Rose Hips, a Valuable Source of Antioxidants to Improve Gingerbread Characteristics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Rose Hips
2.2. Influence of Salts and pH on the Antioxidant Activity and Color of Rose Hip Ethanolic Extract
2.3. Gingerbread Characterization
3. Materials and Methods
3.1. Chemical Materials
3.2. Biological Material
3.3. Extract Characterization
3.3.1. Antioxidant Activity by Reaction with ABTS Radical
3.3.2. Antioxidant Activity by Reaction with DPPH Radical
3.3.3. Total Polyphenols by Folin–Ciocalteu
3.3.4. Total Polyphenols by Abs 280
3.3.5. Total Cinnamic Acids
3.3.6. Total Flavonols
3.3.7. HPLC Analysis of Polyphenols
3.3.8. Carotenoid Extraction
3.3.9. Separation of Carotenoids by RP-HPLC
3.3.10. Color Parameters (CIELab)
3.4. Study of Factors Influencing the Extract Properties
3.4.1. Effects of Salts
3.4.2. Effects of pH Variations
3.5. Gingerbread Making
3.6. Gingerbread Analysis
3.6.1. Physicochemical Analysis
3.6.2. Microbiological Analysis
3.6.3. Sensory Analysis
3.6.4. In Vitro Antioxidant Activity of Gingerbread
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scott-Thomas, C. Natural and Organic Trends Drive European Food Colourings Growth. Available online: https://www.confectionerynews.com/Article/2014/10/08/Natural-and-organic-trends-drive-European-food-colourings-growth# (accessed on 15 October 2020).
- Watson, E. Kalsec: In Europe, Natural Food Colors Are Now ‘Standard Operating Procedure’, in the US Companies Are Just Starting to Look at Them. Available online: http://www.foodnavigator-usa.com/ (accessed on 1 November 2020).
- Cunja, V.; Mikulic-Petkovek, M.; Zupan, A.; Stampar, F.; Schmitzer, V. Frost decreases content of sugars, ascorbic acid and some quercentin glycosides but stimulates selected carotenes in Rosa canina hips. J. Plant Physiol. 2015, 178, 55–63. [Google Scholar] [CrossRef]
- Patel, S. Rose hips as complementary and alternative medicine: Overview of the present status and prospects. Mediterr. J. Nutr. Metab. 2012. [Google Scholar] [CrossRef]
- Yildiz, O.; Alpaslan, M. Rose hip marmalade. Food Technol. Biotechnol. 2012, 50, 98–106. [Google Scholar]
- Taneva, I.; Panayotov, P. Analysis of vitamin C enriched yoghurt by direct extraction of rosehip fruit in cow’s milk during storage. Ukr. J. Food Sci. 2019, 7, 61–69. [Google Scholar] [CrossRef]
- Boz, H.; Karaoğlu, M.M. Improving the quality of whole wheat bread by using various plant origin materials. Czech J. Food Sci. 2013, 31, 457–466. [Google Scholar] [CrossRef] [Green Version]
- Chrubasik-Hausmann, S.; Chrubasik, C.; Neumann, E.; Müller-Ladner, U. A Pilot study on the effectiveness of a rose hip shell powder in patients suffering from chronic musculoskeletal pain. Phytother. Res. 2014, 28, 1720–1726. [Google Scholar] [CrossRef] [PubMed]
- Czyzowska, A.; Klewicka, E.; Pogorzelski, E.; Nowak, A. Polyphenols, vitamin C and antioxidant activity in wines from Rosa canina L. and Rosa rugosa Thunb. J. Food Compos. Anal. 2015, 39, 62–68. [Google Scholar] [CrossRef]
- Lattanzio, F.; Greco, E.; Carretta, D.; Cervellati, R.; Govoni, P.; Speroni, E. In vivo anti-inflammatory effect of Rosa canina L. extract. J. Ethnopharmacol. 2011, 137, 880–885. [Google Scholar] [CrossRef] [PubMed]
- Winther, K.; Campbell-Tofte, J.; Vinther Hansen, A.S. Bioactive ingredients of rose hips (Rosa canina L) with special reference to antioxidative and anti-inflammatory properties: in vitro studies. Bot. Targets Ther. 2016, 11. [Google Scholar] [CrossRef] [Green Version]
