Establishment of a UPLC-PDA/ESI-Q-TOF/MS-Based Approach for the Simultaneous Analysis of Multiple Phenolic Compounds in Amaranth (A. cruentus and A. tricolor)
Abstract
:1. Introduction
2. Results and Discussion
2.1. UPLC-PDA/ESI-Q-TOF/MS
2.2. Method Validation
2.3. Chemical Profiling of Phenolic Compounds in Seed Samples
2.4. Heat Map and Clustering Analysis
2.5. Assessing the Greenness
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Sample and Extraction
3.3. Analysis Conditions
3.4. Method Validation
3.5. Statistics
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Shahidi, F.; Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. J. Funct. Foods 2015, 18, 820–897. [Google Scholar] [CrossRef]
- Melini, V.; Melini, F.; Acquistucci, R. Phenolic Compounds and Bioaccessibility Thereof in Functional Pasta. Antioxidants 2020, 9, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metodiewa, D.; Kochman, A.; Karolczak, S. Evidence for antiradical and antioxidant properties of four biologically active N,N-Diethylaminoethyl ethers of flavaone oximes: A comparison with natural polyphenolic flavonoid rutin action. IUBMB Life 1997, 41, 1067–1075. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, T.; Sawa, K.; Kawasaki, M.; Arisawa, M.; Shimizu, M.; Morita, N. Inhibition of cow’s milk xanthine oxidase by flavonoids. J. Nat. Prod. 1988, 51, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Walker, E.H.; Pacold, M.E.; Perisic, O.; Stephens, L.; Hawkins, P.T.; Wymann, M.P.; Williams, R.L. Structural determinants of phosphoinositide 3-kinase inhibition by wortmannin, LY294002, quercetin, myricetin, and staurosporine. Mol. Cell 2000, 6, 909–919. [Google Scholar] [CrossRef]
- Panche, A.; Diwan, A.; Chandra, S. Flavonoids: An overview. J. Nutr. Sci. 2016, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costea, M.; DeMason, D.A. Stem morphology and anatomy in Amaranthus L. (Amaranthaceae), taxonomic significance. J. Torrey. Bot. Soc. 2001, 128, 254–281. [Google Scholar] [CrossRef] [Green Version]
- Karamać, M.; Gai, F.; Longato, E.; Meineri, G.; Janiak, M.A.; Amarowicz, R.; Peiretti, P.G. Antioxidant activity and phenolic composition of amaranth (Amaranthus caudatus) during plant growth. Antioxidants 2019, 8, 173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Deng, Z.; Zhu, H.; Hu, C.; Liu, R.; Young, J.C.; Tsao, R. Highly pigmented vegetables: Anthocyanin compositions and their role in antioxidant activities. Food Res. Int. 2012, 46, 250–259. [Google Scholar] [CrossRef]
- Cai, Y.; Sun, M.; Corke, H. Antioxidant activity of betalains from plants of the Amaranthaceae. J. Agric. Food Chem. 2003, 51, 2288–2294. [Google Scholar] [CrossRef]
- Klimczak, I.; Małecka, M.; Pachołek, B. Antioxidant activity of ethanolic extracts of amaranth seeds. Food/Nahrung 2002, 46, 184–186. [Google Scholar] [CrossRef]
- Khanam, U.K.S.; Oba, S. Bioactive substances in leaves of two amaranth species, Amaranthus tricolor and A. hypochondriacus. Can. J. Plant Sci. 2013, 93, 47–58. [Google Scholar] [CrossRef]
- Olech, M.; Pietrzak, W.; Nowak, R. Characterization of Free and Bound Phenolic Acids and Flavonoid Aglycones in Rosa rugosa Thunb. Leaves and Achenes Using LC–ESI–MS/MS–MRM Methods. Molecules 2020, 25, 1804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elessawy, F.M.; Bazghaleh, N.; Vandenberg, A.; Purves, R.W. Polyphenol profile comparisons of seed coats of five pulse crops using a semi-quantitative liquid chromatography-mass spectrometric method. Phytochem. Anal. 2020, 31, 458–471. [Google Scholar] [CrossRef]
