activity
4.9.3. Reducing Power Assay
4.9.4. Ferrous Ions (Fe2+) Chelating Activity
4.10. Antibacterial Activity
4.10.1. Bacteria Strains and Preparation of Inoculum
4.10.2. MIC and MBC Determination of Extracts
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chevallier, A. The Encyclopedia of Medicinal Plants; Dorling Kindersley Limited: London, UK, 1996. [Google Scholar]
- Bradley, P.R. British Herbal Compendium; British Herbal Medicine Association: Bournemouth, UK, 2006; Volume 2. [Google Scholar]
- Chinese Pharmacopoeia; Chemistry and Industry Press: Beijing, China, 2005.
- Tobyn, G.; Denham, A.; Whitelegg, M. Verbena officinalis, vervain. Med. Herbs 2009, 327–336. [Google Scholar] [CrossRef]
- European Pharmacopoeia, 6th ed.; Council of Europe: Strasbourg, France, 2008.
- Khan, A.W.; Khan, A.U.; Ahmed, T. Anticonvulsant, anxiolytic, and sedative activities of Verbena officinalis. Front. Pharmacol. 2016, 7, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Martino, L.; D’Arena, G.; Minervini, M.M.; Deaglio, S.; Fusco, B.M.; Cascavilla, N.; De Feo, V. Verbena Officinalis Essential Oil and its Component Citral as Apoptotic-Inducing Agent in Chronic Lymphocytic Leukemia. Int. J. Immunopathol. Pharmacol. 2009, 22, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Shu, J.; Chou, G.; Wang, Z. Two new iridoids from Verbena officinalis L. Molecules 2014, 19, 10473–10479. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.K.; Siddiqui, N.U. Bioactive chemical constituents from the plant Verbena officinalis Linn. Int. J. Pharm. Pharm. Sci. 2011, 3, 108–109. [Google Scholar]
- Duan, K.; Yuan, Z.; Guo, W.; Meng, Y.; Cui, Y.; Kong, D.; Zhang, L.; Wang, N. LC-MS/MS determination and pharmacokinetic study of five flavone components after solvent extraction/acid hydrolysis in rat plasma after oral administration of Verbena officinalis L. extract. J. Ethnopharmacol. 2011, 135, 201–208. [Google Scholar] [CrossRef]
- Shu, J.-C.; Liu, J.-Q.; Chou, G.-X. A new triterpenoid from Verbena officinalis L. Nat. Prod. Res. 2013, 27, 1293–1297. [Google Scholar] [CrossRef]
- Deepak, M.; Handa, S.S. Antiinflammatory activity and chemical composition of extracts of Verbena officinalis. Phyther. Res. 2000, 14, 463–465. [Google Scholar] [CrossRef]
- Kubica, P.; Szopa, A.; Ekiert, H. Production of verbascoside and phenolic acids in biomass of Verbena officinalis L. (vervain) cultured under different in vitro conditions. Nat. Prod. Res. 2017, 31, 1663–1668. [Google Scholar] [CrossRef]
- Kubica, P.; Szopa, A.; Dominiak, J.; Luczkiewicz, M.; Ekiert, H. Verbena officinalis (common vervain)—A review on the investigations of this medicinally important plant species. Planta Med. 2020, 86, 1–17. [Google Scholar] [CrossRef]
- European Pharmacopoeia, 10th ed.; Council of Europe: Strasburg, France, 2020.
- Van Wyk, B.-E.; Wink, M. Medicinal plants of the world: An illustrated scientific guide to important medicinal plants and their uses; Times Editions: Singapore, 2004; ISBN 9812329331. [Google Scholar]
- Rehecho, S.; Hidalgo, O.; García-Iñiguez de Cirano, M.; Navarro, I.; Astiasarán, I.; Ansorena, D.; Cavero, R.Y.; Calvo, M.I. Chemical composition, mineral content and antioxidant activity of Verbena officinalis L. LWT Food Sci. Technol. 2011, 44, 875–882. [Google Scholar] [CrossRef]
- Casanova, E.; García-Mina, J.M.; Calvo, M.I. Antioxidant and antifungal activity of Verbena officinalis L. leaves. Plant Foods Hum. Nutr. 2008, 63, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Jornet, P.; Camacho-Alonso, F.; Gómez-Garcia, F.; Molina Miñano, F.; Cañas, X.; Serafín, A.; Castillo, J.; Vicente-Ortega, V. Effects of potassium apigenin and verbena extract on the wound healing process of SKH-1 mouse skin. Int. Wound J. 2014, 11, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Speroni, E.; Cervellati, R.; Costa, S.; Guerra, M.C.; Utan, A.; Govoni, P.; Berger, A.; Müller, A.; Stuppner, H. Effects of differential extraction of Verbena officinalis on rat models of inflammation, cicatrization and gastric damage. Planta Med. 2007, 73, 227–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Food Safety Authority Panel on Dietetic Products, Nutrition and Allergies. 2010. Available online: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2010.1489 (accessed on 12 November 2020).