- Kerasioti, E.; Apostolou, A.; Kafantaris, I.; Chronis, K.; Kokka, E.; Dimitriadou, C.; Tzanetou, E.N.; Priftis, A.; Koulocheri, S.D.; Haroutounian, S.A.; et al. Polyphenolic Composition of Rosa canina, Rosa sempervivens and Pyrocantha coccinea Extracts and Assessment of Their Antioxidant Activity in Human Endothelial Cells. Antioxidants 2019, 8, 92. [Google Scholar] [CrossRef] [Green Version]
- Ghendov-Moșanu, A.; Cojocari, D.; Balan, G.; Sturza, R. Antimicrobial activity of rose hip and hawthorn powders on pathogenic bacteria. J. Eng. Sci. 2018, 4, 100–107. [Google Scholar] [CrossRef]
- Cojocari, D.; Sturza, R.; Sandulachi, E.; Macari, A.; Balan, G.; Ghendov-Moșanu, A. Inhibiting of accidental pathogenic microbiota in meat products with berry powders. J. Eng. Sci. 2019, 1, 114–122. [Google Scholar] [CrossRef]
- Sturza, R.; Sandulachi, E.; Cojocari, D.; Balan, G.; Popescu, L.; Ghendov-Moșanu, A. Study of antimicrobial properties of berry powders in cream cheese. J. Eng. Sci. 2019, 3, 125–136. [Google Scholar] [CrossRef]
- Rovná, K.; Ivanišová, E.; Žiarovská, J.; Ferus, P.; Terentjeva, M.; Kowalczewski, P.Ł.; Kačániová, M. Characterization of Rosa Canina fruits collected in urban areas of Slovakia. Genome size, iPBS profiles and antioxidant and antimicrobial activities. Molecules 2020, 25, 1888. [Google Scholar]
- Ozturk Yilmaz, S.; Ercisli, S. Antibacterial and antioxidant activity of fruits of some rose species from Turkey. Rom. Biotechnol. Lett. 2011, 16, 6407–6411. [Google Scholar]
- Mármol, I.; Sánchez-de-Diego, C.; Jiménez-Moreno, N.; Ancín-Azpilicueta, C.; Rodríguez-Yoldi, M.J. Therapeutic applications of rose hips from different Rosa species. Int. J. Mol. Sci. 2017, 18, 1137. [Google Scholar] [CrossRef]
- Montazeri, N.; Baher, E.; Mirzajani, F.; Barami, Z.; Yousefian, S. Phytochemical contents and biological activities of Rosa canina fruits from Iran. J. Med. Plant. Res. 2011, 5, 4584–4589. [Google Scholar]
- Bordei, D.; Stoica, A. Bakery, pasta and biscuit industry. In Tratat de industrie alimentară. Tehnologii alimentare (In Romanian) (Treaty of Food Industry. Food technologies); ASAB: Bucharest, Romania, 2009; pp. 821–823. [Google Scholar]
- Cristea, E.; Sturza, R.; Jauragi, P.; Niculaua, M.; Ghendov-Moșanu, A.; Patras, A. Influence of pH and ionic strength on the color parameters and antioxidant properties of an ethanolic red grape marc extract. J. Food Biochem. 2019, 43, e12788. [Google Scholar] [CrossRef]
- Ghendov-Mosanu, A.; Cristea, E.; Sturza, R.; Niculaua, M.; Patras, A. Synthetic dye’s substitution with chokeberry extract in jelly candies. J. Food Sci. Technol. 2020, 57, 4383–4394. [Google Scholar] [CrossRef]
- Ghendov-Mosanu, A.; Cristea, E.; Patras, A.; Sturza, R.; Padureanu, S.; Deseatnicova, O.; Turculet, N.; Boestean, O.; Niculaua, M. Potential application of Hippophae Rhamnoides in wheat bread production. Molecules 2020, 25, 1272. [Google Scholar] [CrossRef] [Green Version]
- Demir, N.; Yioldiz, O.; Alpaslan, M.; Hayaloglu, A.A. Evaluation of volatiles, phenolic compounds and antioxidant activities of rose hip (Rosa L.) fruits in Turkey. LWT Food Sci. Technol. 2014, 57, 126–133. [Google Scholar] [CrossRef]
- Ercisli, S. Chemical composition of fruits in some rose (Rosa spp.) species. Food Chem. 2007, 104, 1379–1384. [Google Scholar] [CrossRef]
- Türkben, C.; Uylaşer, V.; İncedayı, B.; Çelikkol, I. Effects of different maturity periods and processes on nutritional components of rose hip (Rosa canina L.). J. Food Agric. Environ. 2010, 8–1, 26–30. [Google Scholar]