- Jeong, W.T.; Lim, H.B. Determination and chemical profiling of toxic pyrrolizidine alkaloids in botanical samples with UPLC–Q-TOFMS. Chromatographia 2019, 82, 1653–1664. [Google Scholar] [CrossRef]
- Brito, A.; Ramirez, J.E.; Areche, C.; Sepúlveda, B.; Simirgiotis, M.J. HPLC-UV-MS profiles of phenolic compounds and antioxidant activity of fruits from three citrus species consumed in Northern Chile. Molecules 2014, 19, 17400–17421. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, A.; Kumar, B. Identification and characterization of phenolics and terpenoids from ethanolic extracts of Phyllanthus species by HPLC-ESI-QTOF-MS/MS. J. Pharm. Anal. 2017, 7, 214–222. [Google Scholar] [CrossRef]
- Restivo, A.; Degano, I.; Ribechini, E.; Colombini, M.P. Development and optimisation of an HPLC-DAD-ESI-Q-TOF method for the determination of phenolic acids and derivatives. PLoS ONE 2014, 9, e88762. [Google Scholar] [CrossRef]
- Hefni, M.E.; Amann, L.S.; Witthöft, C.M. A HPLC-UV Method for the Quantification of Phenolic Acids in Cereals. Food Anal. Methods 2019, 12, 2802–2812. [Google Scholar] [CrossRef] [Green Version]
- Belguidoum, K.; Amira-Guebailia, H.; Boulmokh, Y.; Houache, O. HPLC coupled to UV–vis detection for quantitative determination of phenolic compounds and caffeine in different brands of coffee in the Algerian market. J. Taiwan Inst. Chem. Eng. 2014, 45, 1314–1320. [Google Scholar] [CrossRef]
- Seraglio, S.K.T.; Valese, A.C.; Daguer, H.; Bergamo, G.; Azevedo, M.S.; Gonzaga, L.V.; Fett, R.; Costa, A.C.O. Development and validation of a LC-ESI-MS/MS method for the determination of phenolic compounds in honeydew honeys with the diluted-and-shoot approach. Food Res. Int. 2016, 87, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Ahn, S.; Kim, B.; Hwang, E.; Kim, Y.S. Analysis of benzoic acid in quasi-drug drink using isotope dilution liquid chromatography mass spectrometry. Bull Korea Chem. Soc. 2008, 29, 2125–2128. [Google Scholar]
- Penner, N.; Ramanathan, R.; Zgoda-Pols, J.; Chowdhury, S. Quantitative determination of hippuric and benzoic acids in urine by LC–MS/MS using surrogate standards. J. Pharm. Biomed. Anal. 2010, 52, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Howell, K.; Dunshea, F.R.; Suleria, H.A. Lc-esi-qtof/ms characterisation of phenolic acids and flavonoids in polyphenol-rich fruits and vegetables and their potential antioxidant activities. Antioxidants 2019, 8, 405. [Google Scholar] [CrossRef] [Green Version]
- Fabre, N.; Rustan, I.; de Hoffmann, E.; Quetin-Leclercq, J. Determination of flavone, flavonol, and flavanone aglycones by negative ion liquid chromatography electrospray ion trap mass spectrometry. J. Am. Soc. Mass Spectrom. 2001, 12, 707–715. [Google Scholar] [CrossRef] [Green Version]
- Demarque, D.P.; Crotti, A.E.; Vessecchi, R.; Lopes, J.L.; Lopes, N.P. Fragmentation reactions using electrospray ionization mass spectrometry: An important tool for the structural elucidation and characterization of synthetic and natural products. Nat. Prod. Rep. 2016, 33, 432–455. [Google Scholar] [CrossRef] [Green Version]
- Segarra, G.; Jáuregui, O.; Casanova, E.; Trillas, I. Simultaneous quantitative LC–ESI-MS/MS analyses of salicylic acid and jasmonic acid in crude extracts of Cucumis sativus under biotic stress. Phytochemistry 2006, 67, 395–401. [Google Scholar] [CrossRef]
- Croubels, S.; Maes, A.; Baert, K.; De Backer, P. Quantitative determination of salicylic acid and metabolites in animal tissues by liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 2005, 529, 179–187. [Google Scholar] [CrossRef]
