Salmon (Salmo salar) Cooking: Achieving Optimal Quality on Select Nutritional and Microbiological Safety Characteristics for Ready-to-Eat and Stored Products
Abstract
:1. Introduction
2. Results
2.1. Technological Characteristics of Chosen Cooking Methods
2.2. Proximate Composition and Fatty Acids Profile in Salmon after Cooking
2.3. Microbiological Quality of Prepared and Cold Storage Salmon
3. Discussion
3.1. Technological Characteristics of Processed Salmon
3.2. Proximate Composition and Fatty Acids Profile in Salmon
3.3. Microbiological Quality
4. Material and Methods
4.1. Material
4.2. Heat Treatment Methods
4.3. Technological Characteristics
4.4. Proximate Composition and Fatty Acids Profile
Fatty Acids Composition
4.5. Microbiological Analysis
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Exler, J.; Pehrsson, P.R. Nutrient content and variability in newly obtained salmon data for USDA Nutrient Database for Standard Reference. FASEB J. 2007, 21, A315. [Google Scholar] [CrossRef]
- Atanasoff, A.; Nikolov, G.; Staykov, Y.; Zhelyazkov, G.; Sirakov, I. Proximate and mineral analysis of Atlantic Salmon (Salmo Salar) cultivated in Bulgaria. Biotechnol. Anim. Husb. 2013, 29, 571–579. [Google Scholar] [CrossRef]
- Larsen, R.; Eilertsen, K.E.; Elvevoll, E.O. Health benefits of marine foods and ingredients. Biotechnol. Adv. 2011, 29, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Larsen, D.; Quek, S.Y.; Eyres, L. Effect of cooking method on the fatty acid profile of New Zealand King Salmon (Oncorhynchus tshawytscha). Food Chem. 2010, 119, 785–790. [Google Scholar] [CrossRef]
- Bastías, J.M.; Balladares, P.; Acuña, S.; Quevedo, R.; Muñoz, O. Determining the effect of different cooking methods on the nutritional composition of salmon (Salmo salar) and chilean jack mackerel (Trachurus murphyi) fillets. PLoS ONE 2017, 12, e0180993. [Google Scholar] [CrossRef]
- Chooa, P.Y.; Azlana, A.; Khooa, H.E. Cooking methods affect total fatty acid composition and retention of DHA and EPA in selected fish fillets. Sci. Asia 2018, 44, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Szlinder-Richert, J.; Malesa-Ciećwierz, M. Effect of household cooking methods on nutritional value of cod and salmon-twin fillet approach. Carpathian J. Food Sci. Technol. 2018, 10, 142–157. [Google Scholar]
- Husein, Y.; Bruni, L.; Secci, G.; Taiti, C.; Belghit, I.; Lock, E.J.; Parisi, G. Does sous-vide cooking preserve the chemical and volatile composition of Atlantic salmon (Salmo salar L.) fed Hermetia illucens larvae meal? J. Insects Food Feed 2020, 1–10. [Google Scholar] [CrossRef]
- Orlando, P.; GiardinierI, A.; Lucci, P.; Nartea, A.; Balzano, M.; Pacetti, D.; Frega, N.G.; Silvestri, S.; Tiano, L. Impact of traditional and mild oven cooking treatments on antioxidant compounds levels and oxidative status of Atlantic salmon (Salmo salar) fillets. LWT Food Sci. Technol. 2020, 134, 110011. [Google Scholar] [CrossRef]
- Love, D.C.; Asche, F.; Conrad, Z.; Young, R.; Harding, J.; Nussbaumer, E.M.; Thorne-Lyman, A.L.; Neff, R. Food sources and expenditures for seafood in the United States. Nutrients 2020, 12, 1810. [Google Scholar] [CrossRef]
- Cojocaru, A.L.; Iversen, A.; Tveterås, R. Differentiation in the Atlantic salmon industry: A synopsis. Aquac. Econ. Manag. 2020, 1–25. [Google Scholar] [CrossRef]
- Baldwin, D.E. Sous vide cooking: A review. Int. J. Gastron. Food Sci. 2012, 1, 15–30. [Google Scholar] [CrossRef] [Green Version]
- Stringer, S.C.; Fernandes, M.A.; Metris, A. Safety of Sous—Vide Foods: Feasibility of Extending Combase to Describe the Growth /Survival/ Death Response of Bacterial Foodborne Pathogens Between 40 °C and 60 °C; Institute of Food Research: Norwich, UK, 2012. [Google Scholar]
- Li, R.C.; Heacock, H.; McIntyre, L. Sous Vide Salmon Pasteurization Temperature. Available online: https://journals.bcit.ca/index.php/ehj/article/view/131/116/ (accessed on 20 June 2020).
