Comparison of MCFA and Other Methods of Terminating Alcohol Fermentation and Their Influence on the Content of Carbonyl Compounds in Wine
Abstract
:1. Introduction
2. Results
2.1. Basic Parameters
2.2. Carbonyl Compounds
2.2.1. Acetaldehyde
2.2.2. Acetoin
2.2.3. Diacetyl
2.2.4. Total Carbonyl Compounds
3. Materials and Methods
3.1. Design of the Experiment
3.2. Determination of the Carbonyl Compounds
3.3. Basic Parameters
3.4. Preparation of the MCFA Mixture Solution
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Santos, M.C.; Nunes, C.; Saraiva, J.A.; Coimbra, M.A. Chemical and physical methodologies for the replacement/reduction of sulfur dioxide use during winemaking: Review of their potentialities and limitations. Eur. Food Res. Technol. 2011, 234, 1–12. [Google Scholar] [CrossRef]
- Lafon-Lafourcade, S.; Geneix, C.; Ribéreau-Gayon, P. Inhibition of Alcoholic Fermentation of Grape Must by Fatty Acids Produced by Yeasts and Their Elimination by Yeast Ghosts. Appl. Environ. Microbiol. 1984, 47, 1246–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viegas, C.A.; Rosa, M.F.; Sá-Correia, I.; Novais, J.M. Inhibition of Yeast Growth by Octanoic and Decanoic Acids Produced during Ethanolic Fermentation. Appl. Environ. Microbiol. 1989, 55, 21–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Restrepo, S.; Espinoza, L.; Ceballos, A.; Urtubia, A. Production of Fatty Acids during Alcoholic Wine Fermentation under Selected Temperature and Aeration Conditions. Am. J. Enol. Vitic. 2019, 70, 169–176. [Google Scholar] [CrossRef]
- Taylor, G.T.; Kirsop, B.H. The Origin of the Medium Chain Length Fatty Acids PRESENT IN BEER. J. Inst. Brew. 1977, 83, 241–243. [Google Scholar] [CrossRef]
- Guilloux-Benatier, M.; Le Fur, Y.; Feuillat, M. Influence of fatty acids on the growth of wine microorganisms Saccharomyces cerevisiae and Oenococcus oeni. J. Ind. Microbiol. Biotechnol. 1998, 20, 144–149. [Google Scholar] [CrossRef]
- Viegas, C.A.; Almeida, P.F.; Cavaco, M.; Sá-Correia, I. The H+-ATPase in the Plasma Membrane ofSaccharomyces cerevisiae Is Activated during Growth Latency in Octanoic Acid-Supplemented Medium Accompanying the Decrease in Intracellular pH and Cell Viability. Appl. Environ. Microbiol. 1998, 64, 779–783. [Google Scholar] [CrossRef] [Green Version]
- Antoce, O.A.; Antoce, V.; Takahashi, K.; Pomohaci, N.; Namolosanu, I. A calorimetric method applied to the study of yeast growth inhibition by alcohols and organic acids. Am. J. Enol. Vitic. 1997, 48, 413–422. Available online: https://www.ajevonline.org/content/48/4/413 (accessed on 20 October 2020).