- Ayinde, B.; Omogbai, E.; Onwukaeme, D. Hypotensive effects of 3, 4-dihydroxybenzyaldehyde isolated from the stem bark of Musanga cecropioides. J. Pharmacogn. Phytother. 2010, 2, 4–9. [Google Scholar]
- Husain, N.; Mahmood, R. 3,4-Dihydroxybenzaldehyde quenches ROS and RNS and protects human blood cells from Cr (VI)-induced cytotoxicity and genotoxicity. Toxicol. Vitro 2018, 50, 293–304. [Google Scholar] [CrossRef]
- Li, H.; Deng, Z.; Liu, R.; Zhu, H.; Draves, J.; Marcone, M.; Sun, Y.; Tsao, R. Characterization of phenolics, betacyanins and antioxidant activities of the seed, leaf, sprout, flower and stalk extracts of three Amaranthus species. J. Food Compos. Anal. 2015, 37, 75–81. [Google Scholar] [CrossRef]
- Gałuszka, A.; Migaszewski, Z.M.; Konieczka, P.; Namieśnik, J. Analytical Eco-Scale for assessing the greenness of analytical procedures. Trac Trends Anal. Chem. 2012, 37, 61–72. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Peak No. | Compound Name | PDA Detector | ESI-Q-TOF/MS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
tR (min) | r2 | λmax | LOD (µg/mL) | LOQ (µg/mL) | Precision (RSD, %) | Accuracy (%) | Theoretical m/z | Observed m/z | Mass Error (ppm) | Major Fragment Ions (m/z) | |||
Intraday | Interday | ||||||||||||
1 | Gallic acid | 2.35 | 0.999 | 270.4 | 0.01 | 0.03 | 2.4 | 1.8 | 104.3 | 170.0215 | 169.0084 | 30.5 | 125.0187, 123.0030 |
2 | 3,4-Dihydroxybenzoic acid | 4.14 | 0.999 | 258.5/293.1 | 0.05 | 0.15 | 0.7 | 0.9 | 99.3 | 154.0266 | 153.0136 | 33.1 | 109.0238, 108.0160, 107.0086 |
3 | 4-Hydroxybenzoic acid | 6.12 | 0.996 | 254.9 | 0.05 | 0.15 | 0.4 | 0.4 | 101.4 | 138.0317 | 137.0187 | 36.9 | 93.0293 |
4 | 2,4-Dihydroxybenzoic acid | 7.27 | 0.999 | 253.7/293.0 | 0.05 | 0.15 | 1.4 | 1.3 | 98.8 | 154.0266 | 153.0135 | 33.7 | 109.0238 |
5 | Vanillic acid | 7.73 | 0.999 | 259.7/290.6 | 0.05 | 0.15 | 0.4 | 0.7 | 102.7 | - | |||
6 | Caffeic acid | 7.89 | 0.999 | 243.1/324.1 | 0.05 | 0.15 | 0.8 | 1.0 | 101.6 | 180.0423 | 179.0292 | 28.8 | 135.0391, 134.0312, 133.0236 |
7 | Syringic acid | 8.63 | 0.999 | 274.0 | 0.01 | 0.03 | 0.4 | 0.5 | 106.1 | - | |||
8 | p-Coumaric acid | 10.57 | 0.999 | 309.7 | 0.02 | 0.06 | 0.4 | 0.3 | 105.3 | 164.0473 | 163.0345 | 29.8 | 119.0446, 117.0291, 93.0294 |
9 | Ferulic acid | 12.21 | 0.999 | 240.7/322.9 | 0.01 | 0.03 | 0.1 | 0.3 | 93.4 | 194.0579 | 193.045 | 25.7 | 134.0316, 133.0236 |
10 | Sinapinic acid | 12.54 | 0.999 | 239.5/324.1 | 0.1 | 0.3 | 0.3 | 0.5 | 102.1 | 224.0685 | 223.0557 | 21.8 | 164.0419, 149.0186, 121.0237 |
11 | Rutin | 13.27 | 0.997 | 256.1/348.7 | 0.1 | 0.3 | 0.7 | 1.1 | 102.306 | 610.1534 | 609.1467 | −2.0 | 301.0302, 300.0233 |
12 | Quercetin 3-β-d-glucoside | 13.71 | 0.999 | 254.9/348.7 | 0.1 | 0.3 | 0.6 | 0.6 | 96.6 | 464.0955 | 463.0862 | 2.9 | 301.0300, 300.0234 |
13 | Benzoic acid | 13.89 | 0.999 | 236.0/273.9 | 0.1 | 0.3 | 0.4 | 0.3 | 98.5 | - | |||
14 | Kaempferol 3-O-β-rutinoside | 15.01 | 0.990 | 265.6/348.7 | 0.1 | 0.3 | 0.3 | 0.3 | 104.2 | 594.1585 | 593.1522 | −2.8 | 285.0360, 284.0285 |
15 | Quercetin | 20.17 | 0.997 | 275.1 | 0.2 | 0.6 | 1.6 | 1.4 | 95.1 | 302.0427 | 301.0312 | 11.8 | 178.9928, 158.9979, 121.0237 |
16 | Cinnamic acid | 20.54 | 0.999 | 276.3 | 0.005 | 0.015 | 0.4 | 0.5 | 100.0 | - | |||
17 | Kaempferol | 22.55 | 0.999 | 265.6/366.8 | 0.05 | 0.15 | 1.4 | 1.8 | 104.3 | 286.0477 | 285.0361 | 12.8 | 159.0390, 143.0444, 93.0293 |
Peak no. | tR (min) | Observed [M − H]− (m/z) | Neutral Mass (Da) | Mass Error (mDa) | Formula | Tentatively Identified Compounds | Major Fragment Ions (m/z) | Detected Sample Name |
