Evaluation of Anti-Inflammatory, Anti-Platelet and Anti-Oxidant Activity of Wine Extracts Prepared from Ten Different Grape Varieties
Abstract
:1. Introduction
2. Results
2.1. Chemical Determinations
2.2. Anti-Oxidant Activity
2.3. Anti-Platelet Activity
2.4. Anti-Inflammatory Activity
2.5. Biological Score
3. Discussion
4. Materials and Methods
4.1. Reagents and Chemicals
4.2. Preparation of Wine Extracts
4.3. Extraction of Wine Total Lipids by the Bligh–Dyer Method
4.4. Extraction of Wine in Order to Obtain Different Classes of Phenolic Compounds
4.5. Chemical Determinations
4.6. Soybean Lipoxygenase Inhibition Assay
4.7. Linoleic Acid Peroxidation Assay
4.8. Determination of DPPH Radical-Scavenging Activity
4.9. Inhibition of Cu2+ Induced Serum Oxidation
4.10. Peripheral Blood Mononuclear Cells (PBMCs) Stimulation Assay
4.11. Evaluation of the Extracts’ Anti-Platelet Properties by Light Transmission Aggregometry
4.12. Calculation of the Biological Score
4.13. HPLC Separation and Quantification of Phenolic Compounds
4.14. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fragopoulou, E.; Choleva, M.; Antonopoulou, S.; Demopoulos, C.A. Wine and its metabolic effects. A comprehensive review of clinical trials. Metabolism 2018, 83, 102–119. [Google Scholar] [CrossRef]
- Costanzo, S.; Di Castelnuovo, A.; Donati, M.B.; Iacoviello, L.; de Gaetano, G. Wine, beer or spirit drinking in relation to fatal and non-fatal cardiovascular events: A meta-analysis. Eur. J. Epidemiol. 2011, 26, 833–850. [Google Scholar] [CrossRef]
- Marchio, P.; Guerra-Ojeda, S.; Vila, J.M.; Aldasoro, M.; Victor, V.M.; Mauricio, M.D. Targeting Early Atherosclerosis: A Focus on Oxidative Stress and Inflammation. Oxid. Med. Cell. Longev. 2019, 2019, 1–32. [Google Scholar] [CrossRef]
- Olie, R.H.; van der Meijden, P.E.J.; ten Cate, H. The coagulation system in atherothrombosis: Implications for new therapeutic strategies. Res. Pract. Thromb. Haemost. 2018, 2, 188–198. [Google Scholar] [CrossRef]
- Ninio, E. Phospholipid mediators in the vessel wall: Involvement in atherosclerosis. Curr. Opin. Clin. Nutr. Metab. Care 2005, 8, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Demopoulos, C.A.; Karantonis, H.C.; Antonopoulou, S. Platelet activating factor—A molecular link between atherosclerosis theories. Eur. J. Lipid Sci. Technol. 2003, 105, 705–716. [Google Scholar] [CrossRef]
- Fragopoulou, E.; Demopoulos, C.A.; Antonopoulou, S. Lipid minor constituents in wines. A biochemical approach in the French paradox. Int. J. Wine Res. 2009, 131. [Google Scholar] [CrossRef] [Green Version]
- Waterhouse, A.L. Wine phenolics. Ann. N. Y. Acad. Sci. 2002, 957, 21–36. [Google Scholar] [CrossRef]