- European Commission—CosIng—Cosmetics. Available online: http://ec.europa.eu/growth/tools-databases/cosing/index.cfm?fuseaction=search.results (accessed on 22 January 2020).
- Ruzicka, J.; Lukas, B.; Merza, L.; Göhler, I.; Abel, G.; Popp, M.; Novak, J. Identification of Verbena officinalis based on ITS sequence analysis and RAPD-derived molecular markers. Planta Med. 2009, 75, 1271–1276. [Google Scholar] [CrossRef] [PubMed]
- Alipieva, K.; Korkina, L.; Orhan, I.E.; Georgiev, M.I. Verbascoside—A review of its occurrence, (bio)synthesis and pharmacological significance. Biotechnol. Adv. 2014, 32, 1065–1076. [Google Scholar] [CrossRef]
- Xue, Z.; Yang, B. Phenylethanoid glycosides: Research advances in their phytochemistry, pharmacological activity and pharmacokinetics. Molecules 2016, 21, 991. [Google Scholar] [CrossRef]
- Fu, G.; Pang, H.; Wong, Y. Naturally Occurring Phenylethanoid Glycosides: Potential Leads for New Therapeutics. Curr. Med. Chem. 2008, 15, 2592–2613. [Google Scholar] [CrossRef] [Green Version]
- Kubica, P.; Szopa, A.; Prokopiuk, B.; Komsta, Ł.; Pawłowska, B.; Ekiert, H. The influence of light quality on the production of bioactive metabolites – verbascoside, isoverbascoside and phenolic acids and the content of photosynthetic pigments in biomass of Verbena officinalis L. cultured in vitro. J. Photochem. Photobiol. B Biol. 2020, 203, 111768. [Google Scholar] [CrossRef]
- Clarkson, C.; Maharaj, V.J.; Crouch, N.R.; Grace, O.M.; Pillay, P.; Matsabisa, M.G.; Bhagwandin, N.; Smith, P.J.; Folb, P.I. In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa. J. Ethnopharmacol. 2004, 92, 177–191. [Google Scholar] [CrossRef]
- Acquaviva, R.; Di Giacomo, C.; Vanella, L.; Santangelo, R.; Sorrenti, V.; Barbagallo, I.; Genovese, C.; Mastrojeni, S.; Ragusa, S.; Iauk, L. Antioxidant activity of extracts of Momordica foetida Schumach. et Thonn. Molecules 2013, 18, 3241–3249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, V.; Goyal, S.; Ramawat, K.G. Scale up production of isoflavonoids in cell suspension cultures of Pueraria tuberosa grown in shake flasks and bioreactor. Eng. Life Sci. 2009, 9, 267–271. [Google Scholar] [CrossRef]
- Georgiev, M.I.; Weber, J.; MacIuk, A. Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl. Microbiol. Biotechnol. 2009, 83, 809–823. [Google Scholar] [CrossRef] [PubMed]
- Sesterhenn, K.; Distl, M.; Wink, M. Occurrence of iridoid glycosides in in vitro cultures and intact plants of Scrophularia nodosa L. Plant Cell Rep. 2007, 26, 365–371. [Google Scholar] [CrossRef]
- Grąbkowska, R.; Mielicki, W.; Wielanek, M.; Wysokińska, H. Changes of phenylethanoid and iridoid glycoside distribution in various tissues of shoot cultures and regenerated plants of Harpagophytum procumbens (Burch.) DC. ex Meisn. South African J. Bot. 2014, 95, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Khanpour-Ardestani, N.; Sharifi, M.; Behmanesh, M. Establishment of callus and cell suspension culture of Scrophularia striata Boiss.: An in vitro approach for acteoside production. Cytotechnology 2015, 67, 475–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estrada-Zúñiga, M.E.; Cruz-Sosa, F.; Rodríguez-Monroy, M.; Verde-Calvo, J.R.; Vernon-Carter, E.J. Phenylpropanoid production in callus and cell suspension cultures of Buddleja cordata Kunth. Plant Cell. Tiss. Organ Cult. 2009, 97, 39–47. [Google Scholar] [CrossRef]