- Skrypnik, L.; Chupakhina, G.; Feduraev, P.; Chupakhina, N.; Maslennikov, P. Evaluation of the rose hips of Rosa canina L. and Rosa rugosa Thunb. as a valuable source of biological active compounds and antioxidants on the Baltic Sea coast. Pol. J. Nat. Sci. 2019, 34, 395–413. [Google Scholar]
- Andersson, S.C.; Rumpunen, K.; Johansson, E.; Olsson, M.E. Carotenoid content and composition in rose hips (Rosa spp.) during ripening, determination of suitable maturity marker and implications for health promoting food products. Food Chem. 2011, 128, 689–696. [Google Scholar] [CrossRef]
- Ghendov-Moșanu, A.; Socaciu, C.; Pintea, A.; Bele, C.; Tudor, C.; Sturza, R. Influence of thermal processing on carotenoid content and antioxidant activity in berry’s pulp. In Proceedings of the Works of the International Conference on Carotenoid Research and Application in Agro-Food and Health, Lemesos, Cyprus, 26–28 November 2019; p. 24. [Google Scholar]
- Medveckienė, B.; Kulaitienė, J.; Jarienė, E.; Vaitkevičienė, N.; Hallman, E. carotenoids, polyphenols, and ascorbic acid in organic rosehips (Rosa spp.) Cultivated in Lithuania. Appl. Sci. 2020, 10, 5337. [Google Scholar] [CrossRef]
- Al-Yafeai, A.; Bellstedt, P.; Böhm, V. Bioactive compounds and antioxidant capacity of Rosa rugosa depending on degree of ripeness. Antioxidants 2018, 7, 134. [Google Scholar] [CrossRef] [Green Version]
- Patras, A. Stability and colour evaluation of red cabbage waste hydroethanolic extract in presence of different food additives or ingredients. Food Chem. 2019, 275, 539–548. [Google Scholar] [CrossRef]
- Lemańska, K.; Szymusiak, H.; Tyrakowska, B.; Zieliński, R.; Soffers, A.E.M.F.; Rietjens, I.M.C.M. The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones. Free Radic. Biol. Med. 2001, 31, 869–881. [Google Scholar] [CrossRef]
- GOST 15810-2014. Confectionery. Gingerbread Confectionery. General Specification; Federal Agency for Technical Regulation and Metrology: Moscow, Russian, 2019.
- Almeida, E.L.; Chang, Y.K.; Steel, C.J. Dietary fibre sources in bread: Influence on technological quality. LWT Food Sci. Technol. 2013, 50, 545–553. [Google Scholar] [CrossRef] [Green Version]
- ISO 4833-2:2013/COR 1:2014. In Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 2: Colony Count at 30 °C by the Surface Plating Technique—Technical Corrigendum 1; International Organization for Standardization: Geneva, Switzerland, 2014.
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2006, 27, 181. [Google Scholar] [CrossRef]
- Cendrowski, A.; Kraśniewska, K.; Przybył, J.L.; Zielińska, A.; Kalisz, S. Antibacterial and antioxidant activity of extracts from rose fruits (Rosa rugosa). Molecules 2020, 25, 1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanishlieva, N.V.; Marinova, E.M. Stabilisation of edible oils with natural antioxidants. Eur. J. Lipid Sci. Technol. 2001, 103, 752–767. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 16275016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Amaya, D.B. Food Carotenoids: Chemistry, Biology and Technology, 1st ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2015; pp. 174–191. [Google Scholar]
- ISO 750:1998 Fruit and vegetable products. In Determination of Titratable Acidity; International Organization for Standardization: Geneva, Switzerland, 1998.
- Park, Y.W.; Bell, L.N. Determination of Moisture and Ash Contents of Foods. In Handbook of Food Analysis, 2nd ed.; Nollet, L.M.L., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 2004; Volume 1, pp. 55–82. [Google Scholar]
- ISO 2173:2003 Fruit and vegetable products. Determination of soluble solids. In Refractometric Method; International Organization for Standardization: Geneva, Switzerland, 2003.