- Fragopoulou, E.; Nomikos, T.; Antonopoulou, S.; Mitsopoulou, C.A.; Demopoulos, C.A. Separation of biologically active lipids from red wine. J. Agric. Food Chem. 2000, 48, 1234–1238. [Google Scholar] [CrossRef] [PubMed]
- Fragopoulou, E.; Antonopoulou, S.; Demopoulos, C.A. Biologically active lipids with antiatherogenic properties from white wine and must. J. Agric. Food Chem. 2002, 50, 2684–2694. [Google Scholar] [CrossRef]
- Fragopoulou, E.; Antonopoulou, S.; Nomikos, T.; Demopoulos, C.A. Structure elucidation of phenolic compounds from red/white wine with antiatherogenic properties. Biochim. Biophys. Acta 2003, 1632, 90–99. [Google Scholar] [CrossRef]
- Xanthopoulou, M.N.; Fragopoulou, E.; Kalathara, K.; Nomikos, T.; Karantonis, H.C.; Antonopoulou, S. Antioxidant and anti-inflammatory activity of red and white wine extracts. Food Chem. 2010, 120, 665–672. [Google Scholar] [CrossRef]
- Xanthopoulou, M.N.; Asimakopoulos, D.; Antonopoulou, S.; Demopoulos, C.A.; Fragopoulou, E. Effect of Robola and Cabernet Sauvignon extracts on platelet activating factor enzymes activity on U937 cells. Food Chem. 2014, 165, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Vlachogianni, I.C.; Fragopoulou, E.; Stamatakis, G.M.; Kostakis, I.K.; Antonopoulou, S. Platelet Activating Factor (PAF) biosynthesis is inhibited by phenolic compounds in U-937 cells under inflammatory conditions. Prostaglandins Other Lipid Mediat. 2015, 121, 176–183. [Google Scholar] [CrossRef]
- Thirunavukkarasu, M.; Penumathsa, S.V.; Samuel, S.M.; Akita, Y.; Zhan, L.; Bertelli, A.A.E.; Maulik, G.; Maulik, N. White Wine Induced Cardioprotection against Ischemia-Reperfusion Injury Is Mediated by Life Extending Akt/FOXO3a/NFκB Survival Pathway. J. Agric. Food Chem. 2008, 56, 6733–6739. [Google Scholar] [CrossRef]
- Ključević, N.; Boban, D.; Milat, A.M.; Jurić, D.; Mudnić, I.; Boban, M.; Grković, I. Expression of Leukocytes Following Myocardial Infarction in Rats is Modulated by Moderate White Wine Consumption. Nutrients 2019, 11, 1890. [Google Scholar] [CrossRef] [Green Version]
- Covas, M.I.; Gambert, P.; Fitó, M.; de la Torre, R. Wine and oxidative stress: Up-to-date evidence of the effects of moderate wine consumption on oxidative damage in humans. Atherosclerosis 2010, 208, 297–304. [Google Scholar] [CrossRef]
- Rodrigo, R.; Miranda, A.; Vergara, L. Modulation of endogenous antioxidant system by wine polyphenols in human disease. Clin. Chim. Acta 2011, 412, 410–424. [Google Scholar] [CrossRef]
- Ghiselli, A.; Nardini, M.; Baldi, A.; Scaccini, C. Antioxidant Activity of Different Phenolic Fractions Separated from an Italian Red Wine. J. Agric. Food Chem. 1998, 46, 361–367. [Google Scholar] [CrossRef]
- Abu-Amsha Caccetta, R.; Burke, V.; Mori, T.A.; Beilin, L.J.; Puddey, I.B.; Croft, K.D. Red wine polyphenols, in the absence of alcohol, reduce lipid peroxidative stress in smoking subjects. Free Radic. Biol. Med. 2001, 30, 636–642. [Google Scholar] [CrossRef]