- Ellis, B.E. Production of hydroxyphenylethanol glycosides in suspension cultures of Syringa vulgaris. Phytochemistry 1983, 22, 1941–1943. [Google Scholar] [CrossRef]
- Liu, J.Y.; Guo, Z.G.; Zeng, Z.L. Improved accumulation of phenylethanoid glycosides by precursor feeding to suspension culture of Cistanche salsa. Biochem. Eng. J. 2007, 33, 88–93. [Google Scholar] [CrossRef]
- Temporiti, M.E.E.; Frezza, C.; Beccaccioli, M.; Gelardi, L.; Bianco, A.; Bonina, F.P.; Nielsen, E. Production of verbascoside and its analogues in in vitro cultures of Verbascum thapsus L. Plant Cell. Tiss. Organ Cult. 2020, 140, 83–93. [Google Scholar] [CrossRef]
- Grzegorczyk-Karolak, I.; Kuźma, Ł.; Wysokińska, H. In vitro cultures of Scutellaria alpina as a source of pharmacologically active metabolites. Acta Physiol. Plant. 2016, 38, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Georgiev, M.; Ludwig-Müller, J.; Weber, J.; Stancheva, N.; Bley, T. Bioactive metabolite production and stress-related hormones in Devil’s claw cell suspension cultures grown in bioreactors. Appl. Microbiol. Biotechnol. 2011, 89, 1683–1691. [Google Scholar] [CrossRef] [PubMed]
- Piątczak, E.; Królicka, A.; Wielanek, M.; Wysokińska, H. Hairy root cultures of Rehmannia glutinosa and production of iridoid and phenylethanoid glycosides. Acta Physiol. Plant. 2012, 34, 2215–2224. [Google Scholar] [CrossRef]
- Wysokiińska, H.; Rózga, M. Establishment of transformed root cultures of Paulownia tomentosa for verbascoside production. J. Plant Physiol. 1998, 152, 78–83. [Google Scholar] [CrossRef]
- Gómez-Aguirre, Y.A.; Zamilpa, A.; González-Cortazar, M.; Trejo-Tapia, G. Adventitious root cultures of Castilleja tenuiflora Benth. as a source of phenylethanoid glycosides. Ind. Crops Prod. 2012, 36, 188–195. [Google Scholar] [CrossRef]
- Cirmi, S.; Maugeri, A.; Ferlazzo, N.; Gangemi, S.; Calapai, G.; Schumacher, U.; Navarra, M. Anticancer potential of Citrus juices and their extracts: A systematic review of both preclinical and clinical studies. Front. Pharmacol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Cirmi, S.; Navarra, M.; Woodside, J.V.; Cantwell, M.M. Citrus fruits intake and oral cancer risk: A systematic review and meta-analysis. Pharmacol. Res. 2018, 133, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Tatli, I.I.; Kahraman, C.; Akdemir, Z.S. The Therapeutic Activities of Selected Scrophulariaceae and Buddlejaceae Species and Their Secondary Metabolites against Neurodegenerative Disease; Elsevier Inc.: Amsterdam, The Netherlands, 2015; ISBN 9780124115293. [Google Scholar]
- Aryal, S.; Baniya, M.K.; Danekhu, K.; Kunwar, P.; Gurung, R.; Koirala, N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from western Nepal. Plants 2019, 8, 96. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.Z.; Sun, M.; Xing, J.; Luo, Q.; Corke, H. Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 2006, 78, 2872–2888. [Google Scholar] [CrossRef]