- Jørgensen, F.; Sadler-Reeves, L.; Shore, J.; Aird, H.; Elviss, N.; Fox, A.; Kaye, M.; Willis, C.; Amar, C.; De Pinna, E.; et al. An assessment of the microbiological quality of lightly cooked food (including sous-vide) at the point of consumption in England. Epidemiol. Infect. 2017, 145, 1500–1509. [Google Scholar] [CrossRef] [Green Version]
- Abel, N.; Rotabakk, B.T.; Rustad, T.; Ahlsen, V.B.; Lerfall, J. Physiochemical and microbiological quality of lightly processed salmon (Salmo salar L.) stored under modified atmosphere. J. Food Sci. 2019, 84, 3364–3372. [Google Scholar] [CrossRef]
- García-Linares, M.C.; González-Fandos, E.; García-Fernández, M.C.; García-Arias, M.T. Microbiological and nutritional quality of sous vide or traditionally processed fish: Influence of fat content. J. Food Qual. 2004, 27, 371–387. [Google Scholar] [CrossRef]
- Hernández, E.J.G.P.; de Carvalho, R.N.; Joele, M.R.S.P.; da Silva Araújo, C.; Lourenço, L.D.F.H. Effects of modified atmosphere packing over the shelf life of sous vide from captive pirarucu (Arapaima gigas). Innov. Food Sci. Emerg. Technol. 2017, 39, 94–100. [Google Scholar] [CrossRef]
- Li, D.; Zhang, J.; Song, S.; Feng, L.; Luo, Y. Influence of heat processing on the volatile organic compounds and microbial diversity of salted and vacuum-packaged silver carp (Hypophthalmichthys molitrix) fillets during storage. Food Microbiol. 2018, 72, 73–81. [Google Scholar] [CrossRef]
- González-Fandos, E.; Villarino-Rodrıguez, A.; García-Linares, M.C.; García-Arias, M.T.; García-Fernández, M.C. Microbiological safety and sensory characteristics of salmon slices processed by the sous vide method. Food Control 2005, 16, 77–85. [Google Scholar] [CrossRef]
- Díaz, P.; Nieto, G.; Bañón, S.; Garrido, M.D. Determination of shelf life of sous vide salmon (Salmo salar) based on sensory attributes. J. Food Sci. 2009, 74, S371–S376. [Google Scholar] [CrossRef]
- Díaz, P.; Garrido, M.D.; Bañón, S. Spoilage of sous vide cooked salmon (Salmo salar) stored under refrigeration. Food Sci. Technol. Inter. 2011, 17, 31–37. [Google Scholar] [CrossRef]
- Şengör, G.F.Ü.; Alakavuk, D.Ü.; Tosun, Ş.Y. Effect of Cooking Methods on Proximate Composition, Fatty Acid Composition, and Cholesterol Content of Atlantic Salmon (Salmo salar). J. Aquat. Food Prod. Technol. 2013, 22, 160–167. [Google Scholar] [CrossRef]
- Głuchowski, A.; Czarniecka-Skubina, E.; Wasiak-Zys, G.; Nowak, D. Effect of Various Cooking Methods on Technological and Sensory Quality of Atlantic Salmon (Salmo salar). Foods 2019, 8, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papargyropoulou, E.; Wright, N.; Lozano, R.; Steinberger, J.; Padfield, R.; Ujang, Z. Conceptual framework for the study of food waste generation and prevention in the hospitality sector. Waste Manag. 2016, 49, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Bilska, B.; Tomaszewska, M.; Kołozyn-Krajewska, D. Analysis of the behaviors of polish consumers in relation to food waste. Sustainability 2020, 12, 304. [Google Scholar] [CrossRef] [Green Version]
- Dogruyol, H.; Mol, S.; Cosansu, S. Increased thermal sensitivity of Listeria monocytogenes in sous-vide salmon by oregano essential oil and citric acid. Food Microbiol. 2020, 90, 103496. [Google Scholar] [CrossRef]
- Centre for Food Safety. Microbiological Guidelines for Food. For Ready-To-Eat Food in General and Specific Food Items. Available online: https://www.cfs.gov.hk/english/food_leg/files/food_leg_Microbiological_Guidelines_for_Food_e.pdf (accessed on 18 May 2020).