- De Lange, D.W.; Van Golden, P.H.; Scholman, W.L.G.; Kraaijenhagen, R.J.; Akkerman, J.W.N.; Van De Wiel, A. Red wine and red wine polyphenolic compounds but not alcohol inhibit ADP-induced platelet aggregation. Eur. J. Intern. Med. 2003, 14, 361–366. [Google Scholar] [CrossRef]
- Russo, P.; Tedesco, I.; Russo, M.; Russo, G.L.; Venezia, A.; Cicala, C. Effects of de-alcoholated red wine and its phenolic fractions on platelet aggregation. Nutr. Metab. Cardiovasc. Dis. NMCD 2001, 11, 25–29. [Google Scholar] [PubMed]
- Chao, W.; Olson, M.S. Platelet-activating factor: Receptors and signal transduction. Biochem. J. 1993, 292, 617–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Wang, X.; Zhang, L.; An, H.; Zao, Z. Inhibitory effects of resveratrol on platelet activation induced by thromboxane a(2) receptor agonist in human platelets. Am. J. Chin. Med. 2011, 39, 145–159. [Google Scholar] [CrossRef]
- Yang, Y.-M.; Chen, J.-Z.; Wang, X.-X.; Wang, S.-J.; Hu, H.; Wang, H.-Q. Resveratrol attenuates thromboxane A2 receptor agonist-induced platelet activation by reducing phospholipase C activity. Eur. J. Pharmacol. 2008, 583, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Oh, W.J.; Endale, M.; Park, S.-C.; Cho, J.Y.; Rhee, M.H. Dual Roles of Quercetin in Platelets: Phosphoinositide-3-Kinase and MAP Kinases Inhibition, and cAMP-Dependent Vasodilator-Stimulated Phosphoprotein Stimulation. Evid. Based Complement. Alternat. Med. 2012, 2012, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Das, D. Anti-Inflammatory Responses of Resveratrol. Inflamm. Allergy-Drug Targets 2007, 6, 168–173. [Google Scholar] [CrossRef]
- Calabriso, N.; Scoditti, E.; Massaro, M.; Pellegrino, M.; Storelli, C.; Ingrosso, I.; Giovinazzo, G.; Carluccio, M.A. Multiple anti-inflammatory and anti-atherosclerotic properties of red wine polyphenolic extracts: Differential role of hydroxycinnamic acids, flavonols and stilbenes on endothelial inflammatory gene expression. Eur. J. Nutr. 2016, 55, 477–489. [Google Scholar] [CrossRef]
- Nunes, C.; Ferreira, E.; Freitas, V.; Almeida, L.; Barbosa, R.M.; Laranjinha, J. Intestinal anti-inflammatory activity of red wine extract: Unveiling the mechanisms in colonic epithelial cells. Food Funct. 2013, 4, 373–383. [Google Scholar] [CrossRef]
- Angel-Morales, G.; Noratto, G.; Mertens-Talcott, S. Red wine polyphenolics reduce the expression of inflammation markers in human colon-derived CCD-18Co myofibroblast cells: Potential role of microRNA-126. Food Funct. 2012, 3, 745. [Google Scholar] [CrossRef]