- Sánchez-Marzo, N.; Lozano-Sánchez, J.; Cádiz-Gurrea, M.L.; Herranz-López, M.; Micol, V.; Segura-Carretero, A. Relationships between chemical structure and antioxidant activity of isolated phytocompounds from Lemon verbena. Antioxidants 2019, 8, 324. [Google Scholar] [CrossRef] [Green Version]
- López-Laredo, A.R.; Gómez-Aguirre, Y.A.; Medina-Pérez, V.; Salcedo-Morales, G.; Sepúlveda-Jiménez, G.; Trejo-Tapia, G. Variation in antioxidant properties and phenolics concentration in different organs of wild growing and greenhouse cultivated Castilleja tenuiflora Benth. Acta Physiol. Plant. 2012, 34, 2435–2442. [Google Scholar] [CrossRef]
- De Souza, P.A.; Silva, C.G.; Machado, B.R.P.; Lucas, N.C.; Leitão, G.G.; Eleutherio, E.C.A.; Ortiz, G.M.D.; Benchetrit, L.C. Evaluation of antimicrobial, antioxidant and phototoxic activities of extracts and isolated compounds from Stachytarpheta cayennensis (Rich.) Vahl, Verbenaceae. Rev. Bras. Farmacogn. 2010, 20, 922–928. [Google Scholar] [CrossRef] [Green Version]
- Taviano, M.F.; Marino, A.; Trovato, A.; Bellinghieri, V.; La Barbera, T.M.; Güvenç, A.; Hürkul, M.M.; De Pasquale, R.; Miceli, N. Antioxidant and antimicrobial activities of branches extracts of five Juniperus species from Turkey. Pharm. Biol. 2011, 49, 1014–1022. [Google Scholar] [CrossRef] [PubMed]
- Taviano, M.F.; Marino, A.; Trovato, A.; De Pasquale, R.; Miceli, N. Antioxidant and antimicrobial activities of berries extracts of five Juniperus species under Juniperus section from Turkey. In Phytochemicals: Occurrence in Nature, Health Effects and Antioxidant Properties; Kuang, H.-X., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2013; Chapter IV; pp. 55–68. ISBN 978-1-62417–354-7. [Google Scholar]
- Li, J.; Ge, R.C.; Zheng, R.L.; Liu, Z.M.; Jia, Z.J. Antioxidative and chelating activities of phenylpropanoid glycosides from Pedicularis striata. Acta Pharmacol. Sin. 1997, 18, 77–80. [Google Scholar]
- Andjelković, M.; Van Camp, J.; De Meulenaer, B.; Depaemelaere, G.; Socaciu, C.; Verloo, M.; Verhe, R. Iron-chelation properties of phenolic acids bearing catechol and galloyl groups. Food Chem. 2006, 98, 23–31. [Google Scholar] [CrossRef]
- Avila, J.G.; De Liverant, J.G.; Martínez, A.; Martínez, G.; Muñoz, J.L.; Arciniegas, A.; Romo De Vivar, A. Mode of action of Buddleja cordata verbascoside against Staphylococcus aureus. J. Ethnopharmacol. 1999, 66, 75–78. [Google Scholar] [CrossRef]
- Abebe, M.; Abebe, A.; Mekonnen, A. Assessment of antioxidant and antibacterial activities of crude extracts of Verbena officinalis Linn root or Atuch (Amharic). Chem. Int. 2017, 3, 172–184. [Google Scholar] [CrossRef] [Green Version]
- Park, D.; Shin, K.; Choi, Y.; Guo, H.; Cha, Y.; Kim, S.H.; Han, N.S.; Joo, S.S.; Choi, J.K.; Lee, Y.B.; et al. Antimicrobial activities of ethanol and butanol fractions of white rose petal extract. Regul. Toxicol. Pharmacol. 2016, 76, 57–62. [Google Scholar] [CrossRef]
- Yuste, J.; Fung, D.Y.C. Evaluation of Salmonella typhimurium, Yersinia enterocolitica and Staphylococcus aureus counts in apple juice with cinnamon, by conventional media and thin agar layer method. Food Microbiol. 2003, 20, 365–370. [Google Scholar] [CrossRef]