- Health Protection Agency. Guidelines for Assessing the Microbiological Safety of Ready-to-Eat Foods. Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/363146/ (accessed on 18 May 2020).
- Kong, F.; Tang, J.; Lin, M.; Rasco, B. Thermal effects on chicken and salmon muscles: Tenderness, cook loss, area shrinkage, collagen solubility and microstructure. LWT Food Sci. Technol. 2008, 41, 1210–1222. [Google Scholar] [CrossRef]
- Ovissipour, M.; Rasco, B.; Tang, J.; Sablani, S. Kinetics of Protein Degradation and Physical Changes in Thermally Processed Atlantic Salmon (Salmo salar). Food Bioprocess Technol. 2017, 10, 1865–1882. [Google Scholar] [CrossRef]
- Dong, X.; Fu, H.; Chang, S.; Zhang, X.; Sun, H.; He, B.; Jiang, C.; Yu, C.; Qi, H. Textural and biochemical changes of scallop Patinopecten yessoensis adductor muscle during low-temperature long-time (LTLT) processing. Int. J. Food Proper. 2017, 20, S2495–S2507. [Google Scholar] [CrossRef]
- Bejerholm, C.; Tørngren, M.A.; Aaslyng, M.D. Cooking of meat. In Encyclopedia of Meat Sciences; Jensen, W.K., Ed.; Academic Press: Cambridge, MA, USA, 2004; pp. 343–349. [Google Scholar]
- Llave, Y.; Shibata-Ishiwatari, N.; Watanabe, M.; Fukuoka, M.; Hamada-Sato, N.; Sakai, N. Analysis of the effects of thermal protein denaturation on the quality attributes of sous-vide cooked tuna. J. Food Process. Preserv. 2017, 42, e13347. [Google Scholar] [CrossRef] [Green Version]
- Nithyalakshmi, V.; Preetha, R. Effect of cooking conditions on physico-chemical and textural properties of Emu (Dromaius novaehollandiae) meat. Int. Food Res. J. 2015, 22, 1924–1930. [Google Scholar]
- Głuchowski, A.; Czarniecka-Skubina, E.; Buła, M. The use of the sous-vide method in the preparation of poultry at home and in catering—Protection of nutrition value whether high energy consumption. Sustainability 2020, 12, 7606. [Google Scholar] [CrossRef]
- Ersoy, B.; Özeren, A. The effect of cooking methods on mineral and vitamin contents of African catfish. Food Chem. 2009, 115, 419–422. [Google Scholar] [CrossRef]
- Bell, J.G.; Pratoomyot, J.; Strachan, F.; Henderson, R.J.; Fontanillas, R.; Hebard, A.; Guy, D.R.; Hunter, D.; Tocher, D.R. Growth, flesh adiposity and fatty acid composition of Atlantic salmon (Salmo salar) families with contrasting flesh adiposity: Effects of replacement of dietary fish oil with vegetable oils. Aquaculture 2010, 306, 225–232. [Google Scholar] [CrossRef]
- Nieva-Echevarría, B.; Manzanos, M.J.; Goicoechea, E.; Guillén, M.D. Changes provoked by boiling, steaming and sous-vide cooking in the lipid and volatile profile of European sea bass. Food Res. Int. 2017, 99, 630–640. [Google Scholar] [CrossRef]
- Rasińska, E.; Rutkowska, J.; Czarniecka-Skubina, E.; Tambor, K. Effect of cooking methods on changes in fatty acids contents, lipid oxidation and volatile compounds of rabbit meat. LWT Food Sci. Technol. 2019, 110, 64–70. [Google Scholar] [CrossRef]