- Chalons, P.; Amor, S.; Courtaut, F.; Cantos-Villar, E.; Richard, T.; Auger, C.; Chabert, P.; Schni-Kerth, V.; Aires, V.; Delmas, D. Study of Potential Anti-Inflammatory Effects of Red Wine Extract and Resveratrol through a Modulation of Interleukin-1-Beta in Macrophages. Nutrients 2018, 10, 1856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144. [Google Scholar]
- Arranz, S.; Cert, R.; Pérez-Jiménez, J.; Cert, A.; Saura-Calixto, F. Comparison between free radical scavenging capacity and oxidative stability of nut oils. Food Chem. 2008, 110, 985–990. [Google Scholar] [CrossRef] [Green Version]
- Brückner, J. Estimation of monosaccharides by the orcinol–sulphuric acid reaction. Biochem. J. 1955, 60, 200–205. [Google Scholar] [CrossRef]
- Motomizu, S.; Wakimoto, T.; Tôei, K. Spectrophotometric determination of phosphate in river waters with molybdate and malachite green. Analyst 1983, 108, 361–367. [Google Scholar] [CrossRef]
- Axelrod, B.; Cheesbrough, T.M.; Laakso, S. Lipoxygenase from Soybeans; Lowenstein, J.M., Ed.; Academic Press: New York, NY, USA, 1981; Volume 71, pp. 441–451. [Google Scholar]
- Choi, C.W.; Kim, S.C.; Hwang, S.S.; Choi, B.K.; Ahn, H.J.; Lee, M.Y.; Park, S.H.; Kim, S.K. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci. 2002, 163, 1161–1168. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Malovaná, S.; García Montelongo, F.J.; Pérez, J.P.; Rodríguez-Delgado, M.A. Optimisation of sample preparation for the determination of trans-resveratrol and other polyphenolic compounds in wines by high performance liquid chromatography. Anal. Chim. Acta 2001, 428, 245–253. [Google Scholar] [CrossRef]
Extract | Total Phenolic Compounds (μg GA/100 μg Extract) | Ortho-Phenolic Compounds (μg Quercetin/100 μg Extract) | μg PHOSPORUS/100 μg Extract | μg Glucose/100 μg Extract | |
---|---|---|---|---|---|
White wines | TL | 4.32 ± 0.92 a | 2.61 ± 0.87 a | 0.014 ± 0.001a | 5.84 ± 2.11 a |
FI | 1.05 ± 0.13 a | 0.47 ± 0.08 a | 0.277 ± 0.035 b | 19.33 ± 2.72 b | |
FII | 24.40 ± 2.62 b | 9.62 ± 2.27 b | 0.019 ± 0.002 a | 6.89 ± 0.65 a | |
FIIΙ | 11.44 ± 1.41 c | 14.07 ± 2.23 b | 0.010 ± 0.001 a | 0.99 ± 0.16 a | |
FIV | 0.58 ± 0.04 a | 0.48 ± 0.07 a | 0.036 ± 0.004 a | 1.44 ± 0.24 a | |
Red wines | TL | 5.18 ± 0.40 a | 2.11 ± 0.23 a | 0.011 ± 0.002 a | 4.67 ± 0.95 a |
FI | 2.65 ± 0.57 a,* | 0.53 ± 0.14 a | 0.241 ± 0.035 b | 45.70 ± 12.45 b | |
FII | 29.64 ± 4.30 | 13.68 ± 2.37 a | 0.031 ± 0.005 a,* | 15.07 ± 2.11 a,* | |
FIIΙ | 12.84 ± 1.31 a | 8.61 ± 1.32 b,* | 0.012 ± 0.002 a | 3.24 ± 0.44 a,* | |
FIV | 8.72 ± 5.18 a | 1.28 ± 0.58 a | 0.040 ± 0.006 a | 46.88 ± 30.50 a |
Extract | DPPH Scavenging Activity (IC50, μg) | LOX-Inhibition (IC50, μg) | Fe-induced Linoleic Acid Oxidation Inhibition (% Inhibition) | Cu-induced Serum Oxidation Inhibition (min/μg) | |
---|---|---|---|---|---|
White wines | TL | 118.4 ± 24.4 a | 131.5 ± 49.0 a | 44.9 ± 25.0 a | 84.0 ± 20.2 a,b |