- Dildar, A.; Chaudhary, M.A.; Raza, A.; Waheed, A.; Khan, S.R.; Ikram, M. Comparative study of antibacterial activity and mineral contents of various parts of Verbena officinalis Linn. Asian J. Chem. 2012, 24, 68–72. [Google Scholar]
- Kokotkiewicz, A.; Luczkiewicz, M.; Kowalski, W.; Badura, A.; Piekus, N.; Bucinski, A. Isoflavone production in Cyclopia subternata Vogel (honeybush) suspension cultures grown in shake flasks and stirred-tank bioreactor. Appl. Microbiol. Biotechnol. 2013, 97, 8467–8477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szopa, A.; Kokotkiewicz, A.; Luczkiewicz, M.; Ekiert, H. Schisandra lignans production regulated by different bioreactor type. J. Biotechnol. 2017, 247, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Schönbichler, S.A.; Bittner, L.K.H.; Pallua, J.D.; Popp, M.; Abel, G.; Bonn, G.K.; Huck, C.W. Simultaneous quantification of verbenalin and verbascoside in Verbena officinalis by ATR-IR and NIR spectroscopy. J. Pharm. Biomed. Anal. 2013, 84, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Ellnain-Wojtaszek, M.; Zgórka, G. High-performance liquid chromatography and thin-layer chromatography of phenolic acids from Ginkgo biloba L. leaves collected within vegetative period. J. Liq. Chromatogr. Relat. Technol. 1999, 22, 1457–1471. [Google Scholar] [CrossRef]
- Sułkowska-Ziaja, K.; Maślanka, A.; Szewczyk, A.; Muszyńska, B. Determination of Physiologically Active Compounds in Four Species of Genus Phellinus. Nat. Prod. Commun. 2017, 12, 363–366. [Google Scholar] [PubMed]
- Dahpour, A.A.; Rahdari, P.; Sobati, Z. Chemical composition of essential oil, antibacterial activity and brine shrimp lethality of ethanol extracts from Sedum pallidum. J. Med. Plants Res. 2012, 6, 3105–3109. [Google Scholar] [CrossRef]
- Cirmi, S.; Ferlazzo, N.; Gugliandolo, A.; Musumeci, L.; Mazzon, E.; Bramanti, A.; Navarra, M. Moringin from Moringa oleifera Seeds Inhibits Growth, Arrests Cell-Cycle, and Induces Apoptosis of SH-SY5Y Human Neuroblastoma Cells through the Modulation of NF-κB and Apoptotic Related Factors. Int. J. Mol. Sci. 2019, 20, 1930. [Google Scholar] [CrossRef] [Green Version]
- Celano, M.; Maggisano, V.; De Rose, R.F.; Bulotta, S.; Maiuolo, J.; Navarra, M.; Russo, D. Flavonoid Fraction of Citrus reticulata Juice Reduces Proliferation and Migration of Anaplastic Thyroid Carcinoma Cells. Nutr. Cancer 2015, 67, 1183–1190. [Google Scholar] [CrossRef]
- Miceli, N.; Filocamo, A.; Ragusa, S.; Cacciola, F.; Dugo, P.; Mondello, L.; Celano, M.; Maggisano, V.; Taviano, M.F. Chemical characterization and biological activities of phenolic-rich fraction from cauline leaves of Isatis tinctoria L. (Brassicaceae) growing in Sicily, Italy. Chem. Biodivers. 2017, 14. [Google Scholar] [CrossRef]
- National Committee for Clinical Laboratory Standards. Methods for Dilution Antimicrobial a Susceptibility tests for bacteria that Grow Aerobically; Approved Standard—Eighth Edition CLSI document M0-A8; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 2009.
- National Committee for Clinical Laboratory Standards. Method for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guide Standard—Eight Edition CLSI document M07-A8; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 2009.