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Ribereau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology: The Chemistry of Wine Stabilization and Treatments, 2nd ed.; John Wiley and Sons Ltd.: Chichester, UK, 2006; Volume 2, pp. 171–174. [Google Scholar]
- Spranger, I.; Sun, B.; Mateus, A.M.; de Freitas, V.; Ricardo-da-Silva, J. Chemical characterization and antioxidant activities of oligomeric and polymeric procyanidin fractions from grape seeds. Food Chem. 2008, 108, 519–532. [Google Scholar] [CrossRef] [Green Version]
- Sant’Anna, V.; Brandelli, A.; Marczak Damasceno Ferreira, L.; Tessaro, I.C. Kinetic modeling of total polyphenol extraction from grape marc and characterization of extracts. Sep. Purif. Technol. 2012, 100, 82–87. [Google Scholar] [CrossRef]
- Britton, G.; Liaaen-Jensen, S.; Pfander, H. Carotenoids; Birkhauser: Basel, Switzerland, 1995; Volume 1A, pp. 210–214. [Google Scholar]
- OIV Method OIV-MA-AS2-11: R2006. In Determination of Chromatic Characteristics according to CIELab; International Methods of Wine and Must Analysis, International Organisation of Vine and Wine: Paris, France, 2013; Volume 1.
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2010. [Google Scholar]
- GOST 5898-87. Confectionery. Methods for Determination of Acidity and Alkalinity; Federal Agency for Technical Regulation and Metrology: Moscow, Russian, 2015.
- GOST 10114-80. Bisquits. Method for Determination of Sweeling in Water; Federal Agency for Technical Regulation and Metrology: Moscow, Russian, 2015.
- ISO 6658:2017. Sensory Analysis. Methodology. General Guidance; International Organization for Standardization: Geneva, Switzerland, 2017. [Google Scholar]
- Paninski, L. Estimation of entropy and mutual information. Neural Comput. 2003, 15, 1191–1253. [Google Scholar] [CrossRef] [Green Version]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; pp. 13–57. [Google Scholar]
Indices | Quantity |
---|---|
Total polyphenols (Folin–Ciocalteu), mg gallic acid equivalents (GAE)/100 g | 5484 ± 1001 |
Total polyphenols (Abs280), mg GAE/100 g | 2968 ± 21 |
Total flavonoids, mg quercetin equivalents (QE)/100 g | 2130 ± 39 |
Cinnamic acids, mg caffeic acid equivalents (CAE)/100 g | 224 ± 12 |
Flavonols, mg QE/100 g | 194 ± 7 |
Procyanidin B1, mg/100 g | 29.1 ± 1.7 |
Chlorogenic (trans-5-O-caffeoylquinic) acid, mg/100 g | 10.5 ± 0.2 |
Epicatechin, mg/100 g | 5.7 ± 1.2 |
Procyanidin B2, mg/100 g | 5.2 ± 1.1 |
Gallic acid, mg/100 g | 5.1 ± 0.02 |
Salicylic acid, mg/100 g | 5.0 ± 0.0 |
Catechin, mg/100 g | 4.6 ± 0.4 |
Ferulic acid, mg/100 g | 3.3 ± 1.3 |
Gentisic acid, mg/100 g | 2.9 ± 0.4 |