---|---|---|---|---|---|---|---|---|
1 | 5.98 | 137.0188 | 138.0317 | −5.8 | C7H6O3 | 2,3-Dihydroxybenzaldehyde | 108.0165 (59.1) | All seed samples |
2 | 6.22 | 385.0742 | 386.0849 | −3.5 | C16H18O11 | O-Feruloylgalactaric acid | 215.0271 (14.6), 212.9966 (68.7), 191.0141 (100), 147.0241 (24.2), 85.0243 (57.33) | All leave sample |
3 | 10.08 | 581.1518 | 582.1585 | 0.6 | C26H30O15 | Flavonol 3-O-d-xylosylgalactoside | 443.1181 (23.2), 351.0652 (6.4), 257.0384 (3.2), 167.0294 (75.5), 137.0188 (39.5) | All seed samples |
4 | 11.88 | 755.2073 | 756.2113 | 3.3 | C33H40O20 | Kaempferol 3-(3R-glucosylrutinoside)-Faralateroside | 555.1208 (4.9), 363.0688 (2.6), 300.0232 (24.6), 201.0115 (4.2) | All leaf samples |
5 | 16.42 | 449.1464 | 450.1526 | 1.1 | C22H26O10 | Asebotin | 433.1573 (1.0), 240.9976 (6.7), 177.0341 (2.9), 150.9652 (1.3) | All leaf samples |
6 | 17.87 | 287.0914 | 288.0998 | −1.1 | C16H16O5 | Shikalkin | 235.0563 (1.5), 195.0608 (5.2) | ATL1, ATL2, ATS1 and ATS2 |
Our Method | Reference [19] | Reference [24] | ||||
---|---|---|---|---|---|---|
Reagent | PPs | PPs | PPs | |||
Ethanol 1 mL | 0 | NaOH (2.5–7.5 M) 4 mL | 2 | Ethanol | 0 | |
Dichloromethane 2 mL | 1 | |||||
Instruments | ||||||
UPLC-UV | 0 | Heater | 8 | HPLC-UV | 1 | |
MS(ESI-Q-TOF/MS) | 2 | HPLC-UV | 1 | MS(ESI-Q-TOF/MS) | 2 | |
Waste | 0 | Waste | 1 | Waste | 0 | |
Total penalty points |
Parameters | Conditions | |
---|---|---|
UPLC PDA conditions bellow; | ||
Injection volume | 5 μL | |
Column temperature | 40 °C | |
Flow rate | 0.25 mL/min | |
Column type | BEH C18 column (2.1 × 100 mm, 1.7 μm) | |
Gradient/mobile phase | Solvent A (%) | Solvent B (%) |
Time (min) | ||
0 | 98 | 2 |
20 | 75 | 25 |
24 | 40 | 60 |
27 | 10 | 90 |
28 | 10 | 90 |
30 | 98 | 2 |
35 | re-equilibration | |
ESI-Q-TOF/MS conditions bellow; | ||
Capillary voltage | 3.0 kV | |
Cone voltage | 30 V | |
Cone gas flow | 800 L/h | |
Desolvation gas flow | 60 L/h | |
Source temperature | 40 °C | |
Scan time | 0.25 s | |
Scan range | m/z 50–1200 | |
Collision energy | Low-collision energy, 6 eV; high-collision energy, 30–50 eV | |
Software | UNIFI ver. 1.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, W.T.; Bang, J.-H.; Han, S.; Hyun, T.K.; Cho, H.; Lim, H.B.; Chung, J.-W. Establishment of a UPLC-PDA/ESI-Q-TOF/MS-Based Approach for the Simultaneous Analysis of Multiple Phenolic Compounds in Amaranth (A. cruentus and A. tricolor). Molecules 2020, 25, 5674. https://doi.org/10.3390/molecules25235674
Jeong WT, Bang J-H, Han S, Hyun TK, Cho H, Lim HB, Chung J-W. Establishment of a UPLC-PDA/ESI-Q-TOF/MS-Based Approach for the Simultaneous Analysis of Multiple Phenolic Compounds in Amaranth (A. cruentus and A. tricolor). Molecules. 2020; 25(23):5674. https://doi.org/10.3390/molecules25235674
Chicago/Turabian StyleJeong, Won Tea, Jun-Hyoung Bang, Seahee Han, Tae Kyung Hyun, Hyunwoo Cho, Heung Bin Lim, and Jong-Wook Chung. 2020. "Establishment of a UPLC-PDA/ESI-Q-TOF/MS-Based Approach for the Simultaneous Analysis of Multiple Phenolic Compounds in Amaranth (A. cruentus and A. tricolor)" Molecules 25, no. 23: 5674. https://doi.org/10.3390/molecules25235674
APA StyleJeong, W. T., Bang, J. -H., Han, S., Hyun, T. K., Cho, H., Lim, H. B., & Chung, J. -W. (2020). Establishment of a UPLC-PDA/ESI-Q-TOF/MS-Based Approach for the Simultaneous Analysis of Multiple Phenolic Compounds in Amaranth (A. cruentus and A. tricolor). Molecules, 25(23), 5674. https://doi.org/10.3390/molecules25235674