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef]
Verbascoside | Isoverbascoside | Total Content | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Content | Specific Productivity | Content | Specific Productivity | ||||||||||
Vo-C | Weight of inoculum | 0.3 g | 7154.93 | ± | 201.31 a | 105.31 | 442.81 | ± | 8.95 a | 6.52 | 7597.74 | ± | 210.26 a |
0.6 g | 7176.14 | ± | 288.90 a | 105.39 | 528.17 | ± | 20.08 b | 7.76 | 7704.31 | ± | 308.98 a | ||
0.9 g | 7248.66 | ± | 253.76 a | 120.49 | 609.26 | ± | 22.48 c | 10.13 | 7857.92 | ± | 276.24 a | ||
Vo-S | 1.5 g | 6845.25 | ± | 441.38 b | 67.67 | 264.36 | ± | 12.15 d | 2.61 | 7109.61 | ± | 453.53 b | |
3.0 g | 7059.37 | ± | 34.62 b | 74.36 | 387.19 | ± | 1.92 e | 4.08 | 7446.56 | ± | 36.54 c | ||
4.5 g | 6288.95 | ± | 193.62 c | 63.88 | 477.25 | ± | 11.52 a | 4.85 | 6766.21 | ± | 205.14 d | ||
Vo-BB | 7685.00 | ± | 500.39 d | 104.39 | 306.40 | ± | 25.20 f | 4.16 | 7991.40 | ± | 525.59 a | ||
Vo-STB | 9176.87 | ± | 172.34 e | 115.20 | 339.91 | ± | 41.90 g | 4.27 | 9516.79 | ± | 214.24 e |
Protocatechuic Acid | Chlorogenic Acid | Vanillic Acid | Caffeic Acid | Ferulic Acid | Rosmarinic Acid | Total Content | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vo-C | Weight of Inoculum | 0.3 g | 6.91 | ± | 0.62 a | 1.49 | ± | 0.07 a | 1.28 | ± | 0.02 a | 2.63 | ± | 0.04 a | 4.91 | ± | 0.02 a | 2.20 | ± | 0.11 a | 19.42 | ± | 0.85 a |
0.6 g | 9.58 | ± | 0.02 b | 1.77 | ± | 0.03 b | 1.28 | ± | 0.01 a | 3.52 | ± | 0.01 b | 7.35 | ± | 0.03 b | 3.40 | ± | 0.38 b | 26.90 | ± | 0.45 b | ||
0.9 g | 9.41 | ± | 0.48 b | 1.57 | ± | 0.02 c | 1.20 | ± | 0.02 a | 3.48 | ± | 0.07 b | 5.56 | ± | 0.04 c | 3.79 | ± | 0.55 b | 25.00 | ± | 1.17 b | ||
Vo-S | 1.5 g | 2.09 | ± | 0.10 c | 0.12 | ± | 0.01 d | 1.43 | ± | 0.04 b | 4.28 | ± | 0.22 c | 6.78 | ± | 0.02 b | 13.39 | ± | 2.01 c | 28.09 | ± | 2.39 b | |
3.0 g | 7.00 | ± | 0.02 a | 0.92 | ± | 0.02 e | 1.30 | ± | 0.03 a | 4.09 | ± | 0.10 c | 9.81 | ± | 0.51 d | 26.34 | ± | 1.22 d | 49.46 | ± | 1.90 c | ||
4.5 g | 10.64 | ± | 0.06 d | 1.25 | ± | 0.04 f | 1.10 | ± | 0.10 c | 4.80 | ± | 0.06 d | 10.44 | ± | 0.03 e | 22.49 | ± | 0.39 e | 50.72 | ± | 0.68 c | ||
Vo-BB | 5.07 | ± | 1.12 e | 0.28 | ± | 0.10 g | 0.59 | ± | 0.36 d | 1.61 | ± | 0.79 e | 2.12 | ± | 0.67 f | 10.22 | ± | 2.47 f | 19.88 | ± | 5.51 a | ||
Vo-STB | 9.68 | ± | 0.90 b | 0.73 | ± | 0.09 e | 0.73 | ± | 0.15 d | 3.68 | ± | 0.16 b | 7.10 | ± | 0.85 b | 14.87 | ± | 2.74 c | 36.78 | ± | 4.90 d |
V. officinalis Extracts | Total Phenolics mg GAE/g Extract (DW) | DPPH Test IC50 (mg/mL) | Reducing Power Assay ASE/mL | Fe2+ Chelating Activity IC50 (mg/mL) |
---|---|---|---|---|
Vo-in vivo | 136.59 ± 2.84 a | 0.222 ± 0.008 a | 2.626 ± 0.067 a | 1.695 ± 0.039 a |
Vo-C | 126.55 ± 0.78 b | 0.224 ± 0.012 a | 2.609 ± 0.314 a,b | 0.908 ± 0.042 b |
Vo-S | 189.91 ± 2.93 c | 0.110 ± 0.020 b | 1.762 ± 0.329 b,c | 0.767 ± 0.250 c |