Protocatechuic acid, mg/100 g | 2.1 ± 0.2 |
p-Hydroxybenzoic acid, mg/100 g | 2.1 ± 0.8 |
Polydatin, mg/100 g | 1.6 ± 1.2 |
Sinapic acid, mg/100 g | 0.3 ± 0.1 |
p-Coumaric acid, mg/100 g | 0.2 ± 0.1 |
Vanillic acid, mg/100 g | 0.2 ± 0.1 |
Cis-resveratrol, mg/100 g | 0.1 ± 0.0 |
m-Hydroxybenzoic acid, mg/100 g | Traces |
Quercetin, mg/100 g | Traces |
Caffeic acid, mg/100 g | Traces |
Trans-resveratrol, mg/100 g | nd |
Hyperoside, mg/100 g | nd |
Ferulic acid methyl ester, mg/100 g | nd |
Syringic acid, mg/100 g | nd |
Total carotenoids, mg/100 g | 64.03 ± 1.45 |
Zeaxanthin, mg/100 g | 1.99 ± 0.14 |
α-Cryptoxanthin, mg/100 g | 1.28 ± 0.08 |
β-Cryptoxanthin, mg/100 g | 0.74 ± 0.03 |
Rubixanthin, mg/100 g | 1.22 ± 0.24 |
cis-β-Carotene, mg/100 g | 0.45 ± 0.05 |
all-trans-β-Carotene, mg/100 g | 1.84 ± 0.27 |
cis-γ-Carotene, mg/100 g | 0.46 ± 0.02 |
cis-Lycopene, mg/100 g | 0.38 ± 0.01 |
all-trans-Lycopene, mg/100 g | 2.72 ± 0.18 |
ABTS Antioxidant activity, mmol trolox equivalents (TE)/100 g | 41.54 ± 0.33 |
DPPH Antioxidant activity, mmol TE/100 g | 140.8 ± 1.4 |
Salt and Concentration | L* | A* | B* | C* | H*, ° | ΔE* |
---|---|---|---|---|---|---|
Control | 92.42 ± 0.03 a | 0.51 ± 0.01 d | 18.30 ± 0.07 d | 18.30 ± 0.07 a | 88.42 ± 0.01 a,e | - |
NaCl, 0.001 M | 95.63 ± 0.15 c | −0.25 ± 0.02 b | 14.78 ± 0.26 a,b | 14.78 ± 0.26 b | 90.97 ± 0.18 a | 4.82 ± 0.22 a |
NaCl, 0.01 M | 95.95 ± 0.24 c | −0.30 ± 0.03 a,b | 14.86 ± 0.30 b | 14.87 ± 0.30 b | 91.09 ± 0.16 a,c | 18.36 ± 0.31 b |
NaCl, 0.1 M | 96.23 ± 0.10 c | −0.35 ± 0.02 a | 14.62 ± 0.12 a,b | 14.63 ± 0.12 b | 91.36 ± 0.12 c | 5.39 ± 0.09 c,e |
KNO3, 0.001 M | 95.97 ± 0.20 c | −0.04 ± 0.01 c | 15.47 ± 0.03 c | 15.47 ± 0.03 b | 90.14 ± 0.03 b | 5.37 ± 0.17 c,e |
KNO3, 0.01 M | 95.04 ± 0.13 c | −0.03 ± 0.03 c | 15.44 ± 0.07 c | 15.44 ± 0.07 b | 90.07 ± 0.10 b,d | 4.57 ± 0.10 a |
KNO3, 0.1 M | 94.42 ± 0.07 b | 0.06 ± 0.02 c | 15.91 ± 0.09 c | 15.91 ± 0.09 b | 89.77 ± 0.07 d | 3.15 ± 0.04 d |
CaCl2, 0.001 M | 95.97 ± 0.20 c | −0.29 ± 0.03 a,b | 14.32 ± 0.06 a | 14.33 ± 0.06 b | 91.18 ± 0.13 a,c | 5.03 ± 0.17 a,e |
CaCl2, 0.01 M | 95.70 ± 0.34 c | −0.26 ± 0.01 b | 14.80 ± 0.19 a,b | 14.80 ± 0.19 b | 90.99 ± 0.16 a | 4.86 ± 0.33 a,e |
CaCl2, 0.1 M | 96.02 ± 0.08 c | −0.26 ± 0.01 b | 14.82 ± 0.22 a,b | 14.82 ± 0.22 b | 91.01 ± 0.05 a,c | 5.07 ± 0.16 a,c,e |
CIELab Parameters | L* | a* | b* | C* | H*, ° | ΔE* |
---|---|---|---|---|---|---|
Control for 2.5 | 97.3 ± 0.0 a | −0.1 ± 0.0 a | 6.0 ± 0.0 a | 6.0 ± 0.0 a | 91.27 ± 0.05 a | 0.85 ± 0.14 a |
pH = 2.5 | 98.1 ± 0.1 a | −0.3 ± 0.0 a | 6.2 ± 0.1 a | 6.3 ± 0.1 a | 92.55 ± 0.20 b | |