- Picouet, P.A.; Cofan-Carbo, S.; Vilaseca, H.; Ballbè, L.C.; Castells, P. Stability of sous-vide cooked salmon loins processed by high pressure. Innov. Food Sci. Emerg. Technol. 2011, 12, 26–31. [Google Scholar] [CrossRef]
- Sebastiá, C.; Soriano, J.M.; Iranzo, M.; Rico, H. Microbiological quality of sous vide cook–chill preserved food at different shelf life. J. Food Process. Preserv. 2010, 34, 964–974. [Google Scholar] [CrossRef]
- Refsgaard, H.H.F.; Brockhoff, P.B.; Jensen, B. Biological Variation of Lipid Constituentsand Distribution of Tocopherols and Astaxanthin in Farmed Atlantic Salmon (Salmo salar). J. Agric. Food Chem. 1998, 46, 808–812. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis Method 992.15. Proximate Analysis and Calculations Crude Protein Meat and Meat Products Including Pet Foods, 17th ed.; AOAC International: Rockville, MD, USA, 2000. [Google Scholar]
- PN-ISO 1444:2000. Meat and Meat Products. Determination of Free Fat Content; Polish Committee for Standardization: Warsaw, Poland, 2000. [Google Scholar]
- Rasińska, E.; Czarniecka-Skubina, E.; Rutkowska, J. Fatty acid and lipid contents differentiation in cuts of rabbit meat. CyTA J. Food 2018, 16, 807–813. [Google Scholar] [CrossRef]
- PN-EN ISO 4833-1:2013-12. Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms; Polish Committee for Standardization: Warsaw, Poland, 2013. [Google Scholar]
- PN-EN ISO 21527-1:2009. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds; Polish Committee for Standardization: Warsaw, Poland, 2009. [Google Scholar]
- PN-EN ISO 6888-2:2001 + A1:2004. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Coagulase-Positive Staphylococci (Staphylococcus aureus and Other Species); Polish Committee for Standardization: Warsaw, Poland, 2004. [Google Scholar]
- PN-EN ISO 16649-2:2004. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Beta-Glucuronidase-Positive Escherichia Coli; Polish Committee for Standardization: Warsaw, Poland, 2004. [Google Scholar]
- PN-EN ISO 21528-2:2017-08. Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae; Polish Committee for Standardization: Warsaw, Poland, 2017. [Google Scholar]
- PN-EN ISO 11290-2:2000 + A1:2005 + Ap1:2006 + Ap2:2007. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Detection and Enumeration of Listeria Monocytogenes; Polish Committee for Standardization: Warsaw, Poland, 2005. [Google Scholar]
- PN-EN ISO 6579-1:2017-04. Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella; Polish Committee for Standardization: Warsaw, Poland, 2017. [Google Scholar]
Parameter | Raw | ||||
---|---|---|---|---|---|
Sous-Vide Method | Roasting (R180, 23 min) | Steaming (SP100, 16 min) | |||
57 °C, 20 min (SV57) | 63 °C, 80 min (SV63) | ||||
Total process duration (min) | - | 126 ± 0.0 | 145 ± 0.0 | 29 ± 1.3 | 48 ± 0.8 |