FI | 1068.9 ± 215.2 b | 1963.3 ± 271.4 b | 36.8 ± 17.8 a | 8.3 ± 1.6 a,b | |
FII | 27.5 ± 4.2 a | 34.4 ± 6.0 a | 33.9 ± 27.7 a | 214.4 ± 53.2 c | |
FIIΙ | 28.1 ± 6.1 a | 137.0 ± 23.9 a | 62.3 ± 8.6 a | 160.5 ± 17.8 a,c | |
FIV | 385.3 ± 49.1 a | nd | 27.5 ± 11.4 a | 7.6 ± 0.8 a,b | |
Red wines | TL | 86.8 ± 12.8 a | 161.0 ± 28.8 a | 38.7 ± 14.9 a | 69.9 ± 11.1 a |
FI | 85.4 ± 28.5 a,* | 453.2 ± 90.8 b,* | 42.8 ± 12.5 a | 20.4 ± 3.3 a,* | |
FII | 71.3 ± 16.9 a,* | 66.8 ± 8.0 a,* | 67.1 ± 9.6 a | 647.9 ± 98.0 b,* | |
FIIΙ | 18.5 ± 4.9 a | 188.4 ± 33.6 a | 36.5 ± 25.4 a | 129.9 ± 9.4 a | |
FIV | 710.6 ± 314.3 b | nd | 11.6 ± 15.5 a | 89.7 ± 39.5 a,* |
Extract | PAF (% Inhibition) | ADP (% Inhibition) | TRAP (% Inhibition) | Collagen (% Inhibition) | AA (% Inhibition) | |
---|---|---|---|---|---|---|
White wines | TL | 58.1 ± 11.8 a | 64.6 ± 8.5 a | −3.7 ± 15.5 a | 70.1 ± 10.6 a | 60.7 ± 10.3 a |
FI | 13.5 ± 2.2 b | 18.7 ± 5.0 b | 22.2 ± 12.2 a | 7.9 ± 4.1 b | −3.8 ± 3.8 b | |
FII | 53.5 ± 9.2 a | 67.0 ± 12.7 a | 27.9 ± 8.6 a | 63.6 ± 18.7 a | 91.8 ± 5.5 a | |
FIIΙ | 49.8 ± 10.6 a | 64.6 ± 14.3 a | 19.1 ± 6.0 a | 69.8 ± 11.4 a | 54.6 ± 7.9 a | |
FIV | 12.6 ± 14.3 b | 23.7 ± 4.0 b | −24.5 ± 19.0 a | 14.5 ± 5.7 b | 10.4 ± 9.2 b | |
Red wines | TL | 61.6 ± 12.0 a | 62.2 ± 11.2 a | 26.2 ± 7.6 a | 68.0 ± 11.6 a | 64.2 ± 10.0 a |
FI | 57.6 ± 16.5 a,* | 46.6 ± 10.4 a,* | 51.7 ± 10.0 a,* | 42.5 ± 14.3 a,* | 36.3 ± 15.5 a,b,* | |
FII | 60.1 ± 13.2 a | 62.8 ± 11.7 a | 59.6 ± 10.3 a,* | 66.4 ± 15.1 a | 87.2 ± 8.6 a,b | |
FIIΙ | 36.5 ± 12.3 a | 63.1 ± 7.0 a | 25.4 ± 6.3 a | 61.7 ± 11.0 a | 56.8 ± 19.5 a | |
FIV | 43.9 ± 14.1 a | 33.0 ± 8.3 a | 26.0 ± 13.5 a,* | 29.7 ± 12.0 b | 2.3 ± 5.8 c |
Type of Wine | TNF-α % Inhibition | Il-1β % Inhibition | |||
---|---|---|---|---|---|
500 μg | 100 μg | 500 μg | 100 μg | ||
White wines | TL | 0.8 ± 44.9 a | 5.1 ± 34.8 | ||
FI | 18.6 ± 8.2 a | 7.8 ± 9.5 a | |||
FII | 76.4 ± 34.7 b | 63.1 ± 29.7 | |||
FIIΙ | 32.2 ± 17.3 a | 23.1 ± 21.5 | |||
FIV | 27.1 ± 10.7 b | 11.9 ± 11.0 a | |||
Red wines | TL | 18.0 ± 14.3 a | 22.7 ± 18.3 a | ||
FI | 24.1 ± 22.8 a | 14.3 ± 20.5 a | |||
FII | 51.6 ± 49.9 b | 43.6 ± 28.7 a,* | |||
FIIΙ | 24.9 ± 24.9 a | 33.6 ± 17.4 a | |||
FIV | 21.4 ± 14.9 a | 13.9 ± 13.2 a |
Extract | Anti-Oxidant | Anti-Platelet | Anti-Inflammatory | Total | |
---|---|---|---|---|---|
White | TL | 2.3 ± 0.2 a | 2.7 ± 0.2 a | 1.2 ± 0.2 a | 2.0 ± 0.1 a |
FI | 1.2 ± 0.2 b | 1.3 ± 0.1 b | 1.1 ± 0.1 a | 1.2 ± 0.1 b | |
FII | 3.2 ± 0.2 c | 2.5 ± 0.3 a | 3.3 ± 0.2 b | 3.1 ± 0.1 c | |
FIIΙ | 2.9 ± 0.1 c | 2.6 ± 0.3 a | 1.5 ± 0.1 a | 2.2 ± 0.1 a | |
FIV | 1.1 ± 0.1 b | 1.2 ± 0.1 b | 1.3 ± 0.1 a | 1.3 ± 0.0 b | |
Red | TL | 2.3 ± 0.1 a,b | 2.6 ± 0.3 a,b | 1.4 ± 0.1 a | 1.9 ± 0.1 a |