Control for 3.8 | 96.0 ± 0.1 a | −0.1 ± 0.0 a | 6.8 ± 0.0 a | 6.8 ± 0.0 a | 90.88 ± 0.14 a | 2.29 ± 3.53 a |
pH = 3.8 | 94.0 ± 3.5 a | 0.1 ± 0.3 a | 7.9 ± 0.9 a | 7.9 ± 0.9 a | 149.32 ± 0.18 a | |
Control for 5.4 | 95.9 ± 0.2 a | −0.2 ± 0.1 a | 9.1 ± 0.0 a | 9.1 ± 0.0 a | 88.42 ± 0.01 a | 16.30 ± 0.24 b |
pH = 5.4 | 79.6 ± 0.1 b | 0.1 ± 0.0 a | 9.2 ± 0.2 a | 9.2 ± 0.2 a | 89.54 ± 0.28 b | |
Control for 7.3 | 95.9 ± 0.2 a | −0.2 ± 0.1 a | 9.1 ± 0.0 a | 9.1 ± 0.0 a | 91.06 ± 0.22 a | 1.78 ± 0.33 a |
pH = 7.3 | 95.7 ± 0.5 a | 1.1 ± 0.0 a | 10.3 ± 0.1 b | 10.3 ± 0.1 a | 83.65 ± 0.05 b | |
Control for 8.7 | 96.9 ± 0.1 a | −0.12 ± 0.1 a | 7.3 ± 0.1 a | 7.3 ± 0.1 a | 91.06 ± 0.22 a | 8.46 ± 1.21 c |
pH = 8.7 | 92.7 ± 1.2 b | 2.4 ± 0.2 b | 14.2 ± 0.6 b | 14.4 ± 0.6 a | 80.27 ± 0.45 b |
Quality Indicators | Gingerbread | ||||||||
---|---|---|---|---|---|---|---|---|---|
Control | 2% RHP | 4% RHP | |||||||
1st Day | 25th Day | 45th Day | 1st Day | 25th Day | 45th Day | 1st Day | 25th Day | 45th Day | |
Moisture content, % | 10.31 ± 0.12 a | 10.0 ± 0.14 a | 9.45 ± 0.08 b | 14.01 ± 0.15 c | 13.41 ± 0.17 d | 12.96 ± 0.14 e | 14.68 ± 0.18 f | 13.87 ± 0.15 c,d | 13.42 ± 0.16 g |
Alkalinity, degrees | 1.99 ± 0.01 a | 1.94 ± 0.01 b | 1.90 ± 0.01 c | 1.97 ± 0.01 a | 1.93 ± 0.01 b | 1.89 ± 0.01 c | 1.94 ± 0.01 b | 1.89 ± 0.01 c | 1.85 ± 0.01 d |
Swelling in water, % | 153 ± 6 a | 158 ± 7 a | 160 ± 10 a | 157 ± 6 a | 160 ± 8 a | 165 ± 5 a | 161 ± 9 a | 169 ± 14 a | 174 ± 11 a |
Total viable count (TVC), % of the maximum admissible number * | 9.0 ± 1.3 a | 15.4 ± 1.9 b | 26.3 ± 2.7 c | 5.3 ± 0.6 a | 14.9 ± 1.5 b | 25.4 ± 2.1 c | 4.2 ± 0.5 a | 13.0 ± 1.6 b | 21.7 ± 2.1 c |
DPPH• antioxidant activity, µM TE/100 g | n/a | n/a | n/a | 12.07 ± 1.94 a | 7.74 ± 2.11 b,e | 3.21 ± 0.96 c | 16.58 ± 1.15 d | 11.74 ± 1.91 a,b | 6.56 ± 0.69 c,e |
Sensory profile total score | 23.18 ± 0.17 a | 21.53 ± 0.20 b,f | 20.42 ± 0.09 c | 24.62 ± 0.20 d,f | 23.40 ± 0.10 a,e | 21.80 ± 0.10 b | 23.81 ± 0.17 e | 22.80 ± 0.10 a | 21.00 ± 0.40 f |
Appearance | 4.35 ± 0.05 a,f | 4.21 ± 0.02 a,b,g | 4.10 ± 0.02 b,g | 4.79 ± 0.04 c | 4.60 ± 0.10 c,d | 4.30 ± 0.10 a,b,g | 4.66 ± 0.07 c,e | 4.50 ± 0.10 c,f | 4.10 ± 0.10 g |
Taste | 4.69 ± 0.04 a,d,e | 4.48 ± 0.02 d | 4.13 ± 0.02 b,c | 4.97 ± 0.06 e | 4.80 ± 0.10 a,e | 4.50 ± 0.10 d | 4.80 ± 0.20 a,e | 4.60 ± 0.10 a,d | 4.20 ± 0.10 c |
Odor | 4.74 ± 0.05 a,f,g | 4.22 ± 0.01 b,c,d,e | 4.05 ± 0.02 c,e | 5.00 ± 0.00 a | 4.60 ± 0.10 f,g | 4.40 ± 0.10 d,f,g,e | 4.95 ± 0.05 a | 4.50 ± 0.10 g | 4.30 ± 0.20 e,g |