Energy consumption (kWh) | - | 0.440 ± 0.02 (0.022) * | 0.531 ± 0.01 (0.059) * | 0.790 ± 0.01 (0.454) * | 0.083 ± 0.01 (0.025) * |
Cooking loss (%) | - | 6.3 a ± 0.6 | 9.1 a,b ± 0.5 | 16.2 c ± 1.6 | 11.6 b ± 1.1 |
pH | 6.12 a ± 0.02 | 6.30 b ± 0.01 | 6.34 b,c ± 0.01 | 6.32 b ±0.03 | 6.39 c ± 0.02 |
Parameter | Raw | ||||
---|---|---|---|---|---|
Sous-Vide Method | Roasting (R180, 23 min) | Steaming (SP100, 16 min) | |||
57 °C, 20 min (SV57) | 63 °C, 80 min (SV63) | ||||
Dry matter (%) | 37.10 a ± 0.12 | 37.23 a ± 0.15 | 38.80 b ± 0.17 | 41.10 c ± 0.12 | 39.30 b ± 0.12 |
Protein (%) | 20.10 a ± 0.70 | 23.10 b ± 0.80 | 23.70 b ± 0.82 | 24.10 b ± 0.83 | 24.50 b ± 0.85 |
Lipids (%) | 6.79 a ± 0.24 | 9.20 b ± 0.32 | 12.30 c ± 0.43 | 14.40 e ± 0.50 | 13.70 d ± 0.47 |
Fatty acid profile * (g FA/100 g fat) | |||||
SFA | 15.90 a ± 0.01 | 15.70 a ± 0.03 | 15.70 a ± 0.02 | 15.60 a ± 0.06 | 15.40 a ± 0.02 |
C14:0 | 2.04 a ± 0.01 | 1.97 a ± 0.02 | 2.06 a ± 0.01 | 2.04 a ± 0.01 | 2.05 a ± 0.01 |
C15:0 | 0.19 a ± 0.00 | 0.19 a ± 0.02 | 0.18 a ± 0.01 | 0.19 a ± 0.01 | 0.19 a ± 0.03 |
C16:0 | 9.38 a ± 0.01 | 9.25 a ± 0.00 | 9.29 a ± 0.02 | 9.18 a ± 0.00 | 9.30 a ± 0.02 |
C17:0 | 0.11 a ± 0.01 | 0.11 a ± 0.00 | 0.11 a ± 0.02 | 0.11 a ± 0.03 | 0.11 a ± 0.01 |
C18:0 | 2.82 a ± 0.02 | 2.83 a ± 0.08 | 2.75 a ± 0.02 | 2.74 a ± 0.01 | 2.77 a ± 0.05 |
C20:0 | 0.44 a ± 0.02 | 0.43 a ± 0.02 | 0.45 a ± 0.04 | 0.45 a ± 0.02 | 0.44 a ± 0.00 |
C21:0 | 0.60 a ± 0.02 | 0.60 a ± 0.00 | 0.61 a ± 0.01 | 0.61 a ± 0.01 | 0.32 b ± 0.02 |
C22:0 | 0.20 a ± 0.01 | 0.19 a ± 0.00 | 0.18 a ± 0.00 | 0.18 a ± 0.00 | 0.19 a ± 0.00 |
C24:0 | 0.08 a ± 0.03 | 0.07 a ± 0.01 | 0.06 a ± 0.04 | 0.07 a ± 0.01 | 0.07 a ± 0.02 |
MUFA | 46.60 a ± 0.02 | 46.50 a ± 0.06 | 47.40 a ± 0.08 | 47.20 a ± 0.04 | 47.30 a ± 0.02 |
C16:1 n-7 | 2.27 a ± 0.00 | 2.30 a ± 0.05 | 2.33 a ± 0.00 | 2.36 a ± 0.06 | 2.38 a ± 0.06 |
C17:1 (cis-10) | 0.14 a ± 0.14 | 0.30 b ± 0.02 | 0.32 b ± 0.01 | 0.34 b ± 0.02 | 0.32 b ± 0.04 |
C18:1 n-9 | 35.40 a ± 0.01 | 35.10 a ± 0.09 | 35.80 a ± 0.17 | 35.50 a ± 0.03 | 35.70 a ± 0.08 |
C18:1 n-7 | 3.30 a ± 0.06 | 3.30 a ± 0.01 | 3.31 a ± 0.01 | 3.30 a ± 0.00 | 3.30 a ± 0.00 |
C20:1 n-9 | 4.28 a ± 0.01 | 4.36 a ± 0.02 | 4.47 a ± 0.10 | 4.45 a ± 0.01 | 4.44 a ± 0.01 |
C22:1 n-9 | 0.77 a ± 0.00 | 0.77 a ± 0.01 | 0.77 a ± 0.00 | 0.77 a ± 0.00 | 0.77 a ± 0.00 |
C24:1 n-9 | 0.45 c ± 0.02 | 0.43 b ± 0.01 | 0.38 a ± 0.01 | 0.42 b ± 0.00 | 0.40 b ± 0.01 |
PUFA | 32.10 b ± 0.00 | 32.40 b ± 0.02 | 31.50 a ± 0.05 | 31.70 a,b ± 0.07 | 31.50 a ± 0.01 |
C18:2 n-6 (LA) | 14.10 a ± 0.00 | 14.20 a ± 0.00 | 14.10 a ± 0.03 | 14.10 a ± 0.05 | 14.00 a ± 0.01 |
C18:3 n-6 (GLA) | 0.08 a ± 0.01 | 0.09 a ± 0.00 | 0.09 a ± 0.00 | 0.09 a ± 0.00 | 0.09 a ± 0.00 |
C20:2 n-6 | 1.19 a ± 0.00 | 1.20 a ± 0.00 | 1.22 a ± 0.00 | 1.23 a ± 0.00 | 1.22 a ± 0.00 |