- Baroň, M.; Kumšta, M.; Prokeš, K.; Tomášková, L.; Tomková, M. The inhibition of Saccharomyces cerevisiae population during alcoholic fermentation of grape must by octanoic, decanoic and dodecanoic acid mixture. BIO Web Conf. 2017, 9, 02025. [Google Scholar] [CrossRef]
- Jackowetz, J.N.; Mira de Orduña, R. Survey of SO2 binding carbonyls in 237 red and white table wines. Food Control. 2013, 32, 687–692. [Google Scholar] [CrossRef]
- Barbe, J.-C.; de Revel, G.; Joyeux, A.; Lonvaud-Funel, A.; Bertrand, A. Role of Carbonyl Compounds in SO2 Binding Phenomena in Musts and Wines from Botrytized Grapes. J. Agric. Food Chem. 2000, 48, 3413–3419. [Google Scholar] [CrossRef] [PubMed]
- Ribéreau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Lonvaud, A. Handbook of Enology, Vol. 1: The Microbiology of Wine and Vinifications, 2nd ed.; Wiley: Chichester, UK, 2006. [Google Scholar] [CrossRef]
- Jackowetz, J.N.; Mira de Orduña, R. Metabolism of SO2 binding compounds by Oenococcus oeni during and after malolactic fermentation in white wine. Int. J. Food Microbiol. 2012, 155, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Blasi, M.; Barbe, J.-C.; Maillard, B.; Dubourdieu, D.; Deleuze, H. New Methodology for Removing Carbonyl Compounds from Sweet Wines. J. Agric. Food Chem. 2007, 55, 10382–10387. [Google Scholar] [CrossRef] [PubMed]
- Saidane, D.; Barbe, J.-C.; Birot, M.; Deleuze, H. Reducing the sulfur-dioxide binding power of sweet white wines by solid-phase extraction. Food Chem. 2013, 141, 612–615. [Google Scholar] [CrossRef] [PubMed]
- Lasanta, C.; Gómez, J. Tartrate stabilization of wines. Trends Food Sci. Technol. 2012, 28, 52–59. [Google Scholar] [CrossRef]
- Romano, P.; Suzzi, G. Origin and Production of Acetoin during Wine Yeast Fermentation. Appl. Environ. Microbiol. 1996, 62, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Mink, R.; Rex, F.; Klein, A.; Radtke, P.; Dachtler, W.; Scharfenberger-Schmeer, M. Comparison of different microbiological strategies for curative diacetyl reduction by Saccharomyces cerevisiae in white wine. Mitt. Klosterneubg. Rebe WeinObstbau Früchteverwertung 2018, 68, 39–45. [Google Scholar]
- Baron, M.; Kumsta, M.; Babikova, P. Composition of Saturated Fatty Acids and Its Use for Inhibition of Alcoholic or Malolactic Fermentation and Dose Reduction of Sulphur Dioxide in Wine Making Technology. European Patent 2681301 (A2), 8 January 2017. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?II=0&ND=3&adjacent=true&locale=en_EP&FT=D&date=20140108&CC=EP&NR=2681301A2&KC=A2# (accessed on 20 October 2020).
- Burroughs, L.F.; Sparks, A.H. Sulphite-binding power of wines and ciders. I. Equilibrium constants for the dissociation of carbonyl bisulphite compounds. J. Sci. Food Agric. 1973, 24, 187–198. [Google Scholar] [CrossRef]
- Lachenmeier, D.W.; Sohnius, E.-M. The role of acetaldehyde outside ethanol metabolism in the carcinogenicity of alcoholic beverages: Evidence from a large chemical survey. Food Chem. Toxicol. 2008, 46, 2903–2911. [Google Scholar] [CrossRef]
- Flamini, R.; De Luca, G.; Di Stefano, R. Changes in carbonyl compounds in Chardonnay and Cabernet Sauvignon wines as a consequence of malolactic fermentation. Vitis Geilweilerhof 2002, 41, 107–112. [Google Scholar]
- Martineau, B.; Acree, T.E.; Henick-Kling, T. Effect of wine type on the detection threshold for diacetyl. Food Res. Int. 1995, 28, 139–143. [Google Scholar] [CrossRef]