FI | 1.8 ± 0.2 a,b,* | 2.3 ± 0.3 a,b,* | 1.3 ± 0.2 a | 1.6 ± 0.2 a,* | |
FII | 3.2 ± 0.1 c | 2.8 ± 0.3 a | 2.2 ± 0.2 b,* | 2.6 ± 0.2 b,* | |
FIIΙ | 2.8 ± 0.1 a,c | 2.5 ± 0.2 a,b | 1.6 ± 0.2 a,b | 2.2 ± 0.2 a,b | |
FIV | 1.7 ± 0.1 a,b | 1.7 ± 0.2 b | 1.3 ± 0.1 a | 1.6 ± 0.1 a,* |
Extract | Action | Total Phenolic Compounds | Ortho-Phenolic Compounds | Phosphorus | Sugars |
---|---|---|---|---|---|
TL | Anti-oxidant | 0.585 ** | 0.448 * | ns | ns |
Anti-platelet | ns | ns | 0.487 * | −0.427 * | |
Anti-inflammatory | ns | −0.790 * | −0.869 ** | ns | |
Total | ns | ns | ns | ns | |
FI | Anti-oxidant | ns | 0.457 * | ns | 0.741 *** |
Anti-platelet | 0.739 *** | 0.486 * | ns | 0.678 ** | |
Anti-inflammatory | ns | −0.477 * | −0.432 * | ns | |
Total | 0.555 ** | ns | ns | 0.377 * | |
FII | Anti-oxidant | ns | ns | ns | ns |
Anti-platelet | 0.548 * | ns | 0.505 * | ns | |
Anti-inflammatory | ns | 0.614 * | ns | ns | |
Total | 0.472 * | 0.389 * | ns | 0.420 * | |
FIV | Anti-oxidant | 0.911 ** | 0.852 ** | 0.561 ** | 0.908 ** |
Anti-platelet | ns | ns | 0.447 * | ns | |
Anti-inflammatory | ns | ns | ns | ns | |
Total | 0.779 *** | 0.780 *** | 0.574 ** | 0.787 *** |
Sample Availability: Samples of the compounds are not available from the authors. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fragopoulou, E.; Petsini, F.; Choleva, M.; Detopoulou, M.; S. Arvaniti, O.; Kallinikou, E.; Sakantani, E.; Tsolou, A.; Nomikos, T.; Samaras, Y. Evaluation of Anti-Inflammatory, Anti-Platelet and Anti-Oxidant Activity of Wine Extracts Prepared from Ten Different Grape Varieties. Molecules 2020, 25, 5054. https://doi.org/10.3390/molecules25215054
Fragopoulou E, Petsini F, Choleva M, Detopoulou M, S. Arvaniti O, Kallinikou E, Sakantani E, Tsolou A, Nomikos T, Samaras Y. Evaluation of Anti-Inflammatory, Anti-Platelet and Anti-Oxidant Activity of Wine Extracts Prepared from Ten Different Grape Varieties. Molecules. 2020; 25(21):5054. https://doi.org/10.3390/molecules25215054
Chicago/Turabian StyleFragopoulou, Elizabeth., Filio Petsini, Maria Choleva, Maria Detopoulou, Olga S. Arvaniti, Eftyhia Kallinikou, Eleni Sakantani, Ageliki Tsolou, Tzortzis Nomikos, and Yiannis Samaras. 2020. "Evaluation of Anti-Inflammatory, Anti-Platelet and Anti-Oxidant Activity of Wine Extracts Prepared from Ten Different Grape Varieties" Molecules 25, no. 21: 5054. https://doi.org/10.3390/molecules25215054
APA StyleFragopoulou, E., Petsini, F., Choleva, M., Detopoulou, M., S. Arvaniti, O., Kallinikou, E., Sakantani, E., Tsolou, A., Nomikos, T., & Samaras, Y. (2020). Evaluation of Anti-Inflammatory, Anti-Platelet and Anti-Oxidant Activity of Wine Extracts Prepared from Ten Different Grape Varieties. Molecules, 25(21), 5054. https://doi.org/10.3390/molecules25215054