Vo-STB | 179.19 ± 1.09 d | 0.137 ± 0.030 c | 1.779 ± 0.100 b,c | 1.031 ± 0.042 d |
Standard | - | BHT 0.0656 ± 0.008 d | BHT 0.891 ± 0.622 d | EDTA 0.0067 ± 0.0003 e |
V. officinalis Extract | Gram-Positive Bacteria | |||||
---|---|---|---|---|---|---|
S. epidermidis | S. aureus | B. cereus | L. monocytogenes | Y. enterocolitica | K. pneumoniae | |
Vo-in vivo | 0.6 (9.0) | 1.1 (9.0) | 2.2 (4.5) | 2.2 (9.0) | 1.1 (4.5) | 1.1 (4.5) |
Vo-C | 1.1 (9.0) | 2.2 (4.5) | 4.5 (9.0) | 4.5 (18.0) | 2.2 (4.5) | 2.2 (4.5) |
Vo-S | 0.6 (9.0) | 2.2 (9.0) | 4.5 (9.0) | 4.5 (9.0) | 1.1 (9.0) | 1.1 (9.0) |
Vo-STB | 0.6 (0.6) | 4.5 (4.5) | 4.5 (4.5) | 2.2 (2.2) | 0.6 (0.6) | 0.6 (0.6) |
Gram−Negative Bacteria | ||||||
Ps. aeruginosa | P. mirabilis | Sh. sonnei | S. enteritidis | E. aerogenes | E. coli | |
Vo-in vivo | 1.1 (9.0) | 2.2 (9.0) | 2.2 (4.5) | 4.5 (9.0) | 4.5 (9.0) | 4.5 (18.0) |
Vo-C | 2.2 (18.0) | 4.5 (9.0) | 9.0 (9.0) | 9.0 (9.0) | 9.0 (18.0) | 9.0 (18.0) |
Vo-S | 2.2 (9.0) | 2.2 (9.0) | 9.0 (18.0) | 4.5 (9.0) | 9.0 (9.0) | 9.0 (18.0) |
Vo-STB | 2.2 (2.2) | 2.2 (2.2) | 4.5 (4.5) | 4.5 (4.5) | 4.5 (4.5) | 4.5 (4.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubica, P.; Szopa, A.; Kokotkiewicz, A.; Miceli, N.; Taviano, M.F.; Maugeri, A.; Cirmi, S.; Synowiec, A.; Gniewosz, M.; Elansary, H.O.; et al. Production of Verbascoside, Isoverbascoside and Phenolic Acids in Callus, Suspension, and Bioreactor Cultures of Verbena officinalis and Biological Properties of Biomass Extracts. Molecules 2020, 25, 5609. https://doi.org/10.3390/molecules25235609
Kubica P, Szopa A, Kokotkiewicz A, Miceli N, Taviano MF, Maugeri A, Cirmi S, Synowiec A, Gniewosz M, Elansary HO, et al. Production of Verbascoside, Isoverbascoside and Phenolic Acids in Callus, Suspension, and Bioreactor Cultures of Verbena officinalis and Biological Properties of Biomass Extracts. Molecules. 2020; 25(23):5609. https://doi.org/10.3390/molecules25235609
Chicago/Turabian StyleKubica, Paweł, Agnieszka Szopa, Adam Kokotkiewicz, Natalizia Miceli, Maria Fernanda Taviano, Alessandro Maugeri, Santa Cirmi, Alicja Synowiec, Małgorzata Gniewosz, Hosam O. Elansary, and et al. 2020. "Production of Verbascoside, Isoverbascoside and Phenolic Acids in Callus, Suspension, and Bioreactor Cultures of Verbena officinalis and Biological Properties of Biomass Extracts" Molecules 25, no. 23: 5609. https://doi.org/10.3390/molecules25235609
APA StyleKubica, P., Szopa, A., Kokotkiewicz, A., Miceli, N., Taviano, M. F., Maugeri, A., Cirmi, S., Synowiec, A., Gniewosz, M., Elansary, H. O., Mahmoud, E. A., El-Ansary, D. O., Nasif, O., Luczkiewicz, M., & Ekiert, H. (2020). Production of Verbascoside, Isoverbascoside and Phenolic Acids in Callus, Suspension, and Bioreactor Cultures of Verbena officinalis and Biological Properties of Biomass Extracts. Molecules, 25(23), 5609. https://doi.org/10.3390/molecules25235609