Method | Day | Alcohol 1 | Residual Sugar 2 | Titratable Acids 2 | pH | Malic Acid 2 | Tartaric Acid 2 | Lactic Acid 2 |
---|---|---|---|---|---|---|---|---|
10 MCFA | 1st | 11.88 | 11.5 | 6.7 | 3.29 | 1.5 | 3.3 | 0.2 |
9th | 12.17 | 11.0 | 6.7 | 3.30 | 1.5 | 3.1 | 0.1 | |
20 MCFA | 1st | 11.86 | 11.5 | 6.7 | 3.29 | 1.5 | 3.4 | 0.1 |
9th | 12.21 | 11.4 | 6.7 | 3.30 | 1.5 | 3.3 | 0.1 | |
Chilling | 1st | 11.86 | 13.0 | 6.2 | 3.29 | 1.4 | 2.6 | 0.1 |
9th | 12.10 | 13.0 | 6.2 | 3.29 | 1.4 | 2.5 | 0.0 | |
Cross-flow | 1st | 11.84 | 14.8 | 7.1 | 3.26 | 1.3 | 3.7 | 0.2 |
9th | 11.88 | 14.8 | 7.1 | 3.27 | 1.5 | 3.5 | 0.2 |
Method | Control | 1st Day | 9th Day | 34th Day |
---|---|---|---|---|
Acetaldehyde (mg/L) ± SD | ||||
10 MCFA | 22.50 ± 0.25 a | 18.31 ± 0.37 a | 21.78 ± 0.32 a | 23.42 ± 0.06 b |
20 MCFA | 22.50 ± 0.25 a | 18.11 ± 0.21 a | 20.22 ± 0.04 a | 21.37 ± 0.56 a |
Chilling | 22.50 ± 0.25 a | 17.98 ± 0.09 a | 30.80 ± 0.80 b | 30.08 ± 0.50 c |
Cross-flow | 22.50 ± 0.25 a | 20.77 ± 0.16 b | 20.56 ± 0.47 a | 20.78 ± 0.23 a |
Method | Control | 1st Day | 9th Day | 34th Day |
---|---|---|---|---|
Acetoin (mg/L) ± SD | ||||
10 MCFA | 13.18 ± 0.13 a | 9.98 ± 0.17 b | 8.22 ± 0.08 b | 7.94 ± 0.11 b |
20 MCFA | 13.18 ± 0.13 a | 13.00 ± 0.15 d | 12.17 ± 0.18 c | 11.91 ± 0.22 c |
Chilling | 13.18 ± 0.13 a | 8.94 ± 0.18 a | 3.79 ± 0.43 a | 3.13 ± 0.06 a |
Cross-flow | 13.18 ± 0.13 a | 12.10 ± 0.02 c | 12.39 ± 0.15 c | 14.24 ± 0.11 d |
Method | Control | 1st Day | 9th Day | 34th Day |
---|---|---|---|---|
Diacetyl (mg/L) ± SD | ||||
10 MCFA | 0.20 ± 0.01 a | 0.19 ± 0.09 a | 0.12 ± 0.01 a | 0.13 ± 0.00 a |
20 MCFA | 0.20 ± 0.01 a | 0.18 ± 0.01 a | 0.14 ± 0.01 a. b | 0.15 ± 0.00 a |
Chilling | 0.20 ± 0.01 a | 0.18 ± 0.00 a | 0.15 ± 0.01 b | 0.15 ± 0.01 a |
Cross-flow | 0.20 ± 0.01 a | 0.22 ± 0.00 b | 0.24 ± 0.01 c | 0.25 ± 0.01 b |
Method | Control | 1st Day | 9th Day | 34th Day |
---|---|---|---|---|
Total Carbonyls (mM/L) ± SD | ||||
10 MCFA | 1.27 ± 0.02 a | 1.02 ± 0.02 a | 1.03 ± 0.01 a | 1.06 ± 0.00 a |
20 MCFA | 1.27 ± 0.02 a | 1.04 ± 0.01 a | 1.06 ± 0.00 a | 1.09 ± 0.02 a |
Chilling | 1.27 ± 0.02 a | 1.06 ± 0.01 a | 1.24 ± 0.03 b | 1.19 ± 0.01 b |
Cross-flow | 1.27 ± 0.02 a | 1.19 ± 0.01 b | 1.20 ± 0.01 b | 1.21 ± 0.00 b |
Sample Availability: Not available. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Licek, J.; Baron, M.; Sochor, J. Comparison of MCFA and Other Methods of Terminating Alcohol Fermentation and Their Influence on the Content of Carbonyl Compounds in Wine. Molecules 2020, 25, 5737. https://doi.org/10.3390/molecules25235737
Licek J, Baron M, Sochor J. Comparison of MCFA and Other Methods of Terminating Alcohol Fermentation and Their Influence on the Content of Carbonyl Compounds in Wine. Molecules. 2020; 25(23):5737. https://doi.org/10.3390/molecules25235737
Chicago/Turabian StyleLicek, Josef, Mojmir Baron, and Jiri Sochor. 2020. "Comparison of MCFA and Other Methods of Terminating Alcohol Fermentation and Their Influence on the Content of Carbonyl Compounds in Wine" Molecules 25, no. 23: 5737. https://doi.org/10.3390/molecules25235737
APA StyleLicek, J., Baron, M., & Sochor, J. (2020). Comparison of MCFA and Other Methods of Terminating Alcohol Fermentation and Their Influence on the Content of Carbonyl Compounds in Wine. Molecules, 25(23), 5737. https://doi.org/10.3390/molecules25235737