C20:3 n-6 | 0.22 a ± 0.00 | 0.23 a ± 0.00 | 0.22 a ± 0.00 | 0.21 a ± 0.00 | 0.21 a ± 0.00 |
C20:4 n-6 (AA) | 0.36 b ± 0.00 | 0.37 b ± 0.00 | 0.32 a ± 0.00 | 0.32 a ± 0.00 | 0.31 a ± 0.00 |
C22:2 n-6 | 0.10 a ± 0.01 | 0.09 a ± 0.02 | 0.09 a ± 0.01 | 0.10 a ± 0.03 | 0.09 a ± 0.00 |
C18:3 (trans) | 0.14 a ± 0.00 | 0.14 a ± 0.00 | 0.15 a ± 0.01 | 0.14 a ± 0.00 | 0.14 a ± 0.00 |
C18:3 n-3 (ALA) | 7.69 a ± 0.00 | 7.76 a ± 0.02 | 7.91 a ± 0.02 | 7.86 a ± 0.00 | 7.79 a ± 0.00 |
C18:4 n-3 | 0.18 a ± 0.00 | 0.26 b ± 0.00 | 0.27 c ± 0.01 | 0.26 b,c ± 0.00 | 0.26 b ± 0.00 |
C20:3 n-3 | 1.38 a ± 0.00 | 1.34 a ± 0.00 | 1.35 a ± 0.00 | 1.38 a ±0.00 | 1.40 a ± 0.00 |
C20:5 n-3 (EPA) | 2.93 b ± 0.00 | 2.92 b ± 0.01 | 2.80 a ± 0.02 | 2.88 a,b ± 0.02 | 2.84 a,b ± 0.02 |
C22:6 n-3 (DHA) | 4.13 c ± 0.01 | 4.23 d ± 0.01 | 3.42 a ± 0.01 | 3.54 b ± 0.01 | 3.52 b ± 0.01 |
Non identified FAs | 5.37 ± 0.09 | 5.40 ± 0.06 | 5.34 ± 0.03 | 5.52 ± 0.02 | 5.79 ± 0.02 |
n-3 g/100g | 16.30 b ± 0.02 | 16.50 b ± 0.03 | 15.75 a ± 0.05 | 15.92 a ± 0.02 | 15.82 a ± 0.01 |
n-6 g/100g | 16.01 a ± 0.00 | 16.12 a ± 0.01 | 16.03 a ± 0.00 | 16.07 a ± 0.05 | 15.91 a ± 0.01 |
n-6: n-3 | 0.98 | 0.98 | 1.02 | 1.01 | 1.01 |
Long Chain Polyunsaturated n-3 Fatty Acid | Raw | ||||
---|---|---|---|---|---|
Sous-Vide Method | Roasting (R180, 23 min) | Steaming (SP100, 16 min) | |||
57 °C, 20 min (SV57) | 63 °C, 80 min (SV63) | ||||
EPA | 199.05 a ± 6.93 | 268.24 b ± 9.13 | 344.61 c ± 11.23 | 414.91 d ± 14.56 | 389.68 d ± 13.49 |
DHA | 280.27 a ± 9.76 | 388.94 b ± 13.46 | 421.20 b ± 14.35 | 509.39 c ± 18.27 | 482.90 c ± 16.49 |
Sample Availability: Samples are not available from the authors. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Głuchowski, A.; Czarniecka-Skubina, E.; Rutkowska, J. Salmon (Salmo salar) Cooking: Achieving Optimal Quality on Select Nutritional and Microbiological Safety Characteristics for Ready-to-Eat and Stored Products. Molecules 2020, 25, 5661. https://doi.org/10.3390/molecules25235661
Głuchowski A, Czarniecka-Skubina E, Rutkowska J. Salmon (Salmo salar) Cooking: Achieving Optimal Quality on Select Nutritional and Microbiological Safety Characteristics for Ready-to-Eat and Stored Products. Molecules. 2020; 25(23):5661. https://doi.org/10.3390/molecules25235661
Chicago/Turabian StyleGłuchowski, Artur, Ewa Czarniecka-Skubina, and Jarosława Rutkowska. 2020. "Salmon (Salmo salar) Cooking: Achieving Optimal Quality on Select Nutritional and Microbiological Safety Characteristics for Ready-to-Eat and Stored Products" Molecules 25, no. 23: 5661. https://doi.org/10.3390/molecules25235661
APA StyleGłuchowski, A., Czarniecka-Skubina, E., & Rutkowska, J. (2020). Salmon (Salmo salar) Cooking: Achieving Optimal Quality on Select Nutritional and Microbiological Safety Characteristics for Ready-to-Eat and Stored Products. Molecules, 25(23), 5661. https://doi.org/10.3390/molecules25235661