Color | 4.57 ± 0.06 a,d | 4.32 ± 0.01 a,b | 4.14 ± 0.02 b | 4.97 ± 0.06 c,d | 4.80 ± 0.10 d | 4.40 ± 0.10 a,b | 4.63 ± 0.12 a,d | 4.60 ± 0.10 a,d | 4.37 ± 0.25 a,b |
Consistency | 4.83 ± 0.06 a,f | 4.30 ± 0.20 b,c,d,e | 4.00 ± 0.10 c,d | 4.90 ± 0.10 a | 4.60 ± 0.10 a,b,f | 4.20 ± 0.10 d,f,e | 4.77 ± 0.06 f,e | 4.60 ± 0.10 b,f,e | 4.03 ± 0.15 e |
Compound | Max Absorption (nm) | Retention Time (min) |
---|---|---|
Gallic acid | 280 | 5.294 |
Protocatechuic acid | 256 | 9.267 |
p-hydroxybenzoic acid | 256 | 13.918 |
Gentisic acid | 324 | 15.531 |
Procyanidin B1 | 280 | 16.704 |
m-hydroxybenzoic acid | 280 | 17.989 |
Catechin | 280 | 18.53 |
Vanillic acid | 256 | 20.319 |
Caffeic acid | 324 | 20.485 |
trans-5-O-caffeoylquinic acid | 324 | 22.871 |
Procyanidin B2 | 280 | 23.433 |
Syringic acid | 280 | 25.002 |
Epicatechin | 280 | 26.836 |
p-coumaric acid | 324 | 29.695 |
Ferulic acid | 324 | 36.233 |
Salycilic acid | 280 | 36.995 |
Polydatin | 280 | 38.234 |
Sinapic acid | 324 | 38.564 |
Hyperoside | 280 | 47.305 |
trans-resveratrol | 324 | 49.333 |
cis-resveratrol | 324 | 57.089 |
Ferulic acid methyl ester | 365 | 57.754 |
Quercetin | 256 | 65.278 |
Compound | Max Absorption (nm) | Retention Time (min) |
---|---|---|
Zeaxanthin | 426, 450, 476 | 10.015 |
α-Cryptoxanthin | 420, 445, 473 | 33.249 |
β-Cryptoxanthin | 428, 451, 476 | 35.924 |
Rubixanthin | 427, 460, 490 | 44.551 |
cis-β-Carotene | 424, 446, 472 | 69.650 |
all-trans-β-Carotene | 421, 452, 478 | 74.212 |
cis-γ-Carotene | 428, 456, 477 | 77.989 |
cis-Lycopene | 444, 467, 496 | 84.343 |
all-trans-Lycopene | 448, 471, 503 | 94.026 |
Sample Availability: Samples of the compounds are available from the authors. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghendov-Mosanu, A.; Cristea, E.; Patras, A.; Sturza, R.; Niculaua, M. Rose Hips, a Valuable Source of Antioxidants to Improve Gingerbread Characteristics. Molecules 2020, 25, 5659. https://doi.org/10.3390/molecules25235659
Ghendov-Mosanu A, Cristea E, Patras A, Sturza R, Niculaua M. Rose Hips, a Valuable Source of Antioxidants to Improve Gingerbread Characteristics. Molecules. 2020; 25(23):5659. https://doi.org/10.3390/molecules25235659
Chicago/Turabian StyleGhendov-Mosanu, Aliona, Elena Cristea, Antoanela Patras, Rodica Sturza, and Marius Niculaua. 2020. "Rose Hips, a Valuable Source of Antioxidants to Improve Gingerbread Characteristics" Molecules 25, no. 23: 5659. https://doi.org/10.3390/molecules25235659
APA StyleGhendov-Mosanu, A., Cristea, E., Patras, A., Sturza, R., & Niculaua, M. (2020). Rose Hips, a Valuable Source of Antioxidants to Improve Gingerbread Characteristics. Molecules, 25(23), 5659. https://doi.org/10.3390/molecules25235659